作物冠层氮素淋溶及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物冠层氮素淋失是土壤-植物系统氮素循环的重要组成部分,在决定氮素利用和生态系统氮素平衡方面具有重要作用。过去,植物冠层养分淋失研究大部分局限于森林冠层,对农田养分淋失研究大多集中于土壤养分,而对农田作物冠层养分淋失研究较少,对作物冠层氮素淋失随生育期和降雨酸度变化规律的研究更是鲜见报道。由于施肥等原因,农田作物冠层氮素比森林冠层更加丰富,即被降雨淋洗的“氮源”更大,受降雨酸度影响应更为显著。基于以上假设,本文以不同水、氮供应的盆栽玉米和小麦为试验材料,采用自制人工降雨器进行不同pH值模拟降雨,研究不同水、氮供应条件下玉米及小麦冠层各形态氮素淋失动态、数量及随生育期和降雨酸度的变化规律,以及冠层干物质、氮素含量、气孔性状、光合、蒸腾等与冠层氮素淋失的相关性。此外,为提供影响冠层氮素淋失的植物体内部因素有关数据,本文还阐明了水、氮供应对玉米冠层营养器官干物质和氮素累积、分配及随生育时期变化的影响,以及小麦冠层气孔形态、密度和开度对水、氮的响应。研究获得以下主要进展:
     1.阐明了施氮和模拟降雨pH值对玉米冠层NO_3~--N淋失的影响。
     玉米冠层NO_3~--N淋失量不仅与介质施氮(冠层氮素含量)有关,同时受降雨pH值影响。中性和弱酸性降雨淋洗,NO_3~--N淋失量主要取决于冠层氮素含量,而强酸雨淋洗,NO_3~--N淋失量同时受降雨pH值和冠层氮素含量影响。各生育期玉米冠层NO_3~--N淋失量随降雨pH值降低变化规律不一,生育前期降雨pH值对冠层NO_3~--N淋失影响较生育后期显著,在研究降雨酸度对玉米冠层N03--N淋失的影响时,必须考虑生育期。相同pH值模拟降雨条件下,玉米冠层NO_3~--N淋失量随生育期推进逐渐降低:11叶期>吐丝期>灌浆期,生育前期显著高于中、后期。降雨pH与氮素营养在不同生育期对NO_3~--N淋失的影响程度不同,总体看植物体氮素丰富程度是影响冠层NO_3~--N淋失的主要因素。各生育期玉米冠层均存在一定数量的NO_3~--N淋失,尤以生育前期为甚。
     2.明确了玉米冠层NO_3~--N淋失对干旱胁迫的响应。
     与适宜水分供应相比,长期干旱条件下中性降雨会显著降低玉米冠层N03--N淋失量;而长期干旱条件下酸性降雨会导致植株冠层N03--N淋失量较适宜水分处理相对增加。生育前期降雨pH值对冠层氮素淋失影响较生育后期显著,各生育期冠层氮素淋失量并非随降雨酸度增加而增加。相同pH值模拟降雨条件下,冠层N03--N1h淋失量随生育期推进呈降低趋势:11叶期>吐丝期>灌浆期,生育前期显著高于中、后期。中性降雨条件下,冠层N03--N淋失量与冠层氮素含量高度正相关;酸性降雨条件下,二者并非都呈正相关。蒸腾速率、气孔导度和光合速率不是影响玉米冠层硝态氮淋失量的主要因素。
     3.揭示了水氮供应、模拟降雨酸度和叶片气体交换特性与玉米冠层NH_4~+-N淋失的相互作用。
     土壤介质施氮和适宜水分供应,通过增加植株根系对氮素的吸收增加冠层氮素含量,从而影响冠层氮素淋失量,二者是影响冠层NH_4~+-N淋失量的主要因素。气孔导度等叶片气体交换特性对冠层NH_4~+-N淋失的影响不明显。冠层氮素淋失量除与介质施氮、土壤水分供应有关外,还受降雨pH值影响,且影响程度与生育期有关。但总体看,介质施氮和土壤水分供应是影响玉米冠层NH_4~+-N淋失的主要因素。
     4.阐明了施氮与模拟降雨pH值对玉米冠层有机氮淋失的影响。
     玉米冠层有机氮淋失量在11叶期和灌浆期较低,而在吐丝期淋失量较大;各生育期冠层有机氮淋失量同时受介质施氮和降雨pH值影响,但在吐丝期和灌浆期介质施氮对冠层有机氮淋失量的影响更为显著。在中性及弱酸性降雨淋洗条件下,介质施氮对冠层有机氮淋失影响相对较大,施氮可显著增加冠层有机氮淋失量;强酸雨淋洗,玉米冠层有机氮淋失量同时受介质施氮和降雨pH值影响。无论施氮与否,整个生育期内,pH值5的弱酸性降雨会加速玉米冠层氮素淋失。生育前期,有机氮淋失量受降雨pH值影响显著,生育后期,降雨pH值影响相对减弱。介质施氮对冠层有机氮淋失的影响与降雨pH值和生育期密切相关,三者相互影响,共同决定着玉米冠层氮素淋失量。
     5.明确了介质施氮与降雨pH值对玉米冠层NO_3~--N、NH_4~+-N、有机氮及总氮淋洗动态和数量的影响,证明了有机氮是冠层淋失的主要氮素形态,认为在研究农田生态系统氮素流量和冠层氮素损失时,冠层氮素淋失应予以考虑。
     研究表明,(1)弱酸性及中性降雨淋洗,NO_3~--N淋洗量主要由冠层氮素含量决定;而强酸雨淋洗,NO_3~--N淋洗量同时受降雨pH和冠层氮素含量影响。玉米冠层NO_3~--N淋洗量不仅与介质施氮有关,同时与降雨pH有关,两因素在不同生育期对NO_3~--N淋失贡献不同,但总体看,植物体氮素丰富程度是影响冠层NO_3~--N淋失的主要因素。(2)中性及弱酸性降雨淋洗,介质施氮对冠层总氮淋失的影响相对较大,降雨pH影响相对较小;强酸雨淋洗,降雨pH影响相对较大,介质施氮影响程度相对较小。中性及弱酸性降雨淋洗,降雨频率对冠层氮素淋洗量的影响比降雨强度更重要。无论中性还是酸性降雨,蒸腾速率、气孔导度和光合速率等对冠层氮素淋失的影响不明显。(3)各生育期玉米冠层均存在一定数量氮素淋失,各生育期玉米冠层NO_3~--N、有机氮及总氮淋洗量随降雨pH值变化规律不一,说明在研究降雨对玉米冠层氮素淋失影响时,必须考虑生育期及降雨pH。玉米冠层氮素淋失以有机氮为主,尤其是在生育中、后期。从全生育期评价看,pH值7、5和4降雨时,施氮且适宜供水处理有机氮淋失量占总氮淋失量比例分别为49%、63%和61%,不施氮且适宜处理有机氮占总氮淋失量比例分别为61%、55%和71%。介质施氮对冠层NO_3-N、NH_4~+-N、有机氮及总氮淋洗的影响与降雨pH密切相关,二者相互作用,共同决定着玉米不同生育期及全生育期冠层氮素淋失量。(4)以上研究结果表明,认为在研究农田生态系统氮素流量和冠层氮素损失时,冠层氮素淋失应予以考虑。
     6.明确了小麦冠层气孔特征对水、氮的响应特征,分析了水氮供应、生物量及气孔性状与小麦地上部氮素淋失的关系,比较了玉米与小麦冠层氮素淋失的差异。
     各pH值降雨条件下,施氮会显著增加小麦地上部氮素淋失量。而干旱胁迫会降低地上部氮素淋失量,且其影响程度与降雨pH值有关。小麦地上部氮素淋失量与干物质累积量显著相关,尤其是在中性和弱酸性降雨时更为明显。各pH值降雨条件下,地上部氮素淋失量与冠层气孔宽度均呈高度或显著正相关,与气孔长度呈显著或低度负相关,与气孔密度低度相关,与气孔面积相关性甚微。小麦地上部单位干质量氮素淋失量显著低于玉米,且强酸性降雨淋洗时,小麦和玉米地上部单位干质量氮素淋失量的差异相对于中性和弱酸性降雨时更为显著。
A series of simulated rainfall experiments were conducted in2008and2009toinvestigate the Nitrogen (N) leaching from above-ground parts of maize and wheat, and theeffects of N application, irrigation, canopy characteristics and rainfall pH on N leaching lossas well as its changes over the growing season. Also, the effect of different levels of Nitrogen(N) and water supply on the accumulation and distribution of dry matter and N in maize leafand straw-sheath was investigated in pot experiments. In additional, the effects of N and waterstress on stomatal morphology characteristics (including stomatal length, width, area andperimeter), stomatal density and area of stomatal pore in wheat were studied. The main resultswere as follows:
     (1) Effects of N and water supply on dry matter and N accumulation and distribution inmaize (Zea mays L.):
     The results showed that accumulation of dry matter and N in leaf and straw-sheath wereasynchronous, and the accumulation curves varied with different levels of water and N supply.Leaf was the main part of N accumulation, but the main part of dry matter accumulationvaried with N application and growing stage. N application and irrigation both significantlyincreased the dry matter and N content in maize canopy, and the interactive effect betweenirrigation and N application was significant, in addition, the effect of N application was higherthan irrigation in our experiment.
     (2) Effects of N application and rainfall pH on nitrate leaching from canopy of maize:
     The amount of nitrate (NO_3~--N) leaching from maize canopy mainly affected by canopyN content which is closely related with N application when rainfall pH was above5, Napplication significantly increased the amount of canopy NO_3~--N leaching loss, nevertheless,when rainfall pH was4, both rainfall pH and canopy N content had significant effects onNO_3~--N leaching loss. The change characteristics of NO_3~--N leaching loss with decreasingrainfall pH varied at different growth stages, rainfall pH had more significant effect onNO_3~--N leaching in early growth stage than in later growth stage. Under the same pH rainfallcondition, the amount of canopy NO_3~--N leaching loss decreased with maize growing:11-leafstage>silking stage> grain filling stage, and the amount of leaching loss in early growthperiod was obviously higher than in later period. In conclusion, both canopy N content and rainfall pH can affect NO_3~--N leaching loss, but the canopy N content was relatively moreimportant factor. NO_3~--N can be significantly leached by simulation rainfall from maizecanopy, especially in early growth period. Thus the amount of NO_3~--N leaching from canopyshould be taken into account in studying the canopy N cycle, flux and losses.
     (3) Effects of drought stress and rainfall pH on nitrate leaching from canopy of maize:
     When rainfall pH was7, drought significantly decreased the amount of nitrate (NO_3~--N)leaching from maize canopy. However, when rainfall pH was5or4, the amount of NO_3~--Nleaching from maize canopy suffered from drought stress was comparatively higher than theNO_3~--N leaching from the maize with irrigation. Rainfall pH had more significant influenceon NO_3~--N leaching in early growth stage than in later growth stage. The change trends ofNO_3~--N leaching loss with decreasing rainfall pH varied at different growth stages because ofthe influences of soil water content and rainfall pH. Under the simulated rainfall with thesame pH value, the amount of canopy NO_3~--N leaching loss decreased with maize growingstage:11-leaf stage>silking stage> grain filling stage, and the amount of leaching loss inearly growth stage was obviously higher than in later stage. The amount of NO_3~--N leachingfrom maize canopy was positive and linear correlated with canopy N content when rainfall pHwas7. But the linear correlation relationship was not found between the content of NO_3~--Nleaching from canopy and the canopy N content when rainfall pH was5and4. Stomatalconductivity, transpiration rate and photosynthetic rate were not the mainly influencingfactors for NO_3~--N leaching loss from maize canopy.
     (4) The amount of ammonium (NH_4~+-N) leaching from maize canopy was mainlyaffected by canopy N content which is closely related with N application and irrigation.Stomatal conductivity, transpiration rate and photosynthetic rate were not the maininfluencing factors for NH_4~+-N leaching loss from maize canopy. In addition to the effect ofsoil N application and irrigation, NH_4~+-N leaching was also affected by rainfall pH. Butoverall, the amount of NH_4~+-N leaching from maize canopy was mainly affected by Napplication rate and irrigation.
     (5) Effects of N application and rainfall pH on organic N leaching from canopy of maize:
     The amount of organic N leaching from maize canopy at silking stage was much higherthan in11-leaf and grain-filling stage, and the amount of organic N leaching loss was affectedby not only N application but also rainfall acidity in the growing season of maize, furthermore,N application had more significant influence on organic N leaching loss at silking stage andgrain filling stage than at11-leaf stage. When rainfall pH was7and5, N application had thedominant influence on organic N leaching loss, and the amount of organic N leaching fromcanopy was significantly increased with N application, nevertheless, when rainfall pH was4, rainfall pH and N application both had significant influence on organic N leaching, and theformer’s effects played the dominant role. In addition, whether N were applied or not, theamount of organic N leaching loss when rainfall pH was5was much higher than that whenrainfall pH was7, and rainfall pH had more significant influence on organic N leaching atearly growth stage than at later growth stage.
     N in maize canopy can be significantly leached by simulated rainfall, despite the largequantities of inorganic nutrients which can be leached, organic substances account for themajor quantity of leached materials. During the whole growing season, when simulatedrainfall pH was7,5and4, organic N leaching from the maize canopy with N application andirrigation was49%,63%and61%, respectively, N leaching from the maize canopy withirrigation but no N application was61%,55%and71%, respectively.
     (6) Effects of N application and rainfall pH on total N leaching from canopy of maize:
     During the early portion of the growing season, when the pH value of simulated rainfallwas7and5, N fertilizer application increased total N leaching from the canopy of maizecompared with the control, but when rainfall pH was4, the amount of total N leaching fromcanopy of maize with N application was not increased but decreased compared with thecontrol. During the middle and late portion of the growing season, no matter what the rainfallpH was, N application increased total N leaching from the canopy of maize compared withcontrol. So, N application was one of the main factors affecting the N leaching from canopyof maize, but it was not the only factor, and its effect on N leaching was closely related withthe pH of rainfall.
     During the whole growing season, rainfall with pH of5increased the amount of Nleaching from canopy no matter whether N fertilizer was applied or not. When rainfall pHwas decreased from5to4, the N leaching from control significantly increased, but the Nleaching from N application treatment decreased compared to the leaching of total N whenrainfall pH was5. In addition, the effect of rainfall pH on N leaching from maize canopy wasrelated to the growth period, and the effect was greater in the early portion of the growthseason than the middle and late portions. The trend of N leaching from maize canopy didn’tcomply with the trend of N accumulation in canopy. N in maize canopy can be significantlyleached by simulated rainfall. Thus, the amount of N leaching from canopy should be takeninto account in studying the canopy N cycle, flux and losses.
     (7) Response of leaf stomatal size, shape, density and area of stomatal pore to water andN stress in wheat:
     Both water and N in soil are important factors affecting stomatal size and shape. Underthe conditions of drought stress, lack of N fertilizer resulted in reduction of size of stomata located in upper and lower epidermis of wheat, but if sufficient irrigation water were supplied,lack of N fertilizer increased stomatal size. Not only N fertilizer application but also droughtstress can reduce the area of stomatal pore, and increase stomatal density. The interaction ofwater and N application was significant, and the effect of drought on stomata was moresignificant than N stress. Significantly differences were found between the stomata located inupper epidermis and lower epidermis. The stomata located in upper epidermis were smallerthan lower epidermis, and the stomatal density of upper epidermis was higher than that oflower epidermis. The same changing trends of stomatal response to water and N stress wereobserved between the upper epidermis and lower epidermis.
     (8) N leaching from above-ground parts of wheat and the affecting factors
     A simulated rainfall experiment was conducted to investigate N leaching fromabove-ground parts of wheat and the affecting factors. The results showed that N fertilizerapplication increased total N leaching from above-ground parts of wheat compared with thecontrol. Also, irrigation increased total N leaching. N leaching significantly correlated withabove-ground biomass, especially when rainfall pH value was7and5. The change trends ofN leaching loss with decreasing rainfall pH varied because of different irrigation and Napplication. A significant positive correlation was found between N leaching and stomatalwidth, a negative correlation was found between N leaching and stomatal length, nosignificant correlation was found between N leaching and the area and density of stomata.
     N application significantly decreased the total N leaching per unit dry weight fromabove-ground parts of wheat and maize. If N fertilizer were applied, drought stress decreasedN leaching per unit dry weight biomass from maize. But if no N fertilizer were applied,drought increased N leaching per unit dry weight biomass. The quantity of N leaching per unitdry weight biomass from maize at spinning stage was significantly higher than that of wheatat booting stage.
引文
曹洪法,王玮,高映新,舒俭民,刘燕云,陈延智,孙文舜,任毅.1989.森林冠层对酸雨的反应及其影响.中国环境科学,9(2):81-85.
    曹仪植,宋占午.1997.植物生理学.兰州:兰州大学出版社:223-224.
    陈冬梅,司江英,封克.2006.介质pH和氮形态对玉米苗期根系发育的影响.扬州大学学报(农业与生命科学版),27(2):36-39.
    戴明宏,陶洪斌,王利纳,王璞.2008.不同氮肥管理对春玉米干物质生产、分配及转运的影响.华北农学报,23(1):154-157.
    冯宗炜.2000.中国酸雨对陆地生态系统的影响和防治对策.中国工程科学,2(9):5-11.
    高亚军,李生秀,田霄鸿,李世清,王朝辉,杜建军.2006.不同供肥条件下水分分配对旱地玉米产量的影响.作物学报,32(3):415-422.
    高志英,丁圣彦,谷艳芳,邢倩.2008.不同光环境和氮素互作对玉米气孔特征的影响.河南农业科学,(9):15-19.
    国家环境保护总局.1998.酸雨控制区和二氧化硫污染控制区划方案.环境保护,(3):7-10.
    韩慧婉,舒鸿钧,刘国诠.2000.微透析技术及其应用.化学通报,(12):52-56.
    郝梦波,王空军,董树亭,张吉旺,李登海,刘鹏,杨今胜,柳京国.2009.减源对超高产夏玉米物质积累及氮素利用的影响.山东农业科学,(8):34-36.
    胡昊,白由路,杨俐苹,孔庆波,卢艳丽,王磊,王志勇.2009.玉米不同器官元素分布对施肥的响应.中国农业科学,42(3):912-917.
    黄继山,温文保,蔺万煌等.2002.酸雨对树木叶细胞伤害的模拟研究.林业科学研究,15(2):219-224.
    黄丽萍,刘和,陈晓东,李春琳,郭勤琳.2008.裂果性不同枣品种叶片气孔特性观察.山西林业科技,(4):8-14.
    黄勇,马二培,杨青华,刘媛媛,李潮海.花后灌水对高油玉米碳氮运转的影响.2006.水土保持学报,20(6):124-127.
    吉春容,李世清,冯宏昭,张福锁.2008.施氮对不同品种夏玉米冠层叶片气孔特性的影响.植物生理学通讯,44(1):74-80.
    吉春容.2008.降雨对玉米冠层氮素淋洗的研究.[博士学位论文].杨凌:西北农林科技大学.
    蒋益民,曾光明,张龚.2004.酸雨作用下的森林冠层盐基离子(Ca2+, Mg2+, K+)淋洗.热带亚热带植物学报,12(5):425-430.
    解振华.1997.中国的酸雨控制对策.中国酸雨及其控制. CCAST—WL Workshop Series:78:7-16.
    居辉,王璞,周殿玺,兰林旺.2005.不同灌溉时期的冬小麦土壤水分变化动态.麦类作物学报,25(3):76-80.
    李合生.2000.植物生理生化实验原理和技术.北京:高等教育出版社:123-124.
    李齐,李天齐.1993.植物细胞X射线能谱分析方法的研究.北京林业大学学报,15(4):95-102.
    李生秀,李宗让,田霄鸿等.1995.植物地上部分氮素的挥发损失.植物营养与肥料学报,1(2):18-25.
    李生秀.1992.植物体氮素的挥发损失Ⅰ.小麦生长后期地上部分氮素的损失.西北农业大学学报,20(增):1-6.
    李师翁,薛林贵,冯虎元,徐世键,毕玉蓉,安黎哲.2006.植物保卫细胞中ABA、H202和NO信号网络的研究进展.中国沙漠,26(3):447-452.
    李世清,吉春容,范亚宁,陈小莉,李生秀.2007.植物冠层氮素淋失研究进展.中国农业科学,40(12):2774-2779.
    李世清,李生秀.2000.旱地农田生态系统氮肥利用率的评价.中国农业科学,33(1):76-81.
    李世清,赵琳,邵明安,张兴昌,上官周平.2004.植物冠层与大气氨交换的研究进展.西北植物学报,24(11):2154-2162.
    李玉英,宋玉伟,程序,孙建好,刘吉利,李隆.2009.施氮对灌漠土春玉米干物质积累和氮素吸收利用动态的影响.中国农业大学学报,14(1):61-65.
    李裕红.2004.木麻黄质膜转运系统对酸雨胁迫的响应及调控.[博士学位论文].厦门:厦门大学.
    李裕元,邵明安,郑纪勇,李秋芳,张兴昌.2007.降雨强度对黄绵土坡地磷流失特征影响试验研究.农业工程学报,23(4):39-46.
    凌大炯,章家恩,黄倩春,韩维栋,欧阳颖.2007.模拟酸雨对砖红壤盐基离子迁移和释放的影响.土壤学报,44(3):444-450.
    刘大永,朱利泉,梁颖.1997.酸雨、降尘对莴苣和小白菜3种抗氧化酶活性的影响.应用与环境生物学报,3(1):26–30.
    刘燕云,曹洪法.1993.酸雨和SO2作用下SOD酶活性与菠菜叶片损伤相关性的研究.应用生态学报,4(2):223-225.
    刘弋菊,孔箐锌,苏胜宝.2009.玉米氮素代谢机制的研究进展.玉米科学,17(1):135-138.
    孟雷,陈温福,李磊鑫,徐正进,刘丽霞,孙静文.2002.减弱光照强度水稻叶片气孔性状影响.沈阳农业大学学报,33(2):87–89.
    米国华,陈范骏,春亮,郭亚芬,田秋英,张福锁.2007.玉米氮高效品种的生物学特征.植物营养与肥料学报,13(1):155-159.
    齐泽民,钟章成,邓君等.2001.模拟酸雨对杜仲叶膜脂过氧化及氮代谢的影响.西南师范大学学报(自然科学版),26(1):38–44.
    齐泽民,钟章成,杨万勤.2006.模拟酸雨对杜仲抗性生理及药用有效成分含量的影响.应用与环境生物学报,12(2):190-194.
    秦大河.2009.气候变化与干旱.科技导报,2009(11):1.
    邱栋梁,刘星辉,郭素枝.2002.模拟酸雨对龙眼叶片气体交换和叶绿素a荧光参数的影响.植物生态学报,26(4):441-446.
    束良佐,孙五三.2001. Ca2+浸种对酸雨伤害玉米幼苗的影响.中国环境科学,21(2):185-188.
    宋海星,李生秀.2003.玉米生长量、养分吸收量及氮肥利用率的动态变化.中国农业科学,36(1):71-76.
    宋亚娜,王贺,王震宇,张福锁.1998.潜在性缺铁条件下大豆根系质外体铁库的积累与利用.植物生理学报,24(3):209-214.
    孙大业.2000.质外体—决定植物细胞发育命运的重要信号源.植物学报,42(5):441-445.
    田大伦,黄智勇,付晓萍.2007.模拟酸雨对盆栽樟树(Cinnamomum camphora)幼苗叶矿质元素含量的影响.生态学报,27(3):1100-1104.
    田大伦,黄智勇,闫文德,项文化.2007.模拟酸雨对3种盆栽灌木幼苗叶矿质元素含量的影响.中南林业科技大学学报(自然科学版),27(1):1-8.
    田大伦,杨晚华,方海波.1999.第二代杉木幼林中降雨对养分的淋溶作用.湖北民族学院学报(自然科学版),17(1):1-5.
    童贯和,梁惠玲.2005.模拟酸雨及其酸化土壤对小麦幼苗体内可溶性糖和含氮量的影响.应用生态学报,16(8):1487~1492.
    王朝辉,李生秀.蔬菜不同器官的硝态氮与水分、全氮、全磷的关系.植物营养与肥料学报,1996,2(2):144-152.
    王朝辉,田霄鸿,李生秀.2001.叶类蔬菜的硝态氮累积及成因研究.生态学报,21(7):1136-1141.
    王俊忠,栾丽敏,付国占,宁洪兴,张秀英.2002.灌水量对不同玉米杂交种生育后期干物质积累和产量的影响.河南农业大学学报,32(2):129-132.
    王丽梅,李世清,邵明安.2010.水、氮供应对玉米冠层营养器官干物质和氮素累积、分配的影响.中国农业科学43(13):2697-2705.
    王丽梅,李世清,邵明安.2011.施氮水平与模拟降雨pH值对玉米冠层NO3--N淋失的影响.农业工程学报,27(6):66-72.
    王玮.1988.模拟酸雨处理的青菜显微和亚显微结构观察及部分生理指标测定.环境科学,9(3):12-17.
    王小燕,于振文.不同施氮量条件下灌溉量对小麦氮素吸收转运和分配的影响.中国农业科学,2008,41(10):3015-3024.
    王震宇,陶洪斌,唐玉林,张福锁.1999.植物质外体的研究方法.植物生理学通讯,35(5):394-397.
    魏爱丽,畅志坚,邢勇,李建.2006.八倍体小偃麦与不同需水性小麦气孔特性比较研究.西北植物学报,26(8):1727-1731.
    吴正锋,王空军,董树亭,胡昌浩,刘鹏,张吉旺.2005.高油玉米籽粒灌浆期间氮素的吸收与分配.中国农业科学,38(4):697-702.
    夏阳,林杉,张福锁,胡恒觉,李杰,梁慧敏.2002.盐胁迫对玉米冠层淋洗物中氮组分的影响.作物学报,28(2):278-281.
    夏阳,林杉,张福锁,陶洪斌,胡恒觉.2001.叶片淋洗对盐胁迫下玉米生长和矿质营养的影响研究.生态学报,21(4):593-597.
    萧月芳,史衍玺,刘春生,马玉增,杨守祥.1997.模拟酸雨对山东主要土壤类型理化性质的影响.环境科学,18(3):25-31.
    邢维芹,王林权,骆永明,李立平,李生秀.2002.半干旱地区玉米的水肥空间耦合效应研究.农业工程学报,18(6):46-49.
    徐坤,邹琦,赵燕.2003.土壤水分胁迫与遮荫对生姜生长特性的影响.应用生态学报,14(10):1645-1648.
    徐仁扣,季国亮.1998. pH对酸性土壤中铝的溶出和铝离子形态分布的影响[J].土壤学报,35(2):46~51.
    许振柱,周广胜.2004.植物氮代谢及其环境调节研究进展.应用生态学报,15(3):511-516.
    严重玲,洪业汤,杨先科等.1998.酸雨胁迫下稀土元素对小麦的生物学效应.中国农业科学,31(3):89-91.
    严重玲,李瑞智,钟章成.1995.模拟酸雨对绿豆、玉米生理生态特征的影响.应用生态学报,3(6):124-131.
    严重玲,洪业汤,林鹏,杨先科,付舜珍.1999.菠菜对酸雨胁迫的响应及稀土元素的作用.园艺学报,26(1):54-56.
    阎翠萍,张虎,王建军,支虎明,党建友.2002.沟谷地春玉米干物质积累、分配与转移规律的研究.玉米科学,10(1):67-71.
    杨惠敏,王根轩.2001.干旱和CO2浓度的升高对干旱区春小麦气孔密度及分布的影响.植物生态学报,25(3):312-316.
    杨建昌,朱庆森,乔纳圣威尔斯,彭智勇.1995.水分胁迫对水稻叶片气孔频率、气孔导度及脱落酸含量的影响.作物学报,21(5):533-537.
    姚万山,宋连启,郭宏敏,张慎璞.1999.夏玉米高产群体生理动态质量指标的研究.华北农学报,14(4):55-59.
    尹晓明,范晓荣,贾莉君,沈其荣.2006.用微电极测定水稻根系质外体的pH值.土壤学报.43(6):1033-1036.
    尹秀玲,温静,刘欣,杜立文.2008.蔷薇科12属代表植物叶片气孔密度研究.北方果树,2008(1):4-6.
    印莉萍,黄勤妮,吴平.2006.植物营养分子生物学及信号传导.北京:科学出版社:151.
    于海秋,武志海,沈秀瑛,徐克章.2003.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化.吉林农业大学学报,25(3):239-242.
    张大鹏.1989.水稻叶片气孔的研究Ⅱ.不同生态条件下的气孔动态.福建农学院学报,18(3):302–307.
    张殿忠,汪沛洪.1988.水分胁迫与植物氮代谢的关系,I.水分胁迫对小麦叶片氮代谢的影响.西北农业大学学报,16(13):9-15.
    张福锁,刘书娟.1996.小金海棠和山定子幼苗根自由空间铁累积量和活化量.植物生理学报,22(4):357-362.
    张光生,刘英,周青.2006.9种草本观赏植物叶绿素含量和细胞膜透性对酸雨胁迫的响应.生态与农村环境学报,22(4):83-87.
    张华,杨永奎,谢德体等.2007.酸雨对紫色土氮磷淋失的影响.水土保持学报,21(1):22-25.
    张慧,汪沛洪.1991.渗透胁迫下小麦叶片蛋白质合成与降解的示踪研究.植物生理学报,17(3):259-266.
    张家铜,彭正萍,李婷,袁硕,王艳群,薛世川.不同供氮水平对玉米体内干物质和氮动态积累与分配的影响.河北农业大学学报,2009,32(2):1-5.
    张建萍,王进军,赵志模等.2005.模拟酸雨对朱砂叶螨寄主植物三月早茄生理生化的影响.应用生态学报,16(3):450-454.
    张强,张存杰,白虎志,李林,孙兰东,刘德祥,王劲松,赵红岩.2010.西北地区气候变化新动态及对干旱环境的影响.干旱气象,28(1):1-7.
    张兴昌.2002.耕作及轮作对土壤氮素径流流失的影响.农业工程学报,18(1):70-73.
    张绪成,上官周平.2007.施氮对不同抗旱性小麦叶片光合及生长特性的影响.中国生态农业学报,15(6):59-64
    张绪成,上官周平.2007.施氮量对小麦叶片硝酸还原酶活性、一氧化氮含量和气体交换的影响.应用生态学报,18(7):1447-1452.
    张永平,王志敏,吴永成,张霞.2006.不同供水条件下小麦不同绿色器官的气孔特性研究.作物学报,32(1):70-75.
    赵丽英,邓西平,山仑.2005.活性氧清除系统对干旱胁迫的响应机制.西北植物学报,25(2):413-418.
    赵艳霞,侯青,徐晓斌,丁国安,王淑凤.2006.2005年中国酸雨时空分布特征.气候变化研究进展,2(5):242-245.
    赵营,同延安,赵护兵.不同供氮水平对夏玉米养分累积、转运及产量的影响.植物营养与肥料学报,2006,12(5):622-627.
    郑成岩,于振文,王西芝,武同华.2009.灌水量和时期对高产小麦氮素积累、分配和转运及土壤硝态氮含量的影响.植物营养与肥料学报,15(6):1324-1332.
    郑飞翔,温达志,旷远文.2006.模拟酸雨对柚木幼苗生长光合与水分利用的影响.热带亚热带植物学报,14(2):93-99.
    周青,黄晓华,王冬燕,宁允叶.1997.钙对酸雨胁迫下甜瓜幼苗质膜透性的影响.环境科学,(3):60-63.
    周青,黄晓华,曾庆玲等.2003.植物酸致损伤机理与化控减灾研究进展.农业环境科学学报,22(5):632-635.
    朱勍.2001.聚苯乙烯负载的高价碘试剂的合成及其在合成中的应用.[博士学位论文].杭州:浙江大学
    朱燕华,康宏樟,刘春江.2011.植物叶片气孔性状变异的影响因素及研究方法.应用生态学报,22(1):250-256.
    邹春琴, Goldbach H E.2001.氮素形态对玉米根尖质外体铁组成影响的短期效应.科学通报,46(24):2058-2062.
    Alscher RG, Erturk N, Heath LS.2002. Role of superoxide dismutase (SODs) in controlling stress in plants.J Exp Bot.53:1331-1341.
    Anderson P D, Houpis J L, Helms J A, Momen B.1997. Seasonal variation of gas exchange andpigmentation in branches of three grafted clones of mature ponderosa pine exposed to ozone and acidrain. Environmental Pollution,97(3):253-263.
    Arduini I, Masoni A, Ercoli L, Mariotti M.2006. Grain yield, and dry matter and nitrogen accumulationand remobilization in durum wheat as affected by variety and seeding rate. European Journal ofAgronomy,25:309-318.
    Asada K.1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation excessphotons. Ann Rev Plant Physiol Plant Mol Biol.1999,50:601-639.
    Beerling D J, Chaloner W G.1993. The impact of atmospheric CO2and temperature change on stomataldensity: observations from Quercus robur Lammad leaves. Annals of Botany,71:231–235.
    Bergez J E, Nolleau S.2003. Maize grain yield variability between irrigation stands: a theoretical study.Agricultural Water Management,60:43-57.
    Bernstein L.1971. Method for determining solutes in the cell walls of leaves. Plant Physiol,47:361-365.
    Biro R L, Daye S, Serlin B S, Terry M E, Datta N, Sopory S K, and Roux S J.1984. Characterization of oatcalmodulin and radioimmunoassay of its subcellular distribution. Plant Physiol,75:382-386.
    Blaschke H,1990. Mycorrhizal populations and fine root development on Norway spruce exposed tocontrolled doses of gaseous pollutants and simulated acidic rain treatments. Environmental Pollution,68(3-4):409-418.
    Bonato O, Schulthess F, Baumg rtner J.1999. Simulation model for maize crop growth based onacquisition and allocation processes for carbohydrate and nitrogen. Ecological Modelling,124:11-28.
    Bowler C, Fluhr R.2000. The role of calcium and activated oxygens as signals for controllingcross-tolerance. Trends in Plant Science,5:241-246.
    Bronk D A, Lomas M W, Glibert P M, Schukert K J, Sanderson M P.2000. Total dissolved nitrogenanalysis: comparisons between the persulfate, UV and high temperature oxidation methods. MarineChemistry,69:163-178.
    Calace N, Fiorentini F,忆苦思甜Petronio B M, Pietroletti M.2001. Effects of acid rain on soil humiccompounds. Talanta,54:837–846.
    Chapin Ⅲ F S, Moilanen L.1991. Nutritional controls over nitrogen and phosphorus resorption fromAlaskan birch leaves. Ecology,72:376-391.
    Chaves M M, Pereira J S, Maroco J, Rodrigues M L, Ricardo C P P, Osório M L, Carvalho I, Faria T andPinheiro C.2002. How plants cope with water stress in the field. Photosynthesis and growth. Annalsof Botany,89(7):907-916.
    Cowling E B.1982. Acid precipitation in historical perspective. Environ Sci Tec,16(2):110-123.
    Currie W S, Aber J D, Driscoll C T.1999. Leaching of nutrient cations from the forest floor: effects ofnitrogen saturation in two long-term manipulations. Canadian Journal of Forest Research,29:609-620.
    Dannel F, Pfeffer H, Marschner H.1995. Isolation of apoplastic fluid from sunflower leaves and its use forstudies on influence of nitrogen supply on apoplasmic pH. J. Plant Physiol,146:273~278.
    Dise N B, Wright R F.1995. Nitrogen leaching from European forests in relation to nitrogen deposition.Forest Ecology and Management,71:153-161.
    Duchesne L, Ouimet R, Camiré C and Houle D.2001. Seasonal nutrient transfers by foliar resorption,leaching, and litter fall in a northern hardwood forest at Lake Clair Watershed, Quebec, Canada. Can JFor Res,31:333–344.
    Fan H, Wang Y.2000. Effects of simulated acid rain on germination, foliar damage, chlorophyll contentsand seedling growth of five hardwood species growing in China. Forest Ecology and Management,126:321–329.
    Felle HH, Herrmann A, Hanstein S, Hückelhoven R, Kogel KH.2004. Apoplastic pH Signaling in BarleyLeaves Attacked by the Powdery Mildew Fungus Blumeria graminis f. sp. Hordei. MolecularPlant-Microbe Interactions,17(1):118–123.
    Foster J R.1990. Influence of pH and plant nutrient status on ion fluxes between tomato plants andsimulated acid mists. New Phytology,116(3):475-485.
    Franks P J, and Farquhar G D.2007. The mechanical diversity of stomata and its significance ingas-exchange control. Plant Physiology143,78-87.
    Fraser L H, Greenall A, Carlyle C, Turkington R and Friedman C R.2009. Response of stomatal density,leaf area and biomass to changes in water supply and increased temperature. Annals of Botany,103:769-775.
    Gabara B, Sklodowska M, Wyrwicka A, Glińskaa S, Gapińskab M.2003. Changes in the ultrastructure ofchloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill.Leaves sprayed with acid rain. Plant Science,164:507-516.
    Galmés J, Flexas J, Savé R, Medrano H.2007. Water relations and stomatal characteristics ofMediterranean plants with different growth forms and leaf habits: responses to water stress andrecovery. Plant and Soil,290(1-2):139–155.
    Gay A P, Hurd R G.1975. The influence of light on stomatal density in the tomato. New phytologist,75:37-46.
    Gheysari M, Mirlatifi S M, Bannayan M, Homaee M, Hoogenboom G.2009. Interaction of water andnitrogen on maize grown for silage. Agricultural Water Management,96:809-821.
    Hagedorn F, Schleppi P.2000. Determination of total dissolved nitrogen by persulfate oxidation.J PlantNutr Soil Sci,163:81-82.
    Halperin S J and Lynch J P.2003. Effects of salinity on cytosolic Na+and K+in root hairs of Arabidopsisthaliana: in vivo measurements using the fluorescent dyes SBFI and PBFI. Journal of ExperimentalBotany,54(390):2035-2043.
    Hamid K, Philippe M, Shao H, Shahram M.2010. Variation for stomatal characteristics and water useefficiency among diploid, tetraploid and hexaploid Iranian wheat landraces. Genet Resour Crop Evol,57:307–314.
    Hansen K, Rosenqvist L, Vesterdal L, Gundersen P.2007. Nitrate leaching from three afforestationhronosequences on former arable land in Denmark. Global Change Biology,13(6):1250-1264.
    Harb A, Krishnan A, Ambavaram M M R and Pereira A.2010. Molecular and Physiological Analysis ofDrought Stress in Arabidopsis Reveals Early Responses Leading to Acclimation in Plant Growth.Plant Physiology,154(3):1254-1271.
    Hepler P K, Wayne R O.1985. Calcium and plant development. Annu Rev plant physiol,36:397.
    Hernández J A, Ferrer M A, Jiménez A, et al.2001. Antioxidant systems and O2·-/H2O2production in theapoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol.,127:817–831.
    Hetherington A M and Woodward F I.2003. The role of stomata in sensing and driving environmentalchange. Nature,424(21):901-908.
    Hill P W, Raven J A, Sutton M A.2003. Regulation of growth, development and whole organismphysiology: Leaf age-related differences in apoplastic NH+4concentration, pH and NH3compensationpoint for a wild perennial. Journal of Experimental Botany,53:277-286.
    Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, FalqueM, Gallais A.2001. Towards a better understanding of the genetic and physiological basis for nitrogenuse efficiency in maize. Plant Physiology,125(3):1258-1270.
    Hogan G D.1992. Physiological effects of direct impact of acidic deposition on foliage. Agr EcosystEnviron.42:307~319.
    Hogan G D.1998. Effect of simulated acid rain on physiology, growth and foliar nutrient concentrations ofsugar maple. Chemosphere,36(4-5):633-638.
    Hsiao T C.1973. Plant response to water stress. Annual Review of Plant Physiology,24:519-570.
    Husted S and Schjoerring J K.1995. Apoplastic pH and ammonium concentration in leaves of brassicanapus L.. Plant Physiol,109:1453-1460.
    IPCC (2001) Climate change.2001: the scientific basis. In: Houghton J T et al.(eds) Contribution ofWorking Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press, Cambridge,944pp.
    IPCC (2007) Climate change2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z,Marquis M, Averyt K B, Tignor M, Miller H L (eds) Contribution of Working Group I to the fourthassessment report of the intergovernmental panel on climate change. Cambridge University Press,Cambridge,996pp.
    Jachetta J J, Appleby A P, and Boersma L.1986. Use of the pressure vessel to measure concentrations ofsolutes in apoplastic and membrane-filtered symplastic sap in sunflower leaves. Plant Physiol,82:995-999.
    James J J, Alder N N, M hling K H, L uchli A E, Shackel K A, Donovan L A, Richards J H.2006. Highapoplastic solute concentrations in leaves alter water relations of the halophytic shrub, Sarcobatusvermiculatus. Journal of Experimental Botany,57(1):139–147.
    Keutgen A J, Pawelzik E.2008. Apoplastic antioxidative system responses to ozone stress in strawberryleaves. Journal of Plant Physiology,165:868-875.
    Kondo T, Kajita R, Miyazaki A, Hokoyama M, Nakamura-Miura T, Mizuno S, Masuda Y, Irie K, Tanaka Y,Takada S, Kakimoto T, Sakagami Y.2010. Stomatal density is controlled by a mesophyl-l derivedsignaling molecule. Plant and Cell Physiology,51:1–8.
    Kopá ek J, Turek J, Hejzlar J, antr ková H.2009. Canopy leaching of nutrients and metals in a mountainspruce forest. Atmospheric Environment,43(34):5443-5453.
    Kopá ek J, Turek J, Hejzlar J, antr ková H.2009. Canopy leaching of nutrients and metals in a mountainspruce forest. Atmospheric Environment,43(34):5443–5453.
    Kosegarten H, Grolig F, Esch A, et al.1999. Effects of NH+4, NO3and HCO3on apoplast pH in the outercortex of root zones of maize, as measured by the fluorescence ratio of fluorescein boronic acid.Planta,209(4):444-452.
    Kramer PJ, Boyer JS.1995. Stomata and gas exchange. In: Kramer P J, Boyer J S. Water relations of plantsand soils. London: Academic Press,257–282.
    Lambers H, Chapin Ⅲ F S,Pons T L.1998. Plant physiological ecology. Spring-Verlag New York Inc,287-288.
    Langusch J J, Borken W, Armbruster M, Dise N B, Matzner E.2003. Canopy leaching of cations in CentralEuropean forest ecosystems–a regional assessment. Journal of Plant Nutrition and Soil Science,166(2):168–174.
    Li S, Ji C, Fan Y, Chen X, Li S.2008. Advances in nitrogen loss leached by precipitation from plant canopy.Agricultural Sciences in China,7(4):480-486
    Li S, Li S.2001. Estimation of nitrogen fertilizer use efficiency in dryland agroecosystem. ChineseAgricultural Science,(1):89-96.
    Li Y, Yan C, Liu J, Almasri M, Liang J, Zhang R.2003. Effects of Lanthanum on Redox Systems in PlasmaMembranes of Casuarina equisetifolia Seedlings Under Acid Rain Stress. Journal of Rare Earth,21(5):577-581.
    Lin T, Hamburg S P, Hsia Y, King H, Wang L, Lin K.2001. Base cation leaching from the canopy of asubtropical rainforest in northeastern Taiwan. Canadian Journal of Forest Research,31(7):1156-1163.
    Long J M, Widders I E.1990. Quantification of apoplastic potassium content by elution analysis of leaflamina tissue from pea. Plant Physiol,94:1040-1047.
    Long,W G, Sweet D V and Tukey H B.1956. Loss of nutrients from plant foliage by leaching as indicatedby radioisotopes. Science,123:1039-1040.
    Lopez-Huertas E, Wayne L, Charlton, Johnson B, Graham I A and Baker A.2000. Stress indues peroxisomebiogenesis genes. EMBO J.19:6770-6777.López-Millán A F, Morales F, Abadía A, and Abadía J.2000. Effects of Iron Deficiency on theComposition of the Leaf Apoplastic Fluid and Xylem Sap in Sugar Beet. Implications for Iron andCarbon Transport. Plant Physiology,124:873-884.
    Mannings S, Smith S and Bell J N B.1996. Effect of acid deposition on soil acidification and metalmobilization. Applied Geochemisrry,11:139-143.
    Mattsson M, Schjoerring J K.2003. Senescence-induced changes in apoplastic and bulk tissue ammoniaconcentrations of ryegrass leaves. New Phytologist,160(3):489-499.
    Mecklenburg R A and Tukey Jr H B.1963. Influence of Foliar Leaching on Root Uptake and Translocationof Calcium-45to the Stems and Foliage of Phaseolus vulg aris. Plant Physiology,1963:533-536.
    Mecklenburg R A, Tukey Jr H B, and Morgan J V.1966. A Mechanism for the Leaching of Calcium fromFoliage. Plant Physiol.41:610-613.
    Miihling K H and Sattelmacher B.1997. Determination of apoplastic K+in intact leaves by ratio imagingof PBFI fluorescence. Journal of Experimental Botany,48(313):1609-1614.
    Mittler R.2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci.7:405-410.
    Miyazawa S I, Livingston N J and Turpin D H.2006. Stomatal development in new leaves is related to thestomatal conductance of mature leaves in poplar (Populus trichocarpa×P. deltoides). Journal ofExperimental Botany,57(2):373–380.
    Mühling K H and Sattelmacher B.1995. Apoplastic ion concentration of intact leaves of field bean (Viciafaba) as influenced by ammonium and nitrate. J Plant Physiol,147:81–86.
    Nepstad D C, Moutinho P, Dias-Filho M B, Davidson E, Cardinot G, Markewitz D, Figueiredo R, Vianna N,Chambers J, Ray D, Guerreiros J B, Lefebvre P, Sternberg L, Moreira M, Barros L, Ishida F Y, TohlverI, Belk E, Kalif K, and Schwalbe K.2001. The effects of partial throughfall exclusion on canopyprocesses, aboveground production, and biogeochemistry of an Amazon forest. Journal of GeophysicalResearch,107(D20):8085.
    Neufeld H S, Jernstedt J A and Haines B L.1985. Direct foliar effects of simulated acid rain I. Damage,growth and gas exchange. New Phytol,99:389-405.
    Nielsen K H and Schjoerring J K.1998. Regulation of Apoplastic NH+4Concentration in Leaves of OilseedRape1. Plant Physiol,118:1361–1368.
    Paoletti E, Gellini R, Barbolani E.1989. Effects of acid fog and detergents on foliar leaching of cations.Water, Air, and Soil Pollution,45:49-61.
    Paolo E D, Rinaldi M.2008. Yield response of corn to irrigation and nitrogen fertilization in aMediterranean environment. Field Crops Research,105:202-210.
    Pell E J and Puente M.1987. Impact of simulated acid rain on yield of a field-grown oat crop.Environmental and Experimental Botany,27(4):403-407.
    Pereira M L, Berney A, Hall A J, Trápani N.2008. Contribution of pre-anthesis photoassimilates to grainyield: Its relationship with yield in Argentine sunflower cultivars released between1930and1995.Field Crops Research,105:88-96.
    Pignocchi C, Foyer C H.2003. Apoplastic ascorbate metabolism and its role in the regulation of cellsignaling. Current Opinion in Plant Biology,6(4):379-389.
    Piyasiri A J Y, Toshio K and Hideaki M.1986. Changes of Some Membrane-Associated Enzyme ActivitiesDegradation of Membrane Phospholipids in Cucumber Roots Due to Ca2+Starvation. Plant and CellPhysiology,27(2):223-232.
    Pommel B, Gallais A, Coque M, Quilleré I, Hirel B, Prioul J L, Andrieu B, Floriot M.2006. Carbon andnitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. EuropeanJournal of Agronomy,24:203-211.
    Potter C S.1991. Nutrient leaching from Acer rubrum leaves by experimental acid rainfall. Can J For Res,21:222-229.
    Prescott C E.2002. The influence of the forest canopy on nutrient cycling. Tree Physiology,22(15-16):1193-1200.
    Raynal D J, Roman J R and Eichenlaub W M.1982. Response of tree seedlings to acid precipitation-Ⅱ.Effect of simulated acidified canopy through fall on sugar maple seedling growth. Environmental andExperimental Botany,22:385-391.
    Reddy G B, Reinert R A and Eason G.1991. Enzymatic changes in the rhizosphere of loblolly pine exposedto ozone and acid rain. Soil Biol. Biochem.23(12):1115-1119.
    Sattelmacher B.2001. The apoplast and its significance for plant mineral nutrition. New Phytologist,149:167-192.
    Sayer R G, Fahey T J.1999. Effects of rainfall acidity and ozone on foliar leaching in red spruce (Picearubens). Canadian Journal of Forest Research,29:487-496.
    Schier G A.1991. Response of Yellow-Poplar (Liriodendron Tulipifera L.) seedlings to simulated acid rainand ozone-2. Effect on throughfall chemistry and nutrients in the leaves. Environmental andExperimental Botany,30,(3):325-33l.
    Schjoerring J K, Husted S, M ck G, Mattsson M.2002. The regulation of ammonium translocation inplants[J]. Journal of Experimental Botany,53:883-890.
    Shafer S R.1992. Responses of microbial populations in the rhizosphere to deposition of simulated acidicrain onto foliage and/or soil. Environmental Pollution,76:267-278.
    Shimazaki K, Doi M, Assmann S M and Kinoshita T.2007. Light Regulation of Stomatal Movement. Annu.Rev. Plant Biol.58:219–47.
    Shimshi D. The effect of nitrogen supply on some indices of plant water rations of bean (Phaseolus vulgarisL.). New Phytol.1970,69:413-424.
    Snedden W A, Fromm H.2001. Calmodulin as a versatile calcium signal transducer in plants. NewPhytologist,151:35-66.
    Speer M and Kaiser W M.1991. Ion relations of symplastic and apoplastic space in leaves from spinaciaoleracea L. and pisum sativum L. under salinity. Plant Physiol,97:990-997.
    Staelens J, Schrijver A D, Oyarzún C and Lust N.2003. Comparison of dry depositon and canopy exchangeof base cations in temperate hardwood forests in Flanders and Chile. Gayana Bot.60(1):9-16.
    Staelens J, Schrijvver A D, Oyarzún C, Lust N.2003. Comparison of dry deposition and canopy exchangeof base cations in temperate hardwood forests in Flanders and Chile. Gayana Bot,60(1):9-16.
    Suomela J, Neuvonen S, Ossipova S, Ossipov V, and Pihlaja K.1998. A Long-term study of the effects ofsimulated acid rain. Chernosphere,36(4-5):639-644.
    Swank W T, Reynolds L J.1987. Analysis of dry and wet deposition, throughfall, and stemflow eventchemistry in a Pinus strobus L. plantation. In: Proceedings, international symposium on acidificationand water pathways,2(2):127-136.
    Tamm C O.1951. Removal of plant nutrients from tree crowns by rain. Physiol Plant,4,184-188.
    Tang Z, Sword S, Mary A, Chambers J L, and Barnett J P.2004. Interactive effects of fertilization andthroughfall exclusion on the physiological responses and whole-tree carbon uptake of mature loblollypine. Can J Bot,82:850-861.
    Tejera N, Ortega E, Rodes R, Lluch C.2006. Nitrogen compounds in the apoplastic sap of sugarcane stem:Some implications in the association with endophytes. Journal of Plant Physiology,163:80-85.
    Terry M E, Bonner B A.1980. An examination of centrifugation as a method of extracting an extracellularsolution from peas, and its use for the study of indoleacetic acid-induced growth. Plant Physiol,66:321-325.
    Thomas W A, Grigal D F.1976. Phosphorus conservation by evergreenness of mountain laurel. Oikos,27(1):19-26.
    Tukey Jr H B, Mecklenburg R A.1964. Leaching of Metabolites from Foliage and SubsequentReabsorption and Redistribution of the Leachate in Plants. American Journal of Botany,51(7):737-742.
    Tukey Jr H B, Tukey H B, and Wittwer S H.1958. Loss of nutrients by foliar leaching as determined byradioisotopes. Proc Am Soc Hort Sci,71:496-505.
    Tukey Jr H B.1966. Leaching of metabolites from above-ground plant parts and its implications. Bulletinof the torrey botanical club.93(6):385-401.
    Tukey Jr H B.1970. The leaching of substances from plants. Annual Review of Plant Physiology,21(6):305-324.
    Turner D P, Tingey D T.1990. Foliar leaching and root uptake of Ca, Mg and K in relation to acid fogeffects on Douglas-Fir. Water, Air, and Soil Pollution,49(1-2):205-214.
    Ulrich B.1980. Chemical changes due to acid precipitation in a loss-derived soil in central Europe. SoilScience,14:193-199.
    Velikova V, Yordanov I, Edreva A.2000. Oxidative stress and some antioxidant systems in acid rain-treatedbean plants Protective role of exogenous polyamines. Plant Science,151:59–66.
    Walna B, Siepak J, Drzymala S.2001. Soil degradation in the Wielkopolski National Park (Poland) as anEffect of Acid Rain Simulation. Water, Air, and Soil Pollution,130:1727-1732.
    Wilkinson S, Davies W J.1997. Xylem sap pH increase: A drought signal received at the apoplastic face ofthe guard cell that involves the suppression of saturable abscisic acid uptake by the epidermalsymplast. Plant Physiol,113:559—573.
    Willekens H, Chamnongpol S, Davey M.1997. Catalase is a skin for H2O2and its indispensable for stressdefence in C-3plants. Embo J.16:4806-4816.
    Wolfe D M.1991. Low temperature effects on early vegetative gr owth, leaf gas exchange and waterpotential of chilling sensitive and chilling–tolerant crop species. Annals of Botany,67:205-212.
    Woodward F I.1987. Stomatal numbers are sensitive to increases in CO2from pre-industrial levels. Nature,327,617–618.
    Wyrwicka A, Sklodowska M.2006. Influence of repeated acid rain treatment on antioxidative enzymeactivities and on lipid peroxidation in cucumber leaves. Environmental and Experimental Botany,56:198–204.
    Xu X, Wang Q and Hirata E.2005. Precipitation partitioning and related nutrient fluxes in a subtropicalforest in Okinawa, Japan. Ann For Sci,62:245-252.
    Xu Z and Zhou G.2008. Responses of leaf stomatal density to water status and its relationship withphotosynthesis in a grass. Journal of Experimental Botany,9(12):3317–3325.
    Yang J C, Zhang J H, Huang Z L, Zhu Q S, Wang L.2000. Remobilization of carbon reserves is improvedby controlled soil-drying during grain filling of wheat. Crop Science,40:1645-1655.
    Yu Q, Tang C, and Kuo J.2000. A critical review on methods to measure apoplastic pH in plants. Plant andSoil,219:29–40.
    Zhang J, Ouyang Y, Ling D.2007. Impacts of simulated acid rain on cation leaching from the Latosol insouth China. Chemosphere67,2131–2137.
    Zhao S, Chen W, Ma D, Zhao F.2006. Influence of different salt level on stomatal character in rice leaves.Reclaiming and Rice Cultivation,6:26–29.
    Zhu G, Midmore D, Radford B J, Yule D F.2004. Effect of timing of defoliation on wheat (Triticumaestivum) in central Queensland. Field Crops Research,88:211-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700