缝合复合材料层板低速冲击及冲击后压缩性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料具有比强度高、比刚度高、可设计性等一系列优点,已经在航空航天等领域得到了广泛的应用。传统的层合复合材料由于自身的弱点,在受到低速冲击后容易产生分层损伤,导致冲击后的压缩强度大幅度下降,从而限制了其优势的发挥。缝合复合材料通过引入厚度方向的纤维既提高了层板的抗冲击性能和冲击后压缩性能又保留了传统层板的良好面内性能,因而具有广阔的应用前景。缝合复合材料层板低速冲击和冲击后压缩性能研究是缝合层板损伤容限和耐久性研究的基础,具有重要的理论意义和应用价值。本文对缝合层板进行了低速冲击和冲击后压缩性能研究,具体的研究工作包括:
     (1)采用落锤冲击法对不同类型缝合复合材料层板进行低速冲击试验,使用无损检测方法进行损伤探测,并对冲击后试件进行压缩试验,研究了不同类型缝合复合材料层板的冲击损伤特性和冲击后压缩性能。研究结果表明:与未缝合层板相比,缝合层板具有更好的抗冲击性能,更高的冲击后压缩强度;冲击能量越大,缝合的作用越明显;缝合密度越大的层板抗冲击性能越好,冲击后压缩强度越高。缝合方向和铺层顺序是影响低速冲击和冲击后压缩性能的重要因素。
     (2)使用三维动力学有限元法,采用三维实体单元模拟单层板,采用界面单元模拟层间界面的力学行为,以空间杆单元模拟缝线的增强作用,建立了缝合复合材料层板在低速冲击载荷作用下的渐近损伤分析模型。面内采用基于应变描述的Hashin失效准则进行损伤判断,采用刚度折减对面内的材料性能进行退化;层间采用二次应力准则进行初始损伤判断,采用双线性折减方法对界面的性能进行折减。针对不同类型的缝合层板,模拟了低速冲击载荷作用下的冲击响应和渐进损伤过程,数值结果与试验吻合较好,证明了该方法的合理有效性。
     (3)采用三维渐进损伤分析模型对缝合复合材料层板低速冲击的影响因素进行了研究。分别研究了层板厚度、缝合密度、缝线直径和缝线强度对缝合层板低速冲击响应和冲击损伤的影响规律。研究结果表明:厚度越小,缝合对提高抗冲击性能的作用也越小。冲击能量一定的情况下,当缝线直径和缝线强度小于某一个特定值时,低速冲击过程中缝线出现断裂,且缝线直径和缝线强度越小,缝线断裂越多,冲击损伤投影面积越大。
     (4)根据含损伤缝合层板在压缩载荷下的破坏模式和破坏机理,将冲击损伤等效为椭圆孔,利用杂交应力单元计算冲击后缝合层板的应力分布,采用基于特征曲线概念的点应力判据建立了缝合层板冲击后压缩强度的分析方法,与试验结果比较证明了该分析方法的正确性,并讨论了特征长度、损伤面积及椭圆孔参数等对冲击后压缩强度的影响规律。最后采用三维渐进损伤分析方法结合开口等效法对缝合层板低速冲击和冲击后压缩进行了一体化分析。
Composite laminates have been widely used in aeronautics and astronautics industry because oftheir advantages of high specific strength, high specific stiffness and designable. For the traditionallaminates, internal delaminations can be easily produced by low–velocity impact, which leads tosignificant reduction of compression strength and limits the advantages of composite laminates. Byintroducing stitched lines in the thickness direction, stitched laminates not only improve theinter-laminar impact resistance and compressive characteristics after impact but also retain theadvantages of traditional laminates, which offers them broad application prospects. The research onlow-velocity impact damage and compression strength of stitched laminates has considerabletheoretical significance and application value in the sense that it is the foundation of studying on thedamage tolerance and durability of stitched laminates. In this thesis, the low-velocity impact andresidual strength of stitched laminates are studied. The main contents are as follows:
     (1) In the experiments of different stitched laminates, low-velocity impact was simulated by thedrop weight method, impact damage was detective by the non-destructive testing, and compressiontesting was completed by a material testing machine. In the thesis, influencing factors of impactdamages and compression strength after impact for different stitched laminates were studied. Theresults indicate that: compared with unstitched laminates, stitched laminates have better damageresistance for impact and higher compressive strength after impact. The effect of stitching is betterwhen impact energy is bigger. The impact resistance and post-impact residual strength are bothimproved as increasing the stitch density. Stitching direction and layup are important factors whichinfluence the impact resistance and compressive strength after impact.
     (2) A3D dynamic finite element model was proposed to predict the progressive damage ofstitched laminates under low-velocity impact, in which the laminate was simulated by brick element,the interface was modeled by cohesive element and stitching thread was realized by bar element. Thestrain-based Hashin criterion was employed to determine the inter-laminar damages and the stiffnessreduction was used to simulate the in-plane damage evolution. The stress-based quadratic criterionwas employed to evaluate the initial damage of interface, and the bilinear model was adopted todegrade the properties of damaged interface. The impact response and damage progression ofdifferent stitched laminates was calculated and numerical results coincided with the experimental results excellently, which verifies the effectiveness of the model.
     (3) The influencing factors of low-velocity impact on stitched laminates were studied by using a3D progress damage model. The effects of thickness of laminates, stitching density, diameter andstrength of stitching threads were researched in detail. The results indicate that the improvement ofimpact resistance decreases with increasing the thickness. When the diameter and strength of stitchingare lower than certain values under the same impact energy, the stitching will break. The smallerstitching diameter and strength are, the more stitching will be damaged.
     (4) Based on the damage modes and failure mechanisms of damaged stitched composites undercompression loadings, the impact damage was modeled by an elliptical hole. The stress field ofstitched composites after impact was calculated by hybrid stress elements. The residual compressivestrength was predicted by using the point stress criterion based on characteristic curve and comparedwith the experiment results to validate the proposed method. The influences of character distance,damage area and parameters of elliptical hole on the compression strength after impact were discussed.Finally, by using the3D progress damage model and equivalent hole method, integrated analysis onlow-velocity impact and compression strength after impact is conducted.
引文
[1].沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [2].陈华辉.现代复合材料[M].北京,中国物资出版社,1998.
    [3].赵稼祥.民用航空和先进复合材料[M].高科技纤维与应用,2007,32(2):6-10.
    [4].杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12.
    [5]. Abrate S. Impact on composite structure [M]. Cambridge, UK: Cambridge University Press,1998.
    [6]. Takeda N, Serakowski RL, Malvern LE. Transverse crack in Glass/Epoxy cross-ply laminatesimpacted by projectiles [J]. Journal of Material Science,1981,2008-2011.
    [7]. Joshi SP, Sun CT. Impact induced fracture in a laminated composite [J]. Journal of MaterialScience,1985,51-66.
    [8]. Delbrey J. Database of mechanical properties of textile composites [R]. National Aeronauticsand Space Administration Langley Research Center, Hampton, Virginia23681-0001, NASACR-4747,1991.
    [9]. Military Specification Aircraft Structure General Specification [S]. MIL-A-87221,1985.
    [10]. Cox BN. Constitutive model for a fiber tow bridging a delamination crack [J]. Mechanics ofComposite Materials and Structures,1999,6:117-138.
    [11]. Cox BN, Massabo R, Kedward KT. Suppression of delaminations in curved structures bystitching [J]. Composites Part A1996,27A:1133-1138.
    [12]. Dransfield K, Baillie C, Mai YW. Improving the delamination of CFRP by stitching-a review[J]. Composites Science and Technology,1994,50:305-317.
    [13]. Aymerich F, Priolo P, Sun CT. Static and fatigue behaviour of stitched graphite/epoxycomposite laminates [J]. Composites Science and Technology,2003,63:907-917.
    [14].李学明,张国利.缝纫工艺对改善复合材料机械性能的研究[J].纺织学报,2002,23(3):214-216.
    [15].程小全,赵龙,章怡宁.缝合复合材料可用性-简单层合板的基本性能[J].北京航空航天大学学报,2003,29(11):1001-1005.
    [16]. Rong MZ, Zhang MQ, Liu Y, et al. Effect of stitching on in-plane and interlaminar propertiesof sisal/epoxy laminates [J]. Journal of Composite Materials,2002,36(12):1505-1526.
    [17]. Kang TJ, Lee SH. Effect of stitching on the mechanical and impact properties of wovenlaminate composite [J]. Journal of composite materials,1994,28(16):1574-1587.
    [18]. Pang FY, Wang CH, Bathgate RG. Creep response of woven-fiber composites and the effect ofstitching [J]. Composites science and technology,1997,57:91-98.
    [19].邓传斌,张俊乾,李苹.缝纫对复合材料层板面内单向拉伸强度的影响[J],重庆大学学报,2002,25(1):9-12。
    [20].黄涛,矫桂琼,赵龙等.缝线区域及界面特性对缝纫复合材料单向板力学性能的影响研究[J].西北工业大学学报,2004,22(1):76-79。
    [21]. Farley GL, A mechanism responsible for reducing compression strength ofthrough-the-thickness reinforced composite material [J]. Journal of Composite Materials,1992,26:1784-1795.
    [22]. Farley GL, Smith BL, Maiden J. Compression response of thick layer composite laminates withthrough-the-thickness reinforcement [J]. Journal of Reinforced Plastics Composites,1992,11:787-810.
    [23]. Reeder JR. Stitching vs a toughened matrix: compression strength effects [J]. Journal ofComposite Materials,1995,29(18):2464-2487.
    [24]. Furrow KW, Loos AC, Cano RJ. Environmental effects on stitched RTM textile composites [J].Journal of Reinforced Plastic Composites,1996,15:378-419.
    [25].桂良进,程小全,寇长河等.缝纫对复合材料层合板强度和抗冲击性能的影响[J].航空学报,2000,21(4):368-371。
    [26].程小全,郦正能,寇长河.缝合复合材料可用性——一般层合板的基本性能[J].复合材料学报,2004,21(4):71-76。
    [27].汪海.复合材料缝合结构静强度研究[D].大连,大连理工大学,2001。
    [28]. Tracy GD. A characterization of the properties of a stitched hybrid composite [D]. California,America, University of California,2001.
    [29]. Mouritz AP. Flexural properties of stitched GRP laminates [J]. Composites Part A,1996,27:525-555.
    [30]. Yang B, Kozey V, Adanur S, et al. Bending, compression and shear behavior of woven glassfiber/epoxy composites [J]. Composites Part B,2000,31:715-721.
    [31]. Wang YJ. Mechanical properties of stitched multiaxial fabric reinforced composites frommanual layup process [J]. Applied Composite Materials,2002,9(2):81-97.
    [32]. Mouritz AP, Cox BN. A mechanistic approach to the properties of stitched laminates [J].Composites Part A,2000,31:1-27.
    [33]. Mouritz AP, Leong KH, I Herszberg. A review of the effect of stitching on the in-planemechanical properties of fibre-reinforced polymer composites [J]. Composites Part A,1997,28A:979-991.
    [34]. Tada Y, Ishikawa T. Experimental evaluation of the effects of stitching on CFRP laminatespecimens with various shapes and locations [J]. Key Engineering Materials,1989,37:305-316.
    [35]. Jain LK, Mai YW. Mode I delamination toughness of laminated composites withthrough-thickness reinforcement [J]. Applied Composite Materials,1994,1:1-17.
    [36]. Dransfield KA, Jain LK, Mai YW. On the effects of stitching in CFRPs-I. Mode I delaminationtoughness [J]. Composite Science and Technology,1998,58:815-827.
    [37]. Mouritz AP, Jain LK. Futher validation of the Jain and Mai models for interlaminar fracture ofstitched composites [J]. Composite Science and Technology,1999,59:1653-1662.
    [38]. Iwahori Y, Nakane K, Watanabe N. DCB test simulation of stitched CFRP laminates usinginterlaminar tension test results [J]. Composite Science and Technology,2009,69:2315-2322.
    [39]. Wood MDK, Sun X, Tong L, et al. The effect of stitch distribution on mode I delaminationtoughness of stitched laminated composites-experimental results and FEA simulation [J].Composite Science and Technology,2007,67:1058-1072.
    [40]. Jain LK, Mai YW. Determination of mode II delamination toughness of stitched laminatedcomposites [J]. Composite Science and Technology,1995,55:241-253.
    [41]. Jain LK, Dransfield KA, Mai YW. On the effects of stitching in CFRPs-II. Mode IIdelamination toughness [J]. Composite Science and Technology,1998,58:829-837.
    [42]. Wood MDK, Sun X, Tong L, et al. A new ENF test specimen for the mode II delaminationtoughness testing of stitched woven CFRP laminated [J]. Journal of Composite Materials,2007,41(14):1743-1772.
    [43]. Massabo R, Mumm DR, Cox BN. Characterizing mode II delamination cracks in stitchedcomposites [J]. International Journal of Fracture.1998,92:1-38.
    [44].沈真,陈普会,刘俊石等.含缺陷复合材料层合板的压缩破坏机理[J].航空学报,1991,12(3):105-113.
    [45].程小全,张子龙,吴学仁.小尺寸试件层合板低速冲击后剩余压缩强度[J].复合材料学报,2002,19(6):8-12.
    [46].张子龙,程小全,益小苏.复合材料冲击损伤及冲击后压缩强度的等效实验方法[J].实验力学,2001,16(3):313-319.
    [47]. Cheng XQ, Zhang ZL, Yi XS, et al. Effect of SACMA and QMW test methods on compressiveproperties of composite laminates after low velocity impact [J]. Chinese Journal of Aeronautics,2002,15(2):90-97.
    [48].范金娟,赵旭,程小全.复合材料层合板低速冲击后压缩损伤特征研究[J].失效分析与预防,2006,1(2):33-35.
    [49].范金娟,郑林斌,赵旭等.含低速冲击损伤复合材料层合板的压缩失效[J].失效分析与预防,2009,4(1):19-23.
    [50].崔海坡,温卫东. T300/BMP316层合板冲击后压缩强度试验[J].航空动力学报,2008,23(11):2001-2006.
    [51]. Choi HY, Wu HY, Chang FK. Effect of laminate configuration and impactor’s mass on theinitial impact damage of graphite/epoxy composite plates due to line-loading impact [J]. Journalof Composite Materials,1992,26:804-827.
    [52]. Choi HY, Downs RJ, Chang FK. A new approach toward understanding damage mechanismsand mechanics of laminated composite due to low-velocity impact: part I–experiments [J].Journal of Composite Materials,1991,25:992-1011.
    [53]. Caprino G. Residual Strength Prediction of Impacted CFRP Laminates [J]. Journal ofComposite Materials,1984,18:508-518.
    [54]. Peter O, Hartness JT, Cordell TM. On low-velocity impact testing of composite materials [J].Computers and Structures,1988,22:30-52.
    [55].沈真,张子龙,王进等.复合材料损伤阻抗和损伤容限的性能表征[J].复合材料学报,2004,21(5):140-145.
    [56].沈真,杨胜春,陈普会.复合材料层压板抗冲击行为及表征方法的试验研究[J].复合材料学报,2008,25(5):125-133.
    [57]. Giovanni B, Roberto V. Influence of the laminate thickness in low velocity impact behavior ofcomposite material plate [J]. Composite Structures,2003,61:27-38.
    [58]. Cartie DDR, Irving PE. Effect of resin and fiber properties on impact and compression afterimpact performance of CFRP [J]. Composites Part A,2002,33:483-493.
    [59]. Cantwell WJ. Geometrical effects in the low velocity impact response of GFRP [J]. CompositeScience and Technology,2007,67:1900-1908.
    [60]. Moura MD, Marques AT. Prediction of low velocity impact damage in carbon-epoxy laminates[J]. Composite: Part A,2002,33:361-368.
    [61]. Moura MD, Goncalves JP. Modeling the interaction between matrix cracking and delaminationin carbon-epoxy laminates under low velocity impact [J]. Composites Science and Technology,2004,64:1021-1027.
    [62]. Richardson MOW, Wisheart MJ. Review of low-velocity impact properties of compositematerials [J]. Composites Part A,1996,27:1123-1131.
    [63].张颖军,梅志远,朱锡. FRP层合板低速冲击损伤特性研究现状与展望[J].玻璃钢/复合材料,2011,1:52-58.
    [64].郑锡涛,李泽江,李光亮.含损伤复合材料层合板剩余压缩强度研究进展[J].宇航材料工艺,2011,3:20-26.
    [65].崔海坡,温卫东,崔海涛.复合材料层合板冲击损伤及剩余强度研究进展[J].材料科学与工程学报,2005,23(3):466-472.
    [66]. Aymerich F, Dore F, Priolo P. Prediction of impact-induced delamination in cross-plycomposite laminates using cohesive interface elements [J]. Composites Science and Technology,2008,68:2383-2390.
    [67]. Aymerich F, Dore F, Priolo P. Simulation of multiple delaminations in impacted cross-plylaminates using a finite element model based on cohesive interface elements [J]. CompositesScience and Technology,2009,69:1699-1709.
    [68]. Choi HY, Chang FK. A model for predicting damage in Graphite/Epoxy laminated compositesresulting from low-velocity point impact [J]. Journal of Composite Materials,1992,26:2134-2169.
    [69]. Collombet F, Lalbin X, Bonini J, et al. Damage criteria for the study of impacted compositelaminates [J]. Composites Science and Technology,1998,58(5):679-686.
    [70]. Collombet F, Lalbin X, Lataillade J L. Impact behavior of laminated composites: Physical basisfor finite element analysis [J]. Composites Science and Technology,1998,58(3-4):463-478.
    [71]. Collombet F, Bonini J, Lataillade J L. Three-dimensional modeling of low velocity impactdamage in composite laminates [J]. International Journal for Numerical Methods in Engineering,1996,39(9):1491-1516.
    [72]. Hou JP, Petrinic N, Ruiz C, et al. Prediction of impact damage in composite plates [J].Composites Science and Technology,2000,60:273-281.
    [73].徐颖,温卫东,崔海坡.复合材料层合板低速冲击逐渐累积损伤预测方法[J].材料科学与工程学报,2006,24(1):77-81.
    [74].温卫东,徐颖,崔海坡.低速冲击下复合材料层合板损伤分析[J].材料工程,2007,7:6-11.
    [75]. Yang SH, Sun CT. Indentation law for composite laminate [C]. ASTM, STP787,1983:425-449.
    [76]. Tan TM, Sun CT. Use of statical indentation laws in the impact analysis of laminatedcomposite plate [J]. Journal of Applied Mechanics,1985,52:6-12.
    [77].朱炜垚,许希武.复合材料层合板低速冲击损伤的有限元模拟[J].复合材料学报,2010,27(6):200-207.
    [78].张彦,朱平,来新民等.低速冲击作用下碳纤维复合材料铺层板的损伤分析[J].复合材料学报,2006,23(2):150-157.
    [79].张彦,来新民,朱平等.复合材料铺层板低速冲击作用下损伤的有限元分析[J].上海交通大学学报,2006,40(8):1348-1353.
    [80]. Soutis C, Curtis PT. Prediction of the post-impact compressive strength of CFRP laminatedcomposites [J]. Composites Science and Technology,1996,56:677-684.
    [81]. Soutis C, Smith FC, Matthews FL. Predicting the compressive engineering performance ofcarbon fibre-reinforced plastics [J]. Composites: Part A,2000,31:531-536.
    [82]. Hawyes VJ, Curtis PT, Soutis C. Effect of impact damage on the composite laminates [J].Composites: Part A,2001,32:1263-1270.
    [83]. Soutis C, Fleck NA, Smith PA. Failure prediction technique for compression loaded carbonfibre-epoxy laminate with open holes [J]. Journal of Composite Materials,1991,25(11):1476-1498.
    [84]. Chen PH, Shen Z, Wang JY. A new method for compression after impact strength prediction ofcomposite laminates [J]. Journal of Composite Materials,2002,36(5):589-610.
    [85]. Chen PH, Shen Z, Wang JY. Strength prediction of notched composite laminates [J].Composites Science and Technology,2001,61(9):1311-1321.
    [86]. Xiong Y, Poon C. A prediction method for the compressive strength of impact damagedcomposite laminates [J]. Composite Structures,1995,30(4):357-367.
    [87].林智育,许希武.复合材料层板低速冲击后剩余压缩强度[J].复合材料学报,2008,25(1):140-146.
    [88]. Yamada SE, Sun CT. Analysis of laminate strength and its distribution [J]. Journal ofComposite Materials,1978,12(July):275-284.
    [89]. Gottesman T, Girshovich S, Drukker E, et al. Residual strength of impacted composite:Analysis and Test [J]. Journal of Composites Technology&Research,1994,16(3):244-255.
    [90]. Kutlu Z, Chang FK. Modeling compression failure of laminated composites containingmultiple through-the-width delaminations [J]. Journal of Composite Materials,1992,26(3):350-386.
    [91]. Kutlu Z, Chang FK. Composite panels containing multiple through-the-width delaminationsand subjected to compression. Part I: analysis [J]. Composite Structures,1995,31(4):273–296.
    [92]. Kutlu Z, Chang FK. Composite panels containing multiple through-the-width delaminationsand subjected to compression. Part II: experiments and verification [J]. Composite Structures,1995,31(4):297–314.
    [93].崔海坡,温卫东,崔海涛.层合复合材料板的低速冲击损伤及剩余压缩强度研究[J].机械科学与技术,2006,25(9):1013-1017.
    [94]. Tserpes KI, Labeas G, Papanikos P, et al. Strength prediction of bolted joints in graphite/epoxycomposite laminates [J]. Composites: Part B,2002,33:521-529.
    [95].程小全,郦正能.复合材料层合板低速冲击后压缩的损伤累积模型[J].应用数学与力学,2005,26(5):569-576.
    [96]. Aymerich F, Pani C, Priolo P. Effect of stitching on the low-velocity impact response of[03/903]Sgraphite/epoxy laminates [J]. Composite Part A,2006:1-9.
    [97]. Aymerich F, Pani C, Priolo P. Damage response of stitched cross-ply laminates under impactloadings [J]. Engineer Fracture Mechanics,2006,4:258-273.
    [98]. Aymerich F, Priolo P. Characterization of fracture modes in stitched and unstitched cross-plylaminates subjected to low-velocity impact and compression after impact loading [J].International Journal of Impact Engineering,2008,35:591-608.
    [99].桂良进,程小全,寇长河等.缝纫对复合材料层合板强度和抗冲击性能的影响[J].航空学报,2000,21(4):368-371.
    [100].陈蔚,沈宝华,王彬彬等.缝纫增强复合材料冲击损伤与冲击后压缩破坏研究[J].航空材料学报,1997,17(4):49-53.
    [101].程小全,寇长河,郦正能.缝合复合材料可用性——环境条件下层合板的冲击后压缩性能[J].材料工程,2004,9:36-41.
    [102].祝成炎,Hogg PJ.缝编织物复合板冲击分层破坏的显微镜观察研究[J].高分子材料科学与工程,2001,17(1):1-4.
    [103].李朝光,矫桂琼,黄涛等. Z向增强复合材料层压板冲击后压缩性能试验研究[J].机械强度,2010,32(2):373-377
    [104]. Liu D. Delamination resistance in stitched and unstitched composite plates subjected to impactloading [J]. Journal of Reinforced Plastics and Composites,1990,9(1):59-69.
    [105]. Kang TJ, Lee SH. Effect of stitching on the mechanical and impact properties of wovenlaminate composites [J]. Journal of Composite Materials,1994,28(16):1574-1587.
    [106]. Lopresto V, Melito V, Leone C, et al. Effect of stitches on the impact behaviour ofgraphite/epoxy composites [J]. Composite Science and Technology,2006,66:206-214.
    [107]. Wu E, Liau J. Impact of unstitched and stitched laminates by line loading [J]. Journal ofComposite Materials,1994,28(17):1640-1658.
    [108]. Wu E, Wang J. Behavior of stitching laminates under in-plane tensile and transverse impactloading [J]. Journal of composite Materials,1995,29(17):2254-2278.
    [109]. Mouritz AP. Comment on the impact damage tolerance of stitched composites [J]. Journal ofMaterials Science Letters,2003,22:519-521.
    [110]. Hawley V. Development of stitched/RTM primary structures of transport aircraft [R], NASAC95110-3,1993.
    [111]. Suh SS, Han NL, Yang JM, Hahn HT. Compression behavior of stitched stiffened panel with aclearly visible stiffener impact damage [J]. Composite Structures,2003,62:213-221.
    [112]. Sankar BV, Zhu HS. The effect of stitching on the low-velocity impact response of delaminatedcomposite beams [J]. Composites Science and Technology,2000,60(14):2681-2691.
    [113].陈纲,桂良进,郦正能等.缝纫层合板低速冲击损伤有限元分析[J].航空学报,2002,23(1):55-58.
    [114].曾东,燕瑛,王立鹏等.缝合复合材料低速冲击损伤研究[J].复合材料学报,2005,22(6):125-129.
    [115].田静.缝合复合材料层板低速冲击损伤研究[S].南京,南京航空航天大学,2008.
    [116].李仲,葛森,杨胜春等.含损伤缝合复合材料层压板压缩剩余强度估算方法[J].西北工业大学学报,2007,25(3):342-346.
    [117]. Cheng XQ, Ali MA, Li ZN, Kou CH. Compression strength of stitched laminates afterlow-velocity impact [J]. Journal of Reinforced Plastics and Composites,2005,24(6):935-947.
    [118].魏玉卿,陈斌.缝纫对复合材料层合板分层屈曲的影响[J].重庆大学学报,2004,27(7):24-27.
    [119].桂良进,程小全.缝纫对复合材料层合板强度和抗冲击性能的影响[J].航空学报,2000,21(4):368-371.
    [120]. Hill R. A theory of the yielding and plastic flow of anisotropic metals [J]. Proceedings of theRoyal Society of London, Series A, Mathematical and Physical Sciences,1948,193(1033):281-297.
    [121]. Tsai SW, Wu EM. A general theory of strength for anisotropic materials [J]. Journal ofComposite Materials,1971,5(1):58-80.
    [122]. Hashin Z. Failure criteria for unidirectional fiber composite [J]. Journal of Applied Mechanics,1980,47:329-334.
    [123]. Chang F, Chang K. A progressive damage model for laminated composite containing stressconcentrations [J]. Journal of Composite Materials,1987,21:834-855.
    [124]. Camanho PP, Matthews FL, A progressive damage model for mechanically fastened joints incomposite laminates [J]. Journal of Composite Materials,1999,33:2248-2280.
    [125]. Mi Y, Crisfield MA, Davies G, Hellweg HB. Progressive delamination using interface elements[J]. Journal of Composite Materials,1998,32(14):1246-1272.
    [126]. Wisheart M, Richardson MOW. The finite element analysis of impact induced delamination incomposite materials using a novel interface element [J]. Composite Part A,1998,29:301-313.
    [127]. Camanho PP, Davila CG, Moura MF. Numerical simulation of mixed-mode progressivedelamination in composite materials [J]. Journal of Composite Materials,2003,37(16):1415-1438.
    [128]. Nishikawa M, Okabe T, Takeda N. Numerical simulation of interlaminar damage propagationin CFRP cross-ply laminates under transverse loading [J]. International journal of Solids&Structures,2007,44:3101-13.
    [129]. Borg R, Nilsson L, Simonsson K. Simulation of low velocity impact on fiber laminates using acohesive zone based delamination model [J]. Composites Science and Technology,2004,64:279-88.
    [130]. Aoki Y, Suemasu H, Ishikawa T. Damage propagation in CFRP laminates subjected to lowvelocity impact and static indentation [J]. Advanced Composite Materials,2007,16(1):45-61.
    [131]. Hou JP, Petrinic N, Ruiz C. A delamination criterion for laminated composites underlow-velocity impact [J]. Composites Science and Technology,2001,61:2069-2074.
    [132]. Aymerich F, Meili S. Ultrasonic evaluation of matrix damage in impacted composite laminates[J]. Compos Part B: Engng,2000,31(1):1-6.
    [133].刘德博.复合材料损伤容限基础问题研究[D].北京,北京航空航天大学,2012.
    [134].朱炜垚.含冲击损伤复合材料层板剩余压缩强和疲劳强度研究[D].南京,南京航空航天大学,2012.
    [135]. Xu XW. Stress concentration of finite element composite laminate with elliptical holes [J].Computers&Structures,1995,57:29-34
    [136]. Xu XW, Yue TM, Man HC. Stress analysis of finite composite laminate with multiple loadedholes [J]. International journal of Solids&Structures,1999,36:919-931
    [137]. Hong P, Pian THH, Lasry SJ. A hybrid-element approach to crack problems in plane elasticity[J]. Int. J. Numer. Meth. Eng.,1973,7:297-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700