可调粘滞性CoFe_2O_4离子型磁性液体的制备及其磁致光透射变化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先回顾磁性液体的发展历史,将多种磁性液体从三个不同角度进行细致的分类,并简要介绍磁性液体的重要应用及应用原理。
     在化学共沉淀法的基础上,利用共沉淀——酸蚀法制备出CoFe_2O_4离子型磁性液体。通过改变基液(聚乙二醇)的质量百分比浓度S和磁性微粒的体积分数φ_ν两个重要的参量,我们得到六种磁性液体。制备过程中,用分析天平准确称取所需物质的质量,实验操作的注意事项时刻牢记在心,使得磁性液体的质量得到保证。
     用透射电子显微镜(TEM)观察到:微粒在磁性液体中均匀分散,有少数微粒形成聚集体。以DLVO理论为基础,利用扩散双电层结构分析得知,影响CoFe_2O_4离子型磁性液体稳定性的因素有:磁性微粒粒径D、磁性液体的Q值、磁性微粒的体积分数φ_ν,以及磁性微粒表面粘性层的存在。
     用粘度计测量了不同磁性液体在有无外磁场时的粘滞性,并分别讨论其变化原因。在无外磁场的情况下,利用Smoluchowsky和Mooney的流变学理论分析了磁性液体的粘滞系数η随基液质量百分比浓度S和磁性微粒体积分数φ_ν的增加
    
     中文摘要
    而增加的原因。在外磁场的作用下,综合Rosensweis公式及流体力学理论很好
    的解释了在外界温度一定时,基液质量百分比浓度S和磁性微粒体积分数人确定
    的磁性液体,其粘滞系数司随外磁场的增加而增加的原因。
     用相消法设计了测试磁光效应一一透射光强的装置,测试了光线与外磁场方
    向一致(都垂直于磁性液体薄膜)的情况下,透过六种CoFe。0。离子型磁性液体
    的激光强度随时间的变化情况。整个测试过程共5005。未加外磁场时,光透射
    率下一;505施加外磁场的瞬间,T迅速上升,随着时间的推移逐渐下降,减小
    到某个值后又回升,慢漫趋于一个稳定值;3505撤掉外磁场,丁瞬时减小,接
    着缓慢回升,趋于一个稳定值。为了明确各因素对磁性液体光透射率的影响,分
    以下三种情况作了详细讨论八1)人和S相同,B不同;u)人和J相同,J不
    同;(3)S和B相同,人不同。
     利用磁偶极子模型和磁链模型描述了磁性液体在各种条件下内部结构随时
    间的变化,并用有效场理论解释了磁性微粒成链,链的变化以及链间相互作用的
    机理,从而说明了由于磁性液体内部结构变化导致的光透射率的变化。
This paper reviews the history on the progress of magnetic fluid, classifies all kinds of magnetic fluid from three different perspectives, and briefs the application of magnetic fluid and the principle.
    On the base of chemical coprecipitated method, we prepare CoFe2O4 ionic magnetic fluid by coprecipitated and acid erode method. We get six kinds of magnetic fluid through changing two important parameters, which are mass percent S of basic
    liquid and magnetic particulate volume ratiov. In order to get magnetic fluid of high
    quality, we carefully weigh the needed material by the analytical balance and keep in mind the points for attention of the experimental operation during the course of experiment.
    Utilizing the Transmitted Electronic Microscope (TEM), we can observe that particles disperse uniformly and some of them congregate. Using the structure of diffused electric doublet layer based on DLVO theory, we analyze the factors which influence the CoFe2O4 ionic magnetic fluid's stability, and they include magnetic
    particles' diameter D, magnetic fluid's Q, magnetic particulate volume ratio v, and the viscous layer on the surface of particles.
    We respectively measure some different magnetic fluid's viscosity by the
    
    
    viscometer in the magnetic field and not in the magnetic field, and discuss what result in it. Using Smoluchowsky and Mooney's rheology theory we analyze that without
    magnetic field 77 will increase as S andv increase; using the Rosensweig's formula and hydromechanical theory, we can illustrate that in the magnetic field and the outside temperature being certain, 77 will increase as the magnetic field increase,
    when the magnetic fluid's S and v are determined.
    We design a set of devices that can test magneto-optical effects-transmitted laser's intensity using quits method. And we test how the laser's intensity changes with time through six kinds of CoFe2O4 ionic magnetic fluid when laser has the same direction as the magnetic field (be perpendicular to the magnetic fluid film). The whole test course takes 500s. Without magnetic field, transmitivity T equals 1; At the moment of 50s, when the magnetic field is added, T increases rapidly, then decreases gradually, and increases again when it is minimum, later reaches a stable value slowly; At the time of 350s, when the magnetic field is got rid of, T decreases instantaneously and increases by inches until it is a stable value. In order to explain how the factors influence the magnetic fluid's transmissivity, we use discuss the following three cases in detail: (1)v and S are same, while B is different; (2) v and B are same, while S is
    different; (3) S and B are same, while v is different.
    We describe how magnetic fluid's inner structure transforms with the time under all kinds of conditions using magnetic dipole model and magnetic chain model. And using effect field theory we analyze the mechanisms of the magnetic particles being chains, change of the chains and reciprocity in chains. So we can make out that the transmissivity varies with the magnetic fluid's inner structure.
引文
[1] 张世远,路权,薛荣华,《磁性材料基础》,科学出版社,1988
    [2] W.C.Elmore, Phys. Rew. B, 1938(54): 1092-1095
    [3] S.S.Papell. ,Space Daity 211, Nov(1963), U.S.Patent 3, 1965(215): 572
    [4] R.E.Rosensweig, AIAA J., 1966(4): 1751-1758
    [5] J.L.Neuringer, R.E.Rosensweig, Phys. Fluid, 1964(27): 1927-1937
    [6] M.Ukita Aketomi,, M.Mizukami and Y.Kurihara, J. Magn. Magn. Mater.,122 (1993)57-61
    [7] J.R.Thomos, J. Appl. Phys.,1976(37): 2914-2915
    [8] M.Kilmer, IEEE Trans.on Magn., Mag-20(1984):1735-1739
    [9] C.H.Gfiffiths, M.P. Ohoro, T.W. Smith, J. Appl. Phys., 1979(50): 7108-7115
    [10] S.R.Hoon, M.Kilner, G.J.Russel,J. Magn. Magn. Mater., 1983(39): 107-110
    [11] 唐与谌主编,《金属功能材料开发动向》,北京:钢铁研究总院,1988
    [12] I.Nakatani, M.Hijikata, K.Ozawa, J. Magn. Magn. ,Mater. 1993(122): 10-14
    [13] R.Massart, IEEE. Trans. on Mag., Mag-17(1981):1247-1248
    [14] F.A.Tourinho, R.Frank and. R.Massart, J Mater Sci.,1990( 25):3249-3254.
    [15] A.T. Skjeitorp., J. Appl. Phys, 1985, 57(1): 3285-3290
    [16] P. Davies, L.Popplewell, G.Martin, J.Phys. D: Appl. Phys., 1986(19): 469-476
    [17] A.T. Skjeltorp., J. Magn. Magn. Mater.,1987(65): 195-203
    [18] R.E.Rosensweig, Advan. Electr:Electr. Phys.,1979(48):103-105
    [19] 蔡国琰,刘存芳,山东工业大学学报,1994,24(4):347-351
    [20] 甘资先,叶锦先,核聚变与等离子体物理,1996,16(3):10-15
    [21] 孙凯,天体物理学报,1997,17(2):195-201
    [22] R.W. Chantrell, J.Phys. D: Appl. Phys.,1980(13): L119
    [23] Jinlong Zhang, C.boyd and Weili Luo, Phys. Rev. Lett.,1996, 77(2): 390-393
    [24] 翁兴园,磁性材料及器件,1999,29(6):35-39
    [25] 刘思林,腾荣厚,于英仪,粉末冶金工业,2000,10(5):33-39
    [26] 李建,赵保刚,《磁性液体-基础与应用》,西南师范大学出版社,2002
    [27] 许孙曲,徐小妹,北京生物医学工程,1994(13):180-184
    
    
    [28] 神山新一,粉体粉末冶金,1996,43(6):751
    [29] 蒋秉植,杨健美,Progress in chemistry,1997,9(1),69-78
    [30] 陈江,江纪修,李炜坪,中国医院药学杂质,1997,17(4):163-165
    [31] 周丽绘,朱传征,化学教育,1998(10):5-7
    [32] 杨华,黄可龙,李卫,企业技术开发,2002(4):6-8
    [33] Akram, A. Rousan, Nihad. A. Yusuf, IEEE Trans. On Magn. 24, 1988, 1653-1655
    [34] Tengda Du and Weili Luo, J. Appl. Phys, 1999, 85(8): 5853-6955
    [35] K.T. Wu, Y. D. Yao, K. Huang, d. Appl. Phys, 2000, 87(9): 6932-6934
    [36] Chin-Yih Hong, J. Magn. Magn. Mater.,1999(201): 178-181
    [37] 马德柱,科学出版社,《高聚物的结构与性能(第二版)》,2000
    [38] 刘辉,钟伟,都有为,磁性材料及器件,2001,32(2):45-49
    [39] 颜华,《共沉淀—酸蚀法制备磁性液体及磁光效应》[学位论文],1999
    [40] F.A.Tourinho, R.Frank and R.Massart, J Mater Sci.,1990(25): 3249-3254.
    [41] 李建,赵保刚,李海,西南师范大学学报(自然科学版),2000,25(4):394-398
    [42] 颜华,李建,梁一平,西南师范大学学报(自然科学版),1998,23(1):55-59
    [43] 天津大学物理化学教研室,《物理化学(第三版)》:下册,高等教育出版社,1982
    [44] 陈宗淇,戴闽光,《胶体化学》,高等教育出版社,1984
    [45] 都有为,Journal of Magnetic and Material & Devices,1982,13(1):43-46
    [46] R.E.Rosensweig, J. W. Mestor, Magnetohydrodynamics(USA), 1985, 32(5): 114-118
    [47] 陈寿春,《重要无机化学反应(第二版)》,上海科学技术出版社,1982
    [48] 赵保刚,马忠平,刘存业,李建,林跃强,核技术,2000,23(6):363-365
    [49] 邹旭敏,李建,邓昭镜,西南师范大学学报(自然科学版),1996,21(4):344-348
    [50] M.S.Dababnch, N.Y. Ayoub and N.M.Labam, J. Magn. Magn. Mater.,1993(125): 34-38
    [51] Hyoung J. Choi, Chul A. Kim, Taeg M. Kwon., J. Magn. Magn. Mater.,209(2000):228-230
    [52] 黄金,王化培,林剑,魏玉卿,机械设计与制造工程,30(2),2001:3-4
    [53] R.E.Rosensweig, 《Ferrohydrodynamic》, Cambridge University Press. Cambridge, 1985
    [54] L.G.Leal, E.J.Hinch, J.Fluid Mech., 1971 (46):685
    [55] 郎道,《流体力学》,高等教育出版社,1990
    [56] M.S.Dababench, N.Y. Ayoub, J. Magn. Magn. Mater.,1993(125), 34-38
    [57] R.J. Farris, Trans. Soc. Rheol. 1968(12): 281
    
    
    [58] Hyoung J. choi, J. Magn. Magn. Mater., 2000(209): 228-230
    [59] 池长清,王之珊,赵丕智,《铁磁流体力学》,北京航空航天出版社,1993
    [60] Helen W. Davies and J. Patrick Llewellyn, J. Phys. D: Appl. Phys. 1980(13): 2327-2336
    [61] J.J.M.Janssen and J.A.A.J.Perenboom, J. Magn. Magn. Mater., 1989(81): 14-24
    [62] A.F. Bakuzis, M.F.Da Silva and P.C.Morais, J. Appl. Phys. 2000, 87(5):2497-2502
    [63] R.W. chantrell, J. Appl. Phys. 1982,53(3): 2742-2744
    [64] Eugenia Tulcan, J. Magn. Magn. Mater., 1999 (201): 238-241
    [65] Liu Gongqiang, Huang Yanping and Yu Zhiqiang, Phys. Rev. B, 1990, 41(1): 749-753
    [66] M. Xu and P. J. Ridler, J. Appl. Phys. 1997, 82(1): 326-331
    [67] Herng-Er horng, Chin-Yih Hong, Wai Bong Yeung, Applied Optics, 1998, 37(13): 2674-2678
    [68] Jian Li, Baogang zhao, Xiaoyan Qiu and Xiaojuan Ma, J. Appl. Phys. 2002.92(2): 1128-1131
    [69] 姚啟钧,《光学》,人民教育出版社,1981
    [70] P. N. Sen., P. P. Biringer, Phys. Rev. B, 1982, 25(5)
    [71] S.Taketomi, J.Mag. Soc of Japan, 1988(12):263
    [72] 赵凯华,陈熙谋,《电磁学》,人民教育出版社,1978
    [73] Nihad A Yusuf, J. Phys. D: Appl. Phys. 1989(22): 1916-1919
    [74] Chin-Yih Hong, I. J. Jang, H.E.Horng, C.J.Hsu, J. Appl. Phys., 1997,81(8): 4275-4277
    [75] Chin-Yih Hong, J. Appl. Phys. 1999, 1999, 85(8): 5962-5964
    [76] R.K(?)titz, P.C.Fannin and L.Trahms, J. Magn. Magn. Mater, 149(1995)42
    [77] R.K(?)titz, W. Weitschies, L.Trahms, W. Semmler, J. Magn. Magn. Mater, 1999(201):102-104
    [78] J.Popplewell, P. Davies and R.W. Chantrell, IEEE Trans. On Magn.,1986(22): 1128-1130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700