玄武岩纤维对沥青混合料性能影响机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国沥青路面大修周期较短,提高沥青路面的服务质量和使用寿命是目前研究工作的重点。研究人员从改善材料的基本性能入手进行了大量研究,其中添加纤维改善沥青混合料性能以其效果明显和施工易行得到了普遍认可。
     玄武岩纤维在沥青混合料中应用时间较短,是一种新型的矿物纤维。其强度高,模量大,耐高温、不老化、化学性质稳定,具有较大的开发潜力和广泛的工程应用前景。本文结合玄武岩纤维性能、纤维沥青胶浆性能、纤维沥青混合料性能、纤维沥青混合料断口宏、细观形貌特征及玄武岩纤维沥青混合料低温黏弹性,分析了玄武岩纤维对沥青混合料性能的改善效果及机理。
     本文主要工作如下:
     1、玄武岩纤维性能研究
     系统开展了玄武岩纤维耐高温性、吸湿性、与沥青的黏附性、耐酸碱性、灰分含量、吸油率的试验测试,并应用扫描电镜对玄武岩纤维的细观形貌进行分析,全面评价了用于热拌沥青混合料的玄武岩纤维性能。借鉴复合材料广义混合率理论,研究了玄武岩纤维的质量分数对沥青胶浆黏度的影响,证明弱相支撑黏度理论的适用性,阐明玄武岩纤维有增黏效果。
     2、玄武岩纤维对沥青混合料性能影响研究
     通过纤维沥青混合料的高温稳定性、低温抗裂性、水稳定性、断裂能、疲劳性能、蠕变性能等室内试验,定量评价两种不同形态的玄武岩纤维对AC-16C型沥青混合料路用性能的改善效果,并分析玄武岩纤维对沥青混合料性能的改善机理。研究结果表明,玄武岩纤维棉(CBF纤维)能显著提高沥青混合料路用性能,短切玄武岩纤维丝(SCBF纤维)除对沥青混合料水稳定性改善效果不良外,对其他性能均呈现明显的增强效果。结合纤维沥青混合料的性能及机理分析,证实玄武岩纤维的pH值及其与沥青黏附性对改善沥青混合料性能具有重要影响,建议我国规范增加相应技术指标要求。
     3、玄武岩纤维沥青混合料断口宏、细观形貌分析
     采用断口形貌学的分析方法,对沥青混合料试件断口宏、细观形貌特征进行分析,讨论了沥青混合料力学性能与断口形貌的关系,进一步分析了玄武岩纤维增强沥青混合料力学性能的改善机理。
     宏观断口分析研究表明,掺加玄武岩纤维后,沥青混合料内部空洞减少,提高了集料断口、界面脱胶断口的比例,从而提高了沥青混合料的抗裂性能。细观分析证实,玄武岩纤维为亲油性材料;在沥青混合料中,纤维搭接于微裂纹两侧,改善了局部缺陷,增强了整体性。SCBF纤维在混合料中分散不均,有局部成团现象,可能因沥青裹附不足而成为试件的薄弱环节,从而影响混合料的整体强度和稳定性。
     分析玄武岩纤维在沥青混合料断口处的形貌特征,本文提出了“强度薄弱区”的概念,认为在纤维与沥青黏结界面区和自由沥青之间存在着不稳定的沥青层,当外力产生的拉应力方向与纤维方向相同时,纤维将从该强度薄弱区拔出。
     4、玄武岩纤维沥青混合料黏弹性及数值模拟分析
     基于沥青混合料常温及低温条件下的弯曲蠕变试验,通过数据拟合获得了适合玄武岩纤维沥青混合料的蠕变模型参数,证明模型的适用性,并揭示了玄武岩纤维改善沥青混合料低温抗裂性能的机理。采用时间硬化模型,实现了ABAQUS软件对小梁弯曲蠕变试验的数值模拟分析。
In our country, overhaul period of asphalt pavement is frequently short, thus the improvement of service quality and usable life of the asphalt surface is the focus of the research at present. Researchers have done a lot of work to improve the basic properties of material, and now it is widely accepted that adding fiber can improve the performance of asphalt mixture for its effectivity and convenience.
     Basalt fiber is a new mineral fiber type that not for prolonged use in asphalt mixture. With high strength, big modulus, high-temperature tolerance, anti-aging and chemical stability, basalt fiber has great development potential and wide engineering application prospect. In the thesis, effect and mechanism of basalt fiber in improving the performance of asphalt mixture was analyzed by basalt fiber properties, fiber-asphalt mortar performance, fiber-asphalt mixture performance, macroscopic and microscopic fracture morphology characteristics and low-temperature viscoelasticity of basalt fiber asphalt mixture.
     This thesis comprises the following sections:
     1. Basalt fiber performance research A systematic experimental study was conducted to investigate the performance of basalt fiber which included high temperature resistance, hygroscopicity, adhesion properties to asphalt, acid and alkaline resistance, ash content, oil absorption rate and microscopic morphology analysis by scanning electron microscopy (SEM). The results provided a comprehensive evaluation on performance of the fiber adding to asphalt mixture. Based on the generalized mixture rule theory of composite material, we studied the influence of basalt fiber mass fraction to asphalt mortar viscosity, proved the applicability of the viscosity theory of weak phase support, clarified that the basalt fiber had reinforced adhesion effect.
     2. Effect of basalt fiber on asphalt mixture performance
     Based on the laboratory tests of high temperature stability, low temperature crack resistance, water stability, fatigue and creep properties and so on, a quantitative evaluation of the performance improvement of two different basalt fiber forms in AC-16c asphalt mixture had been done and the improving mechanism of basalt fiber to the asphalt mixture was analyzed. The results proved that the cotton basalt fiber (CBF fiber) was able to improve the pavement performance significantly; short-cut basalt fiber (SCBF fiber) showed remarkable enhancement effect on all asphalt mixture properties excepting water stability. Combined with the analysis of fiber asphalt mixture performance and mechanism, we confirmed that PH value and asphalt adhesiveness of basalt fiber had an important effect on improving the performance of asphalt mixture. Therefore, we suggest that the corresponding technical index requirements should be added to the specification.
     3. Basalt fiber asphalt mixture fracture morphology analysis
     By fractography analysis method, the appearance characteristics of asphalt mixture fracture were analyzed. We also discussed the relationship of mechanical properties and fracture morphology and analyzed the improvement mechanism of the basalt fiber on reinforcing asphalt mixture mechanical property further more.
     The study of macroscopic fractography showed that the inner cavity of asphalt mixture reduced while the aggregate fracture proportion and interface deboning fracture both increased after adding basalt fiber. Therefore, we can conclude that basalt fiber improves the crack resistance of asphalt mixture. The research of microscopic fractography showed that basalt fiber was lipophilic material. Fiber linking the micro crack restricted local defects and enhanced the integrity. SCBF fiber dispersed unevenly in the mixture, observed as parts-clustering phenomenon, which might become the weak point of the specimen due to the insufficient of asphalt coating, and then affected the overall strength and mixture stability.
     The conception of "mechanical weakness region" was proposed in this thesis by the analysis of the morphology features of basalt fiber in the asphalt mixture fracture. We considered that there was an unstable asphalt interlayer between the fiber-asphalt interface and free asphalt. Fiber would be pulled out from this region when the direction of stress generated by force and the fiber orientation were the same
     4. Basalt fiber asphalt mixture viscoelasticity and numerical simulation analysis
     Based on flexure creep test of asphalt mixture at both room temperature and low temperature conditions, the creep model parameters that suited fiber asphalt mixture were obtained by data fitting. It proved the applicability of the model, while it also indicated the mechanism how basalt fiber improve anti-cracking performance of asphalt mixture at low temperature. With time hardening model, we obtained the numerical simulation analysis of beam bending creep test on ABAQUS software.
引文
[1]姚祖康.沥青路面结构设计[M].北京:人民交通出版社,2011.
    [2]于斌.纤维沥青胶浆流变特性及纤维沥青混合料路用性能研究[D].西安:长安大学,2009.
    [3]沙庆林.高速公路沥青路面的早期破坏现象及预防[M].北京:人民交通出版社,2008.
    [4]沙庆林.重载交通长寿命半刚性路面设计与施工[M].北京:人民交通出版社,2011.
    [5]杨洋,马宝国,韩森.沥青玛蹄脂碎石混合料(SMA)的组成及路用性能分析[J].公路交通科技,2012,8(5):81-83.
    [6]熊萍,郝培文,高传明.SBS聚合物改性沥青技术性能[J].长安大学学报,2005,25(1):10-14.
    [7]Reed B F, James L, Burat J R. Polyester Fibers in Asphalt Paving Mixtures[J]. Journal of the Association of Asphalt Paving Technologists.1996,65(1):65-66.
    [8]范文孝.玄武岩纤维增强路面材料性能试验研究[D].大连:大连理工大学,2011.
    [9]胡显奇.我国纯天然玄武岩纤维异军突起[J].中国建材报,2004,3:3-5.
    [10]谢尔盖,李中郢.玄武岩纤维材料的应用前景[J].纤维复合材料,2003,17(3):17-20.
    [11]同济大学交通运输工程学院道路与机场工程系.我国公路路面SMA采用纤维之性能比较试验研究[R].2004.
    [12]宋云祥,韦佑坡,李玉梅等.玄武岩纤维沥青胶浆的路用性能[J].公路交通科技,2012,29(8):15-20.
    [13]邵晓广,贾水彩.玄武岩纤维沥青胶浆性能研究[J].石油沥青,2012,26(4):27-30.
    [14]彭广银,钱振东等.短切玄武岩纤维沥青混合料路用性能研究[J].石油沥青,2009,23(1):8-11.
    [15]李花歌.矿物纤维对SMA混合料性能影响的试验研究[J].开封大学学报,2010,24(4):90-93.
    [16]赵豫生,李红涛.玄武岩短切纤维对沥青混凝土性能的影响[J].公路交通科技,2012,29(9):38-42.
    [17]于雪松.玄武岩纤维沥青混合料目标配合比设计及老化性能研究[D].长春:吉林大学,2012.
    [18]曾俊标,孙长新等.湿热地区矿物纤维沥青混合料中的掺量比选与性能评价[J].公路,2008,53(3):156-159.
    [19]籍建云,许婷婷,顾兴宇.增强沥青混凝土用短切玄武岩纤维优选试验研究[J].公路交通科技(应用技术版),2010(5):113-117.
    [20]郭振华,尚德库,邬翠莲等.海泡石玄武岩纤维复合沥青混合料性能研究[J].河北工业大学学报,2005,2,34(1):5-10.
    [21]付力强,王子灵,张锐.SBS与纤维在沥青及沥青混凝土中改性效果对比分析[J].公路交通科技,2007,24(5):26-29.
    [22]刘福军.玄武岩纤维沥青混合料路用性能研究[D].哈尔滨:哈尔滨工业大学,2010.
    [23]马莉莉.矿物复合纤维沥青混合料路用性能研究[D].西安:长安大学,2011.
    [24]许婷婷,顾兴宇,倪富健.玄武岩纤维增强沥青混凝土试验与性能研究[J].交通运输工程与信息学报,2011,9(2):115-121.
    [25]刘彦光.玄武岩纤维的特性及在沥青路面中的研究应用[J].公路交通科技(应用技术版),2010,6(12):213-215.
    [26]吴少鹏,叶群山,刘志飞.矿物纤维改善沥青混合料高温稳定性研究[J].公路交通科技,2008,25(11):20-23.
    [27]汤寄予,高丹盈,韩菊红.玄武岩纤维对沥青混合料水稳定性影响的研究[J].公路,2008,53(1):188-195.
    [28]夏飞,黄永刚.掺加矿物纤维对混合料性能的影响[J].公路,2009,54(8):39-41.
    [29]田平.掺加玄武岩纤维沥青混合料力学性能试验研究[J].河北交通科技,2010,7(1):1-3.
    [30]郝孟辉,郝培文,杨黔等.玄武岩短切纤维改性沥青混合料路用性能分析[J].广西大学学报(自然科学版),2011,36(1):101-106.
    [31]韦佑坡,张争奇,司伟等.玄武岩纤维在沥青混合料中的作用机理[J].长安大学学报(自然科学版),2012,32(2):39-44.
    [32]张文刚,纪小平,宿秀丽等.路用矿物纤维沥青混合料性能及增强机理研究[J].武汉理工大学学报,2012,34(8):50-54.
    [33]高春妹.玄武岩纤维沥青混凝土性能研究与增强机理微观分析[D].长春:吉林大学,2012.
    [34]卢辉,张肖宁.矿物纤维沥青混合料在长陡坡路段的应用[J].中外公路,2007,27(3):180-182.
    [35]舒翔,邱志雄,张国炳.矿物纤维改性沥青在粤赣高速公路路面上的应用[J].公路,2006,51(4):212-215.
    [36]易志坚,杨庆国,李祖伟等.基于断裂力学原理的纤维混凝土阻裂机理分析[J].重庆交通学院学报,2004,23(6):43-45.
    [37]苏继龙,郑书河.纤维增强复合材料中桥联纤维对裂纹的阻裂机理[J].纤维复合材料,2006,35(1):9-11.
    [38]罗章,李夕兵,凌同华.钢纤维混凝土的增强机理与断裂力学模型研究[J].矿业研究与开发,2003,23(4):18-21.
    [39]张冰冰,梁波.纤维混凝土阻裂机理及在隧道工程中的应用[J].公路交通技术,2008(2):106-109.
    [40]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京中国建筑工业出版社,2004.
    [41]董振英.纤维混凝土细观机理及应用研究[D].北京:清华大学,2003.
    [42]蔡四维,蔡敏,王慧等.短纤维对基体微裂纹扩展的阻滞效应分析[J].复合材料学报,1995,12(3):101-107.
    [43]Ji SC. A generalized mixture rule for estimating the viscosity of solid-liquid suspensions and mechanical properties of polyphase rocks and composite materials[J]. Geophys. Res.2004,109:B102:157-162.
    [44]Ji SC. Generalized means as an approach for predicting Young's moduli of multiphase materials[J]. Mater. Sci Eng.2004, A366:195-201.
    [45]Matthies S, Humbert M. The realization of the concept of a geometric mean for calculating physical constants of polycrystalline materials[J]. Phvs. Stat. Sol, 1993, B177:47-50.
    [46]Mainprice D, Humbert M. Methods of calculating petruphysical properties from lattice preferred orientation data[J]. Surv. Geophys.1994,15:575-592.
    [47]Ji SC, Zhao P L. Flow laws of multiphase rocks calculated from experimental data on the constituent phases[J]. Earth Planet. Sci. Let.1993,117:181-187.
    [48]Ji SC, Xia B. Rheology of Polyphase Earth Materials[M]. Montreal Polytechnic International Press.2002, P260.
    [49]嵇少丞,王茜,夏斌等.广义混合律及其在地球材料流变学中的应用[J].岩石学报,2006,22(7):2067-2080.
    [50]林小松,杨果林.钢纤维高强与超高强混凝土[M].北京:科学技术出版社,2002.
    [51]鲁云,朱世杰,马鸣图等.先进复合材料[M].北京:科学技术出版社,2003.
    [52]王放,曾祥国,魏玉卿等.纤维增强复合材料拉伸强度的weak-link比例预测[J].四川大学学报,2009,41(4):136-140.
    [53]许碧莞,施惠生,JU Jianwen.弓形钢纤维增强水泥基材料断裂能模型[J].同济大学学报,2010,38(9):1329-1338.
    [54]彭凡,彭献,傅依铭.纤维增强复合材料非线性蠕变流动特性[J].湖南大学学报(自然科学版),1999,26(5):6-9.
    [55]于爱民.纤维增强聚合物筋耐久性试验研究[D].郑州:郑州大学,2011.
    [56]Fukudo H, Chou T W. Stress concentration in a hybrid composite sheet[J].Journal of Applied Mechanics, Transaction of ASME,2003,50:845-848.
    [57]Ochiai Shojiro, Schulte K, Peter P W M. Strain concentration factors for fibers and matrix in unidirectional composites[J]. Composites Science and Technology,1991, 41:237-256.
    [58]He M Y, Evans A G.Curtin W A. The ultimate tensile strength of metal and ceramic matrixed composites[J]. Acta Metall Mater,1993,41:871-878.
    [59]关志东.基于界面单元的复合材料层间损伤分析方法[J].复合材料学报,2012,29(2):135-144.
    [60]郑百林.截锥面形界面裂纹尖端附近应力奇异性分析[J].同济大学学报,2000,28(5):160-169.
    [61]何周理等.基于Kalman滤波技术的纤维增强复合材料界面断裂参数确定方法[J].航空材料学报,2012,32(1):50-56.
    [62]封基良.纤维沥青混合料增强机理及其性能研究[D].南京:东南大学,2006.
    [63]王清等.纤维增强复合材料界面强度的细观测试方法[J].实验力学,2007(4):599-605.
    [64]Watson M C, Clyne T W. The Tensioned Push-out Test for Fiber Matrix Interface Characterization under Mixed Mode Loading[J]. Mater. Sci. Eng.2003, A160:1-5.
    [65]冼杏娟.纤维增强复合材料界面的力学行为[J].力学进展,1992,22(4):464-479.
    [66]刘克明,金莹,康林萍等.复合材料的细观力学研究进展[J].江西科学,2010,28(3):354-358.
    [67]Broutman L J, Agarwal B D. A Theoretical Study of the Effect of An Interfacial Layer on the Properties of Composites[J]. Polymer Eng. Sci.1994,14:581-588.
    [68]Miller B, Muri P, Rebenfeld L. A Micro bond Method for Determination of the Shear Strength of a Fiber/Resin Interface[J]. Comp. Sci. Tech.1997,28:17-82.
    [69]Kelly A,Tyson W R. Tensile Properties of Fiber Reinforced Metals[J].Mech Phys Solids,2005,13:329-350.
    [70]Mandell J F et al. A Modified Micro de bonding Test for Direct Insitu Fiber Matrix Bond Strength Determination in Fiber Composites, in Composite Materials [J]. Testing and Design, ASTM STP.1986,893:87-108.
    [71]Chamis C C, Adams J. Interface in Polymer Matrix Composites [J]. Academic Press, New York and London.1994:31-74.
    [72]李海军,吕伟民.纤维在SMA混合料中作用机理分析与试验研究[J].石油沥青,1998(4):1-8.
    [73]倪良松,陈华鑫,胡长顺等.纤维沥青混合料增强作用机理分析[J].合肥工业大学学报(自然科学版),2003(5):1033-1037.
    [74]陈华鑫,张争奇,胡长顺.纤维沥青路用性能机理[J].长安大学学报(自然科学版),2002,22(6):5-7.
    [75]鲁华英,陈小丽等.纤维沥青混合料的作用及机理[J].中外公路,2004(4):143-147.
    [76]A T Papagiannakis. Formulation for viscoelastic response of pavement under moving loads[J]. Journal of Transport Engineering.1996,122(2):140-145.
    [77]Lee H J, Kim Y R. Viscoelastic constitutive model for asphalt concrete under cyclic' loading[J]. Journal of Engineering Mechanics.1998(1):32-40.
    [78]Monismith C L, Secor K E. Viscoelastic behavior of asphalt concrete pavements[C]. Proceedings of International Conference on Structure Design of Asphalt Pavements,2002, (10):476.
    [79]Szydlo A, Mackiewicz P. Asphalt mixes deformation sensitivity to change in rheological parameters [J]. Journal of Materials in Civil Engineering,2005 (2):1-9.
    [80]Vlachovicova Z, et al. Creep characteristics of asphalt modified by radial styrene-butadiene-styrene copolymer[J]. Construction and Building Materials.2007,21(3): 567-577.
    [81]Abbas AR, Pagiannakis AT.Masad E A. Linear and nonlinear viscoelastic analysis of the microstructure of asphalt concretes[J]. Journal of Materials in Civil Engineering.2004:133-139.
    [82]Lu Y, Wright P J. Numerical approach of viscoelastic analysis for asphalt mixtures[J].Comp Structure,1998,69:139-147.
    [83]Tashman L, Masad E, et al. A microstructure based viscoplastic model for asphalt concrete[J]. International Journal of Plasticity.2005,21:1659-1685.
    [84]W. Zhang, A. Drescher, D. E. Newcomb. Viscoelastic Analysis of Diametral Compression of Asphalt Concrete[J]. Journal of Engineering Mechanics,1997,123(6):596-603.
    [85]W. Zhang, A. Drescher, D. E. Newcomb. Viscoelastic Behavior of Asphalt Concrete in Diametral Compression[J]. Journal of Transportation Engineering,1997,123(6): 495-502.
    [86]Blab R, Harvey J T. Modeling measured 3D tire contact stress in a viscoelastic FE pavement model[J]. Int Geomech,2002,2(3):271-290.
    [87]郑健龙.Burgers粘弹性模型在沥青混合料疲劳特性分析中的应用[J].长沙交通学院学报,1995,11(3):32-42.
    [88]郑健龙,应荣华,张起森.沥青混合料热粘弹性断裂参数研究[J].中国公路学报,1996,9(3):20-28.
    [89]周志刚,钱国平,郑健龙.沥青混合料粘弹性参数测定方法的研究[J].长沙交通学院学报,2001,17(4):23-28.
    [90]郑健龙,周志刚,应荣华.沥青路面温度应力数值分析[J].长沙交通学院学报,2001,17(1):29-32.
    [91]关宏信,郑健龙.沥青路面结构的粘弹性有限元方法[J].长沙交通学院学报,2001,17(1):51-56.
    [92]田小革,应荣华,郑健龙.沥青混凝土温度应力试验及其计算方法研究[J].中国公路学报,2001,14(4):15-19.
    [93]郑健龙,关宏信.温缩型反射裂缝的热粘弹性有限元分析[J].中国公路学报,2001,14(3):4-8.
    [94]郑健龙,田小革,应荣华.沥青混合料热粘弹性本构模型的实验研究[J].长沙理工大学学报(自然科学版),2004,1(1):1-7.
    [95]郑健龙,吕松涛,田小革.沥青混合料年弹性参数及其应用[J].郑州大学学报(工学版),2004,25(4):8-12.
    [96]陈骁,应荣华,郑健龙等.基于MTS压缩试验的热态沥青混合料黏弹塑性模型[J].中国公路学报,2007,20(6):25-30.
    [97]关宏信,郑健龙,张起森.沥青混合料的黏弹性疲劳损伤模型研究[J].力学与实践,2007,29(2):50-53.
    [98]关宏信,郑健龙.沥青路面粘弹性疲劳损伤分析[J].湖南科技大学学报,2008,26(3):54-57.
    [99]郑健龙,马健,吕松涛等.老化沥青混合料粘弹性疲劳损伤模型研究[J].工程力学,2010,27(3):116-122.
    [100]封基良,黄晓明.沥青粘结料粘弹性参数确定方法的研究[J].公路交通科技,2006,23(5):16-22.
    [101]薛国强,张裕卿,黄晓明.沥青混合料粘弹性能微观力学分析[J].公路交通科技,2009,26(6):18-23.
    [102]黄晓明,李汉光,张裕卿.考虑粗集料和空隙的沥青混合料粘弹性细观力学分析[J].华南理工大学学报(自然科学版),2009,53(7):31-36.
    [103]张裕卿,黄晓明.基于微观力学的沥青混合料黏弹性预测[J].吉林大学学报(工学版),2010,54(1):52-57.
    [104]郭乃胜,赵颖华.纤维沥青混凝土的粘弹性分析[J].交通运输工程学报,2007,7(5):37-40.
    [105]郭乃胜,赵颖华,侯金成.纤维沥青混凝土的松弛性能研究[J].建筑材料学报,2008,11(1):28-32.
    [106]赵颖华,侯金城,郭乃胜.基于细观力学的纤维沥青混凝土有效松弛模量[J].工程力学,2009,26(2):85-90.
    [107]詹小丽,张肖宁,王端宜等.基于动态蠕变性能的沥青延迟时间谱研究[J].中国公路学报,2008,21(2):34-38.
    [108]詹小丽,张肖宁,王端宜等.改性沥青非线性粘弹性本构关系研究及应用[J].工程力学,2009,26(4):187-191.
    [109]张肖宁,尹应梅,邹桂莲.不同空隙率沥青混合料的粘弹性能[J].中国公路学报,2010,23(4):1-7.
    [110]邵腊庚,周晓青,李宇峙等.基于直接拉伸试验的沥青混合料粘弹性损伤特性研究[J].土木工程学报,2005,38(4):125-128.
    [111]邵俊华.玻璃纤维沥青混合料粘弹性分析及参数确定[D].长春:吉林大学,2008.
    [112]梁俊龙,高江平.沥青混合料非线性粘弹性本构关系研究[J].广西大学学报(自然科学版),2012,37(4):711-715.
    [113]中华人民共和国行业标准.JTJ E20-2011公路工程沥青及沥青混合料试验规程[S]//中华人民共和国交通部.北京:人民交通出版社,2011.
    [114]中华人民共和国行业标准.JT/T 776.1-2010公路工程玄武岩纤维及其制品[S]//中华人民共和国交通部.北京:人民交通出版社,2010.
    [115]中华人民共和国行业标准.JTG F40-2004公路沥青路面施工技术规范[S]//中华人民共和国交通部.北京:人民交通出版社,2004.
    [116]中华人民共和国行业标准.JT/T 533-2004沥青路面用木质素纤维[S]//中华人民共和国交通部.北京:人民交通出版社,2004.
    [117]Roscoe R. The viscosity of suspensions of rigid spheres[J]. Br. J. Appl. Phys.1998,3: 367-369.
    [118]Patankar N, Hu HH. Rheology of a suspension of panicles in viscoleastic fluids[J]. Non-Newtonian Fluid Mech.2001,96:427-443.
    [119]Jones DAR, Leary B, Boger DV. The rheology of a concentrated colloidal suspension of hard spheres[J]. Colloid Interface Sci.1998,147:479-495.
    [120]Batchelor GK, Green JT. The determination of the bulk stress in a suspension of spherical particles to the order[J]. Fluid Mech.1992,56:401-427.
    [121]付极.玻璃纤维对沥青混凝土界面和路用性能的影响研究[D].长春:吉林大学,2008.
    [122]Lee S. Joon, Rust Jon P, Hamouda Hechmi, et al. Fatigue Cracking Resistance of Fiber reinforced Asphalt Concrete[J]. Textile Research Journal,2005,75(2):123-128.
    [123]黄志义,王金昌,朱向荣.含裂缝沥青混凝土路面的粘弹性断裂分析[J].中国公路学报,2006,19(2):18-23.
    [124]Romualdi JP, Batson GB. The behavior of reinforced concrete beams with closely placed reinforcement[J]. Journal of Engineering Mechanics.1993(4):56-70.
    [125]Bazant ZP. Fracture Mechanics of Concrete Structures[M].1992.
    [126]Cotterell B, Mai YW. Fracture Mechanics of Cementitious Materials[M].1996.
    [127]Kim YR, Little DN. Linear viscoelastic analysis of asphalt mastics[J]. Journal of Materials in Civil Engineering,2004,16(2):122-132.
    [128]Si Zhiming, Little DN, Lytton RL. Characterization of micro damage and healing of asphalt concrete mixtures[J]. Journal of Materials in Civil Engineering, 2002,14(6):461-470.
    [129]徐刚.纤维沥青混合料增强机理及性能研究[D].大连:大连交通大学,2012.
    [130]徐刚,赵丽华,赵晶.玄武岩矿物纤维改善沥青混合料性能研究[.J].公路,2011,56(6):167-171.
    [131]SHRP-A-415. Permanent Deformation Response of Asphalt Aggregate Mixes. N. C. R. USA. 1994, (5):69-72.
    [132]SHRP-A-379. The Superpave Mix Design System Manual of Specifications. N. C. R. USA. 1994, (3):34-42.
    [133]曹丽萍,谭忆秋,董泽蛟等.应用玻璃化转变温度评价SBS改性沥青低温性能[J].中国公路学报,2006,25(2):1-6.
    [134]栾自胜,雷军旗,屈仆等.SBS改性沥青低温性能评价方法[J].武汉理工大学学报,2010,32(2):15-18.
    [135]张磊.沥青混合料低温开裂及松弛特性的研究[D].哈尔滨:哈尔滨工业大学,2010.
    [136]王抒音,谭忆秋.用冻融循环劈裂比评价沥青混合料抗水损害能力[J].哈尔滨建筑工业大学学报,2002,35(5):123-126.
    [137]Atakan Aksoy, Kurtulus Samlioglu, Sureyya Tayfur. Effects of Various Additives on the moisture damage sensitivity of Asphalt Mixture[J]. Construction and Building Materials.2005,19(1):11-18.
    [138]李闯.不同影响因素下沥青混合料疲劳性能试验研究[D].大连:大连理工大学,2009.
    [139]赖正林.两种试验模式下的沥青混合料疲劳性能研究[D].长沙:长沙理工大学,2012.
    [140]SHRP-A-312. Summary report on fatigue response of asphalt mixtures. TM-UCB-A-003A-89-3.1990.
    [141]SHRP-A-318. Summary Report on Permanent Deformation in Asphalt Concrete. SHRP-A/IR-91-104.1991.
    [142]FINEBERG J, MARDER M. Instability in dynamic fracture[J]. Physical Reports,1999, 313:101-108.
    [143]BOUCHAUD E. Scaling properties of cracks[J]. Journal of Physics:Condensed Matter, 1997,9(21):4319-4344.
    [144]左建平等.温度-拉应力共同作用下砂岩破坏的断口形貌[J].岩石力学与工程学报.2007,26(12):2444-2457.
    [145]COX B N, GAO H, GROSS D, et al. Modern topics and challenges in dynamic fracture [J]. Journal of the Mechanics and Physics of Solids,2005,53(3):565-596.
    [146]BAHAT D, FRID V, RABINOVITCH A, et al. Exploration via electromagnetic radiation and fractographic methods of fracture properties induced by compression in glass-ceramic[J]. International Journal of Fracture,2002,116(2):179-194.
    [147]董宇光,李慧剑,严小丽.四点剪切加载下混凝土裂纹扩展路径研究[J].固体力学学报,2004,25(2):198-202.
    [148]沈新普,冯金龙,代树红等.边界条件对混凝土四点剪切散斑试验结果影响的研究[J].岩石力学与工程学报,2008,27(2):3528-3534.
    [149]Harvey JA, Cebon FD. Fracture tests on bitumen films[J]. Mater CivilEng 2005,17: 99-106.
    [150]Liantong Mo, M. Huurman, Shaopeng Wub. Raveling investigation of porous asphalt concrete based on fatigue characteristics of bitumen-stone adhesion and mortar [J]. Materials and Design,2009,30:170-179.
    [151]Dallas NL, David RJ. Chemical and mechanical processes of moisture damage in hot-mix asphalt pavements. National Seminar:Moisture Sensitivity of Asphalt Pavements, California,2003:37-71.
    [152]Frolov AF, Vasieva VV, Frolova EA. Strength and structure of asphalt films. Chem Tech Fuel Oil 1998,19(8):415-419.
    [153]Babcock GB, Statz RJ, Larson DS. Study of asphalt binders using lap shear bonds. Technical report. Wilmington, Delaware:E.I.DuPont de Nemours, Inc.1998.
    [154]Marek CR, Herrin M. Tensile behavior and failure characteristics of asphalt cements in thin film[J]. Proc Assoc Asphalt Paving Tech 1998,37:387-421.
    [155]Yan XL, Liang CY. Study of the shear adhesiveness between bitumen and rock[J]. China journal of Highway Transport 2001,14:25-29.
    [156]Mo LT, Huurman M, Wu SP. Finite element analysis and experimental study on tensile fatigue behavior of asphalt-stone adhesion[J].Fatigue Fract Eng Mater Structure 2007,30:823-831.
    [157]Mo LT, Huurman M, Wu SP. Damage accumulation model for monotonic and dynamic shear fracture of asphalt-stone adhesion[J]. Theory Apply Fract Mech 2006,46:140-147.
    [158]Osman SA.The role of bitumen and bitumen mortar in bituminous mixture fatigue, Doctor thesis, Civil Engineering, the University of Nottingham, UK,2004.
    [159]Mo LT, Huurman M, Wu SP. Raveling investigation of porous asphalt concrete based on fatigue characteristics of bitumen-stone adhesion and mortar. Materials and Design 2009,30:170-179.
    [160]向晋源,朱湘.基于粘弹性损伤模型的沥青混合料高温性能评价指标研究[J].黑龙江工程学院学报,2009,23(2):4-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700