磁流变轮对耦合器及其车辆动力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自铁路运营以来,铁道机车车辆的轮对基本上都采用两个车轮紧固在一根车轴两端的形式。这种传统固定轮对的优点在于它具有纵向蠕滑力产生的偏转力矩从而使轮对具有自导向功能;但在纵向蠕滑力矩的作用下,当车辆运行速度较高时就可能产生蛇行失稳。因此,近年来独立旋转车轮日益受到重视,与传统轮对相比,独立旋转车轮不存在纵向蠕滑力产生的偏转力矩,因而不产生蛇行运动,对提高稳定性有好处。但这一优点也同时是它的缺点,因为独立旋转车轮失去了纵向蠕滑力矩的导向作用,因而降低了轮对的直线对中性能和曲线导向性能。鉴于此,国外一些专家学者又提出了耦合轮对的构想,即轮对的左右车轮通过某种形式进行适当的耦合,这样便可产生适量的纵向蠕滑力,从而使轮对既具有导向功能,又能保证车辆具有较高的临界速度,国外在这方面已做了一些开拓性的研究工作,而国内在2001年以前则做得较有较少。我国西南交通大学的池茂儒博士在总结国内外耦合轮对研究成果的基础上,结合当今磁流变技术的发展,于2002年提出了磁流变耦合轮对,并对其进行了不少研究。本文则是在其基础上,进行更深一步的探索,以期待在磁流变耦合轮对的实用化方面跨上一个大台阶。
     本文首次发现耦合轮对耦合器对磁流变零场粘度的特殊性要求,采用大粘度的润滑脂作为载液,始终利用永磁体提供外加初始磁场,当车辆停止时使磁流变恒为半固体,为此设计了十分简洁的磁流变轮对耦合器,解决了静置时磁粒的抗沉降稳定性问题。首次根据磁流变的双粘度模型,建立了4个轮对全为磁流变耦合轮对(CCCC型)、1位和3位为传统轮对与2位和4位为耦合轮对(TCTC型)、2位和4位为传统轮对与1位和3位为耦合轮对(CTCT型)、1位和4位为传统轮对与2位和3位为耦合轮对(TCCT型)4种车型,以及传统车辆(TTTT型)的空间动力学模型,并为这几种模型编制了计算机仿真软件。
     通过仿真分析,发现当磁流变屈服应力较小时,磁流变耦合轮对车辆具有较高的临界速度,但磁流变耦合轮对在曲线上的横移量较大,出现了两点接触;若增大屈服应力,则临界速度急剧下降,与传统车辆相比已毫无优势,但磁流变耦合轮对在曲线上的横移量减小;再继续增大屈服应力,则临界速度缓慢下降;当屈服应力增大到一定值后,则临界速度继续缓慢下降,而磁流变耦合轮对在曲线上的横移量增大。当采用抗蛇行减振器后,相对传统车辆来讲,可极大地提高车辆的临界速度。根据对上述4种磁流变耦合轮对在高速和准高速线路上曲线通过性能的比较,遴选出具有较优性能的TCCT型拖车,可在高速铁路上以高速和超高速、在准高速铁路上以准高速交互运行;在TCCT型拖车的传统轮对上安装驱动装置而成为的动车也具有极高的临界速度和良好的横向动力学性能,这说明了磁流变耦合轮对TCCT动车组亦具有类似其拖车的动力学性能。另外,对TCCT型拖车的悬挂参数对临界速度的影响进行了分析和优化;分析了转向架的轴距差、对角线差及线路条件对临界速度的影响,其中前两者对临界速度的影响不大,而线路条件则影响很大。同时对自导向磁流变耦合轮对径向转向架进行了研究,结果表明不能减小轮对在曲线上的横移量,建议不宜采用。
     经过分析,当磁流变的屈服应力和悬挂参数合理时,TCCT型车不需控制屈服应力的变化,就具有极高的临界速度和在高速与准高速铁路上良好的动力学性能,且该车型具有结构对称,正反运行方向性能相同,简化了转向架的结构,为磁流变耦合轮对投入实际运营奠定了理论基础。
     另外,提出了轨廓分区法全面计算轮轨接触状态法,在考虑轮对的横移、浮沉、摇头、侧滚和左右钢轨的横移、浮沉、侧滚的条件下,可全面地分别计算左右侧轨顶和轨侧区域与车轮的最小轮轨间隙量,以此来判断轮轨的真实接触状态:正常的一点接触、非正常的一点接触、两点接触和车轮完全悬浮,并根据非线性赫兹接触理论分别求得两接触点处的轮轨法向力,从而使仿真结果更接近于车辆在实际线路上的运行状态。该方法对在传统车辆动力学的轮轨接触关系方面也同样适用。
Since railway is plunged into business, the wheelsets with twowheels fixed to two ends of one axle has commonly been adopted in railway vehicle. The advantage of traditional fixed wheelsets is that they have self-steering capability produced by longitudinal creep moments, however it possibly occurs of hunting unstability when the speed becomes higher, so independently rotating wheels(IRW) is attached importance increasingly. IRW don' t possess longitudinal creep forces, so it doesn' t occur of hunting and the stability of the vehicle system is improved. But IRW lose self-steering capability without longitudinal creep moments, so its restoration capability and curving performances become worse. Thereupon, the idea of coupled wheelsets is brought forward that the left and right wheels of wheelsets are properly coupled to produce a few longitudinal creep forces. In this way, coupled wheelsets have both self-steering capability and higher critical velocity. Some researches on coupled wheelsets have been carried on abroad while scholars in our country do less works before 2001. In 2002, Dr Chimaoru with Sothwest jiaotong University raise magneto-rheologial fluid coupled wheelsets (MRFCW) on the basis of concluding research achievements at home or aboard and combining technology progress of magneto-rheologial fluid(MRF) nowadays, at the same time, he has done lots of works. This paper explores deeply on the basis of Chimaoru' s works and hope to stride a big step in MRFCW vehicle.
     The paper firstly discovers particularity of MRFCW to MRF , adopts big viscidity grease as baseoil and provides magnet field always using permanent magnet. Therefore, MRF is semi-solid all the time when vehicle is still, and then very simple MRFCW device is designed, so magnet particle' s anti-settling is solved. Dynamic model; are established on the basis of MRF bi-viscidity model including railway vehicles of 4 MRFCW(CCCC model), of fixed 1~(st) and 3~(rd) wheelsets, MRF coupled 2~(nd) and 4~(th) wheelsets (TCTC model), of coupled 1~(st) and 3~(rd) wheelsets, MRF fixed 2~(nd) and 4~(th) wheelsets (CTTC model), of fixed 1~(st) and 4~(th) wheelsets, coupled MRF 2~(nd) and 3~(rd) wheelsets(TCCT model) and traditional vehicle(TTTT), the dynamics simulating software of these models are programmed.
     Simulation shows that MRFCW vehicle possess higher critical velocity under the condition of MRF smaller yield stress, but bigger MRFCW lateral displacement, two-point contact occur in the meantime, critical velocity sharply descended in increasing yield stress, MRFCW lateral displacement decreased, yield stress increased continually, critical velocity descended slowly, but lateral displacement become bigger. Anti-hunting damper can raise critical velocity of MRFCW vehicle opposite traditional vehicle to speak. TCCT vehicle possess better dynamic performances in 4 kinds of MRFCW vehicles and it runs on the high-speed and quasi-highspeed track alternatively, this shows TCCT movement group possess better dynamic performances with comparison to its towing vehicle. In addition, influences of TCCT vehicle suspension parameter on critical velocity are analyzed and suspension parameters are optimized. Influence of wheelbase and diagonal difference of bogie, track condition on critical velocity, result demonstrates both former have little influence, but track condition has big influence. Besides, self-steered MRF radial truck is analyzed, but result proves that the bogie can' t decrease lateral displacement and it isn' t suitable in reality.
     TCCT vehicle possesses very high critical velocity and better dynamic performances when MRF yield stress and suspension parameter are appropriate by analyzing under the condition of not controlling MRF yield stress on the highspeed and quasi-highspeed railway, besides, TCCT vehicle possesses symmetrical simplified structure and the dynamic performances in front and behind.
     In addition, total wheel/rail contact calculation with divided rail outline method are raised. Under the condition of considering the displacement, bouncing, yaw, roll of wheelsets and displacement, bouncing, roll of rails, minimum gap between rail and wheel were calculated by the trochoid method and divided rail outline method, we can easily judge totally real contact states of the wheel/rail such as normal one-point contact, nonnormal one-point contact, two-point contact and wheel complete lift. Wheel/rail normal forces in the two contact point are respectively calculated by nonlinear Hertz contact theory, and then, result of simulation more close to reality on actual track. This method can also be applied in contact of wheel/rail in traditional vehicle dynamics.
引文
[1] 王福天.车辆系统动力学[M].第2版.北京:中国铁道出版社,1994.
    [2] 严隽耄.车辆工程[M].第2版.北京:中国铁道出版社,1999.
    [3] 詹斐生.机车动力学[M].北京:中国铁道出版社,1990.
    [4] Vijay K. Garg, Rao V. Dukkipati. Dynamic of Railway Vehicle. System. Canada: Academic Press, 1984.
    [5] 陈泽深.独立车轮转向架的导向原理(1).铁道机车车辆.1998,(4):1~11.
    [6] 陈泽深.独立车轮转向架的导向原理(2).铁道机车车辆.1999,(1):16~22.
    [7] 张丽平.轻轨车辆动力学数字仿真[D].成都:西南交通大学,2002
    [8] 黄运华.基于独立旋转车轮的变轨距转向架研究[D].成都:西南交通大学,2003.
    [9] F.Frederich.独立轮转向架的动力性能[J].国外铁道车辆,1992,(3):27~34.
    [10] F. Frederich. A Bogie Concept for the 1990s. Railway Gazette International. 1988, (9): 583~585.
    [11] Shiro Koyangi. The Dynamics of Guided Independently-Rotating-Wheel Tracks. Quarterly Reports. 1981, (1): 19~25.
    [12] D. C. Gilmore, J. A. C. Fortin. The Application of Free Wheelsets to a Steerable Track: Analysis and Test Experience. The Dynamics of Vehicles on Roads and on Tracks. 1989: 261~274.
    [13] W. Choromanski, J. kisikowski. Dynamics of Railway Tracks with Wheelset with Independently Rotating Wheels and Controlled Slip. The Dynamics of Vehicles on Roads and on Traeks. 1989: 108~125.
    [14] Y. Suda. High Speed Stability and Curving Performance of Longitudinally Asymmetric Tracks with Semi-active Control. Vehicle System Dynamics. 1994, 23: 29~52.
    [15] Y. Suda, R. Nishimura, N. Kato, A. Matsurnoto, Y. Satto, H. Ohno, M. Tanimoto. E. Miyauehi. Self-Steering Tracks Using Unsymmetric Suspension with Independently Rotating Wheels-Comparison between Stand Test and Calculations. Vehicle System Dynamics Supplement. 1999, 33: 180~190.
    [16] Anonymous. Talgo target is 250km/h. Railway Gazette International. 1989: 799~800.
    [17] Panagin, R. The use of independent wheels for the elimination of lateral instability of railway vehicles. Ingegneria Ferroviaria. 1978, 33 (2): 143~150.
    [18] B. M. Eickhoff and R. F. Harvey. Theoretical and Experimental Evaluation of Independently Rotating Wheels for Railway Vehicles. The Dynamics of Vehicles on Roads and on Tracks. 1989: 190~201.
    [19] Koyanagi, Shiro. The stability of motion of the independently rotating wheel-axle. Japanese National Research Quarterly Reports. 1971, 12(1): 29~33
    [20] Koyanagi, Shim. The Dynamics of guided independently rotating wheel trucks. Japanese National Research Quarterly Reports. 1981, 22(1): 19~25
    [21] Chollet, H., Ayasse, J. B., and Pascal, J. P. Measurement of transversal creep force in a wheel-rail contact area. Proc. of the 11th IAVSD symp. 1989, 97~107
    [22] 黄运华,李芾,傅茂海.独立旋转车轮转向架曲线性能研究[J],中国铁道科学,2001,(2)
    [23] 黄运华,李芾,张丽平.独立轮对在轻轨车辆上的应用[J].交通运输工程学报刊,2001,1(2)
    [24] 张丽平.轻轨车辆动力学数字仿真[D].成都:西南交通大学,2002
    [25] 黄运华.基于独立旋转车轮的变轨距转向架研究[D].成都:西南交通大学,2003
    [26] Benington, C. K. The railway wheelset and suspension unit as a closed-loop guidance control system: A method for performance improvement. Journal of Mechanical Engineering Science. 1968, 10(2): 91~100
    [27] Dukkipati, R. V. Bahgat, B. M. and Osman, M. O. M. Comparative performance analysis of conventional and damper coupled wheelsets. ASME paper no.: 82-WA/RT-13
    [28] G. R. Doyle, R. H. Prause. Hunting Stability of Rail Vehicles with Torsionally Flexible Wheelsets. Transactions of the ASME(Journal of Engineering for Industry). 1977, (2): 10~17
    [29] Hadden, J. A. and Law, E. H. Effects of truck design on hunting stability of rail vehicles. Trans. ASME, J. of Engineering for Industry. 1977: 162~171
    [30] A. K. W. Ahmed, S. Sankar. Lateral Stability Behavior of Railway Freight Car System With Elasto-Damper Coupled Wheelset: Part 1 - Wheelset Model. Journal of Mechanisms, Transmissions, and Automation in Design. 1987, 109(12): 493~499
    [31] A. K. W. Ahmed, S. Sankar. Lateral Stability Behavior of Railway Freight Car System With Elasto-Damper Coupled Wheelset: Part 2 - Truck Model. Journal of Mechanisms, Transmissions, and Automation in Design. 1987, 109(12): 500~507
    [32] A. K. W. Ahmed, S, Sankar. Steady-State Curving Performance of Railway Freight Truck with Damper-Coupled Wheelsets. Vehicle System Dynamics. 1988, 17: 295~315
    [33] W. Geuenich, Ch. Gunther, R. Leo. The Dynamics of Fibre Composite Bogies with Creep-Controlled Wheelsets. Vehicle System Dynamics. 1983, 12: I34~140
    [34] W. Geuenich, Ch. Gunther, R. Leo. Fibre Composite Bogie has Creep-Controlled Wheelsets. Railway Gazette International. 1995, (4): 279~282
    [35] Panagin, R. The use of independent wheels for the elimination of lateral instability of railway vehicles. Ingegneda Ferroviaria. 1978, 33(2): 143~15
    [36] 张厚胜.独立轮转向架的研制[J].铁道车辆,1999,37(9):35~37
    [37] 沈培德.可控独立轮转向架[J].铁道学报,1997增刊,28~37
    [38] R. V. Dukkipati, S. Narayana Swamy, M. O. M. Osman. Independently rotating wheel systems for railway vehicles-A state of the art review. Vehicle System Dynamics. 1992, 21: 297~330
    [39] 池茂儒.磁流变耦合轮对动力学研究[D].成都:西南交通大学,2003.4.
    [40] 司鹄.磁流变体的力学机理研究[D].重庆:重庆大学,2003.6.
    [41] 浦鸿汀,蒋峰景.磁流变材料的研究进展和应用前景[J].化工进展,2005,24(2):132~136
    [42] 姚黎明,常健,陈洁等.Fe_3O_4磁流变流体的粘度特性研究[J].上海工程技术大学学报,2005,17(1):53~56.
    [43] 汪建晓,孟光.磁流变液研究进展[J].航空学报,2002,23(1):6~10
    [44] 张峰.磁流变抛光技术的研究[D].长春:中国科学院长春光学精密机械与物理研究所,2000.9.
    [45] 彭小强.确定性磁流变抛光的关键技术研究[D].长沙:国防科技大学, 2004.4.
    [46] 邢志,吕建刚,李猛.磁流变液特性分析及实验研究[J].磁性材料及器件,2005,36(3):21~23
    [47] 朱克勤,葛蓉,席葆树.圆盘问的电流变挤压流[J].清华大学学报(自然科学版),1999,39(8).
    [48] 朱克勤.电流变和电流变效应[J].力学进展,1994,24(2).
    [49] 黄金,李慰,魏玉卿等.磁流变液无级变速器的原理[J].西南师范大学学报(自然科学版),2001,26(3).
    [50] 侯保林,王炅,F.D.Goncalves.一种磁流变阻尼器非参数模型
    [51] 黄豪彩,黄宜坚.磁流变技术及其在机械工程中的应用[J].制造技术与机床,2003,(4):24~26.
    [52] 黄豪彩,黄宜坚.磁流变技术及其在机械工程中的应用(续)[J].制造技术与机床,2003,(7):22~27.
    [53] 余水淼,廖昌荣,李立新等.磁流变减振器控制研究[J].化学物理学报,2001,14(5):606~611.
    [54] 廖昌荣,余淼,杨建春等.汽车磁流变减振器设计中值得注意的若干技术问题[J].汽车技术,2001,(5):11~14.
    [55] 廖昌荣,陈伟民,余淼等.汽车磁流变减振器设计准则探讨[J].中国机械工程,2002,13(9):723~726.
    [56] 廖昌荣,陈伟民,余淼等.磁流变阻尼器件设计中若干技术问题探讨[J].功能材料与器件学报,2001,7(4):345~349.
    [57] 司鹄,彭向和.磁流变材料的流变性能研究[J].材料科学与工程,2002,20(1):61~63.
    [58] 司鹄,彭向和.磁流变材料的粘塑性模型[J].重庆大学学报(自然科学版),2001,24(3):45~48.
    [59] 黄豪彩,黄宜坚.圆盘式磁流变传动机构的研究[J].机床与液压,2003,(2):62~64,141.
    [60] 黄豪彩,黄宜坚.圆筒式磁流变传动机构的研究[J].机械科学与技术,2003,22(4):605~608,621.
    [61] 李松晶,王广怀.新型磁流变流体溢流阀的研究[J].功能材料,2001,32(3):605~608,621.
    [62] 李松晶.磁流变流体的两种新应用[J].机床与液压,2001,(4):130,29.
    [63] 康桂文,张飞虎,董申.磁流变技术研究及其在光党加工中的应用[J].光学 技术,2004,30(3):354~356.
    [64] 关新春,李金海,欧进萍.三阶段活塞式磁流变液减振器磁路的试验研究[J].机械设计与研究,2004,20(1):60~63.
    [65] 关新春,欧进萍.磁流变减振驱动器的响应时间试验与分析[J].地震工程与工程振动,2002,22(6):96~102.
    [66] 欧进萍,关新春.磁流变耗能器及其性能[J].地震工程与工程振动,1998,18(3):75~81.
    [67] 吴昊,张秋禹,罗正平等.磁流变液制备的最新进展[J].材料导报,2001,16(1):42~44.
    [68] 余心宏,王立忠.磁流变流体稳定性榆分析[J].航空制造工程,1998,(6):7~9.
    [69] 潘双夏,杨礼康,冯培思.磁流变液减振控制应用的研究动态[J].汽车工程,2002,24(3):254~258.
    [70] 汪建晓,孟光,任小平等.磁流变液制动器的设计与制动性能测试[J].机械科学与技术,2003,22(3):406~408.
    [71] 江万权,朱春玲,陈祖耀等.α-Fe粉体浓悬浮体系的制备及磁流变效应[J].化学物理学报,2002,15(2):146~148.
    [72] 江万权,朱春玲,陈祖耀等.超细α-Fe磁性粒子对浓悬浮体系磁流变性能的增强[J].化学物理学报,2001,14(5):629~632.
    [73] 王开文,池茂儒.耦合轮对的发展[J].铁道车辆,2002,40(12):1~2.
    [74] 池茂儒,王开文等.磁流体耦合轮对转向架曲线通过性能的研究[J].铁道学报,2002,24(4):28~33.
    [75] 池茂儒,王开文等.磁流变耦合轮对的研究[J].中国铁道科学,2002,23(6):55~59.
    [76] 池茂儒,王开文等.磁流体耦合轮对转向架动力学性能的研究[J].西南交通大学学报,2002,37(6):664~668.
    [77] 池茂儒,王开文等.磁流变耦合轮对耦合度对轮轨横向力的影响[J].铁道学报,2003,25(1):30~33.
    [78] 池茂儒,王开文等.磁流体耦合轮对转向架直线稳定性的研究[J].同济大学学报,2003,(2):23~26.
    [79] 瞿婉明.车辆—轨道系统动力学[M].第2版.北京:中国铁道出版社,2002.
    [80] Vijay K.Garg,Rao V.Dukkipati.铁道车辆系统动力学(沈利人译)[M].第1版.成都:西南交通大学出版社,1998.
    [81] 陈果.车辆—轨道耦合系统随机振动分析[D].成都:西南交通大学,2000.
    [82] 王开文.车轮接触点迹线及轮轨接触点几何参数的计算[J].西南交通大学学报,1984,(1):89-99.
    [83] 孙翔,金鼎昌.磨耗形踏面与钢轨的两点接触[J].西南交通大学学报,1985,(2):45-57.
    [84] 严隽耄.具有任意轮廓形状的轮轨空间几何参数的计算[J].西南交通大学学报,1983(3):40-45.
    [85] 任尊松.车辆—道岔系统动力学研究[D].成都:西南交通大学,2000
    [86] 鲍维千.我国轻轨车选型的有关问题[J].机车电传动,2001,(2):34~36.
    [87] 鲍维千.独立车轮在低地板轻轨车辆上的应用[J].内燃机车,2001,(1):12~17.
    [88] 倪平涛,姜建东,王开文.一系水平悬挂刚度对独立旋转车轮摇头振动的影响[J].内燃机车,2007,(4):7~9.
    [89] 鲍维千.内燃机车总体及走行部[M].第4版.北京:中国铁道出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700