平针缝纫非织造布复合材料面内力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从20世纪80年代初以来,将缝纫工艺用于制造先进3D复合材料已经取得了令人瞩目的成功。与传统的复合材料层合板相比,缝纫工艺大大提高了复合材料的分层阻抗和冲击损伤容限。同时,其生产成本比三维机织或编织复合材料低得多。但是,缝纫技术在提高复合材料层间性能的同时,面内性能由于缝纫造成的纤维破损、纤维错位、纤维弯折等原因而下降。因此,对缝纫复合材料面内力学性能进行研究就显得非常重要。基于此,本文主要开展了以下工作:
     选用非织造布作为铺层材料,预制件由四层Kevlar纤维毡经过缝纫制得。缝纫采用了2种不同细度和品种的缝纫线、5种缝纫密度和2种缝纫方式,用真空辅助树脂传递模塑成型(VARTM)对缝纫后的预制件注入乙烯基酯树脂。经固化试验后,将复合材料板切割成拉伸或弯曲测试试样的尺寸。
     在进行拉伸性能测试的时候,试样分别采用改进锁式和平针缝纫方式,以相同的缝纫密度、相同的缝纫线进行缝纫。与改进锁式方式缝纫的复合材料相比,平针缝纫复合材料试样的拉伸强度提高了7%,拉伸弹性模量提高了2.5%,弯曲强度提高了30.58%,弯曲模量提高了13.8%,证明了平针缝纫作为一种新的缝纫方式的发展潜力。
     论文还研究了平针复合材料的缝纫密度、缝纫针距和行距、缝纫线的种类、缝纫线的细度等缝纫参数对复合材料弯曲性能的影响。研究结果表明,缝纫密度越大,缝纫复合材料的弯曲性能下降的越多;在缝纫密度相同的情况下,缝纫的行距比针距对弯曲性能的影响大;缝纫线的直径越大,缝纫后复合材料的弯曲性能的下降越多;而缝纫线种类对弯曲性能影响不大。
     采用有限元分析软件ANSYS对非缝纫和缝纫复合材料的拉伸、弯曲过程进行了模拟,比较了非缝纫和缝纫复合材料试样的的面内应力和位移分布特点,从多方面阐述了缝纫复合材料拉伸弯曲性能降低的原因。
     最后,通过总结本课题的不足之处,对平针缝纫设备、非织造布复合材料、缝纫复合材料全方面的力学性能测试等方面提出了展望。
Since the early 1980's, the stitching technology which was applied to manufacturing 3D composites has achieved great success. Compared with the traditional composite laminates,through-the-thickness stitching can effectively enhance the interlaminar fracture toughness and impact damage tolerance. Meanwhile, the production cost of the stitched composites is much lower than that of 3D woven or braid composites.However,while the interlaminar properties are largely improved, the in-plane properties are damaged due to the breakage, misalignment and kinking of the in-plane fibers.The research on the in-plane properties of stitched composites is becoming more and more important.Based on this, this paper carried out the following work:
     In the experiments, non-woven fabrics were used as layer, materials, and 4 layers of Kevlar mats were stitched together into a preform. During the process of stitching, we selected 2 sewing yarns,5 stitching densities and 2 stitch patterns and then injected vinyl ester resin into the stitched structure by using Vacuum Assist Resin Transfer Molding (VARTM) technology. After composites were finished, the cured composites planes were cut into the sizes of tensile or bending property test specimen.
     The specimen for tensile property tests were stitched with the modified locked stitch pattern and the plain stitch pattern respectively. We kept the stitching density and sewing yarn parameters invariable. Compared with composites stitched by the modified locked stitch pattern, the tensile strength of the composites stitched by plain stitch pattern increased by about 7%.The tensile elastic modulus was improved by 2.5%.The bending strength was raised by 30.58%,and the bending modulus was enhanced by 13.8%.The plain stitch pattern as a new stitch pattern was proven to be a potential one.
     The effects of stitching parameters on the bending properties of composites stitched by the plain stitch pattern were investigated. The stitching parameters included stitching density, the stitch pitch distance, the stitch line spacing, the sewing yarn materials and the yarn fineness.lt was revealed that the higher the stitching density was, the more the bending property was damaged. The bigger the sewing yarn diameter was, the lower the bending strength was. What's more, when the stitching densities were identical, the stitch line spacing was much more influential than the stitch pitch distance. However, the sewing yarn materials almost had no effect on the bending properties.
     The finite element analysis software was used to modal the process of the stretching and bending. The contour plots of stitched composites were compared with those of unstitched ones. By this way, the reason why the tensile and bending properties of stitched composites decreased was explained. At last,considering the deficiencies of this research, we came up with some prospects about the equipment for plain stitching, the non-woven fabric composites and a number of data from various properties of stitched composites.
引文
[1]L.Tong, A.P.Mouritz, M.K.Bnnister.3D纤维增强聚合物基复合材料[M].科学出版社,2007:124-146.
    [2]王广峰.层合板复合材料层间断裂韧性的提高研究[D].天津工业大学,2002.
    [3]矫桂琼.复合材料的Ⅰ型层间断裂韧性[J].复合材料学报,1994,11(1):113-117.
    [4]K.Sano. Mode I Interlaminar Fracture Toughness and Fracture Mechanism of Angle-ply Carbon/Nylon Laminates. Journal of Composite Materials,1996,30: 650-661.
    [5]Y.J.Wang, D.M.Zhao. Characerization of Interlaminar Frature Behaviour of Woven Fabric Reinforced Polymeric Composites. Composites,1995,26:431-449.
    [6]Standard Test Method for Mode I Interlaminar Fracture Toughness of Unindirectional Fiber-Reinforced Polymer Matrix Composites.1996 ANNUAL book of ASTM STANDARDS.
    [7]高峰,姚穆.织物结构对增强复合材料层间断裂韧性的影响[J].西北纺织工学院学报,2001,15(2):256-259.
    [8]S.Solaimurugan, R.Velmurugan. Influence of In-plane Fibre Orientation on Mode I Interlaminar Fracture Toughness of Stitched Glass/polyester Composites. Composites Science and Technology,2008,68:1742-1752.
    [9]金春花.缝纫复合材料的力学性能研究[D].南京航空航天大学,2006:3.
    [10]S.L.Huang, R.J.Richey, E.W.Deska. Cross Reinforcement in a GR/EP Laminate. American Society of Mechanical Engineers,Winter Annual Meeting,San Francisco,10-15 December 1978.
    [11]F.Aymerich, P.Priolo, C.T.Sun. Static and Fatigue Behaviour of Stitched Graphite/epoxy Composite Laminates,2003,63:907-917.
    [12]L.A.Mignery, T.M. Tan, C.T.Sun. The Use of Stitching to Suppress Delaminations in Laminated Composites. In:Johnson WS, editor.Delamination and Debonding [ASTM STP 876]. Philadelphia:American Society for Testing and Materials,1985: 371-385.
    [13]K.Dransfield, C.Baillie,Y.W.Mai. On Stitching as a Method for Improving the Delamination Resistance of CFRPs. In:Chandra T,Dhingra AK, editors. Advanced Composites, International Conference on Advanced Composite Materials,1993:351-357.
    [14]K.Dransfield, C.Baillie, Y.W.Mai. Improving the Delamination Resistance of CFRP by Stitching-a Review. Composites Science and Technology,1994,50: 305-317.
    [15]L.C.Dickinson, GL.Farley, M.K.Hinders. Translaminar Reinforced Composites:a Review. Journal of Composites Technology and Research,1999,21:3-15.
    [16]Y.Ogo. The Effect of Stitching on In-plane and Interlaminar Properties of Graphite/epoxy Laminates [CCM-87-17]. University of Delaware,1987.
    [17]The Advanced Stitching Machine:Making Composite Wing Structures of the Future,Hamp ton,Virginia:NASA,Langley Research Center,1997.
    [18]D.Ng, J.Wittng, Recent Development in Robotic Stitching Technology for Textile Structural Composites, JTATM,2001,2:128.
    [19]A.Morales. Structural Stitching of Textile Preforms. In:Proceedings of the 22nd International SAMPE Technical Conference,6-8, November 1990:1217-1230.
    [20]W.C. Chung, B.Z.Jang, T.C.Chang, L.R.Hwang, R.C.Wilcox. Fracture Behaviour in Stitched Multidirectional Composites. Materials Science and Engineering, 1989,12:157-173.
    [21]R.M.Pelstring, R.C.Madan. Stitching to Improve Damage Tolerance of Composites. In:Proceedings of the 34th International SAMPE Symposium,8-11 May 1989:1519-1528.
    [22]R.Velmurugan, S.Solaimurugan. Improvements in Mode I Interlaminar Fracture Toughness and In-plane Mechanical Properties of Stitched Glass/polyester Composites,2007,67:61-69.
    [23]V.Tamuzs, S.Tarasovs, U.Vilks. Delamination Properties of Translaminar Reinforced Composites. Composites Science and Technology,2003,63: 1423-1431.
    [24]L.K.Jain, Y.W.Mai. On the Effect of Stitching on Mode I DelaminationToughness of Laminated Composites. Composites Science and Technology,1994,51: 331-345.
    [25]K.A.Dransfield, L.K.Jain, Y.W.Mai. On the Effects of Stitching in CFRPs-I. Mode I Delamination Toughness. Composites Science and Technology,1998,58: 815-827.
    [26]J.Brandt, K.Drechsler, F.J.Arendts. Mechanical Performance of Composites Based on Various Three-dimensional Woven-fibre Preforms.Composites Science and Technology,1996,56:381-386.
    [27]G.L.Farley. Mechanism Reponsible for Reducing Compression Strength of Through-the-thickness Reinforced Composite Material. Journal of composite materials,1992,26:1784-1795.
    [28]T.J.Kang, S.H.Lee. Effect of Stitching on the Mechanical and Impact Properties of Woven Laminate Composites. Journal of composite materials,1994,28: 1574-1587.
    [29]田静.缝合复合材料层合板低速冲击损伤的研究[D].南京航空航天大学,2008.
    [30]A.P.Mouritz, M.K.Bannister. Review of Applications of Advanced Three Dimensional Fiber Textile Composite, Composites,1999:1445-1461.
    [31]W.Li, H.Hammad. Structural Analysis of 3D Braided Perform for Composites Part I:the Four-Step Performs, Text Inst,1990:491-514.
    [32]程小全,郦正能,赵龙.缝合复合材料制备工艺和力学性能研究[J].力学进展,2009,39(1):89-102.
    [33]R.Velmurugan, S.Solaimurugan. Improvements in Mode I Interlaminar Fracture Toughness and In-plane Mechanical Groperties of Stitched Glass/polyester Composites,2007,67:61-69.
    [34]K.Dransfield, C.Baillie, Y.W.Mai. Improving the Delamination Resistance of CFRP by Stitching—a Review. Composites Science and Technology,1994,50: 305-317.
    [35]J.Brandt, K.Drechsler, F.J.Arendts. Mechanical Performance of Composites Based on Various Three-dimensional Woven-fibre Preforms. Composites Science and Technology,1996,56:381-386.
    [36]G.L.Farley. Mechanism Responsible for Reducing Compression Strength of Through-the-thickness Reinforced Composite Material. Journal of Composite Materials,1992,26:1784-1795.
    [37]A.P.Mouritz, K.H.Leong, I.Herszberg. A Review of the Effect of Stitching on the In-plane Mechanical Properties of Fibre-reinforced Polymer Composites. Composites Part A:Applied Science and Manufacturing,1997,28:979-991.
    [38]黄家康,岳红军,董永棋.复合材料成型技术[M].化学工业出版社,1999:436.
    [39]张凤翻,赛锡高.PEEK基体热塑性树脂基复合材料的研究[J].材料工程,1996,6:40-43.
    [40]陈祥宝.高性能树脂基体[M].化学工业出版社,1999:192.
    [41]曹晓明,武建军,温鸣.先进结构材料[M].化学工业出版社,2005:199.
    [42]何宇声.复合材料(玻璃钢)与工业设计[M].化学工业出版社,2005:53.
    [43]沈开酞.不饱和聚酷树脂及其应用[M].化学工业出版社,2000:228-235.
    [44]孟季菇,赵磊.先进复合材料低成本制造技术的研究进展[J].航空工程与维 修,2001,5:15-18.
    [45]马青松,陈朝辉.树脂传递模塑-复合材料成型新工艺[J].材料科学与工程,2000,18(4):92-97.
    [46]K.Nina, S.Pavel, W.Shawn. Correlation of Void Distribution to VARTM Manufacturing Techniques Composites:Part A,2007,3:802-813.
    [47]李柏松,王继辉.真空辅助RTM成型技术的研究[J].玻璃钢/复合料,2001,1: 17-19.
    [48]张玉龙.先进复合材料制造技术手册[M].机械工业出版社,2003:350-351.
    [49]H.L.Friedman, R.A.Johnson, B.Miller. In-plane Movement of Liquids though Curved Fabric Structures. Proceedings from The Second Workshop on Liquid Composite Molding(OSU/NIST/MSU/UD), Columbus, OH, June 14.
    [50]克鲁肯巴赫(T.Kruckenberg),佩顿(R.Paton).航空航天复合材料结构件树脂传递模塑成型技术[M].航空工业出版社,1997:32-33.
    [51]F.A.Carey, R.J.Sundberg. Advanced Organic Chemistry, Part A:Structure and Mechanisms, Plenum Press, New York.1977.
    [1]许景秀.非织造布增强复合材料的制备及力学性能研究[D].天津工业大学,2003,1:14.
    [2]严柳芳.双轴向经编增强织物缝合工艺对复合材料力学性能影响的研究[D].东华大学,2006:37.
    [3]牛天军.经编轴向缝合复合材料树脂流动浸润性能及其力学性能研究[D].东华大学,2008:2.
    [4]陈祥宝.聚合物基复合材料手册[M].化学工业出版,2004:41.
    [5]段跃新,姚福军,张佐光.RTM工艺模拟及干斑缺陷控制研究[J].材料工程,2006:285-289.
    [1]A.P.Mouritz, K.H.Leong, A.Herszberg. A Review of the Effect of Stitching on the In-plane Mechanical Properties of Fibre-reinforced Polymer Composites. Composites, Part A,1997:979-991.
    [2]程小全,赵龙,张怡宁.缝纫复合材料可用性——简单层合板的基本性能[J].北京航空航天大学学报,2003,11(29):1001-1005.
    [3]陈纲等.缝纫层合板低速冲击损伤有限元分析[J].航空学报,2002,1(23): 55-58.
    [4]曾冬等.缝合复合材料低速冲击损伤研究[J].复合材料学报,2005,6(22):125-129.
    [5]C.Weimer, P.Mitschang. Aapects of the Stitch Formation Process on the Quality of Sewn Multi-textile Preforms. Composites:Part A,2001:1477-1484.
    [6]A.P.Mouritz, B.N.Cox. A Mechanistic Approach to the Properties of Stitched Laminates. Composites,2000, Part A,31:1-27.
    [7]R.Velmurugan, S.Solaimurugan. Improvements in Mode I Interlaminar Fracture Toughness and In-plane Mechanical Properties of Stitched Glass/polyester Composites. Composites Sciende and Technology,2007,67:61-69.
    [8]魏玉卿.缝纫复合材料层合板面内力学性能研究[D].重庆大学,2003:45-46.
    [9]D.K.Michael, X.N.Sun, L.Y.Tong, A.Katzos, R.R.Adrian, W.Y.Mai. The Effect of Stitch Distribution on Mode I delamination Toughness of Stitched Laminated Composites——Experimental Results and FEA Simulation.Composites Science and Technology,2007,67:1058-1072.
    [1]博弈创作室.ANSYS7.0基础教程与解析[M].中国水利水电出版社,2003:5-70.
    [2]张胜民.基于ANSYS7.0的结构分析[M].清华大学出版社,2003.
    [3]金春花,周储伟,王鑫伟.缝合复合材料的细观力学分析[J].材料科学与工程学报,2006,24(4):607-610.
    [4]M.Grass, X.Zhang, M.Meo. Prediction of Stiffness and Stresses in Z-fibre Reinforced Composite Laminates[J]. Composites:Part A,2002:1653-1664.
    [5]邓传斌,张俊乾,李苹.缝纫对复合材料层合板面内单向拉伸强度的影响[J].重庆大学学报,2002,25(1):9-12.
    [6]祝磊,马赢.ANSYS7.0入门与提高[M].北京:清华大学出版社,2004.
    [7]李晨,许希武.缝合复合材料层板的面内拉伸强度预报[J].材料科学与工程学报,2005,23(6):814-817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700