非球面柔顺研抛工具系统虚拟样机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代电子应用和光学技术的发展,非球面光学零件以其极佳的光学特性受到了研究者的广泛关注。非球面光学零件的表面精度是决定其应用价值的关键。现有的光学抛光加工是依赖于高精密器械,采用柔顺研抛的控制方式完成的。但高精密设备的价格昂贵,限制了非球面光学零件的广泛应用。为了降低非球面光学零件的加工成本,研究基于普通数控车床的非球面加工方法及工具系统,对非球面零件的精密加工和广泛应用无疑具有重要的理论意义和工程价值。
     普通数控车床在机床精度不高的情况下,可以通过安装附加工具,利用柔顺控制来实现研抛精加工。当前柔顺控制的瓶颈在于力/位混合控制中的力/位强耦合:研抛工具的位姿因工位而异,研抛力的大小和工位存在着直接的关系,给控制系统的研发带来极大的困难。为了降低力/位混合控制的难度,本文提出了力/位混合控制解耦的原理和方法,即通过采用合适的力控制装置,结合数控轨迹规划保证加工过程中研抛力的方向始终与工件表面法向一致,使研抛力的大小和方向不随加工位置变化而变化,实现力/位混合控制解耦。针对这一思路,本文提出了在普通NC数控车床上安装研抛工具系统,进行非球面柔顺研抛精加工原理和方法研究。工具系统的力伺服装置是由磁流变液(MRF)阻尼器与伺服电机组合而成的。传统的力伺服器一般采用电机或者液压机构,其主要特点是力与位移相伴而生,紧密耦合在一起,无法实现对力的单独控制。本文采用的MRF力矩伺服装置可以不依赖位移而对力矩实施控制,且具有快速响应和输出力矩无级可调的特性,是柔顺研抛加工中的一种比较理想的力伺服器。
     本文借助虚拟样机技术,运用运动学、动力学仿真软件ADAMS,建立了MRF阻尼器的仿真等效模型,在此基础上建立了工具系统整体虚拟样机。对研抛工具系统中的关键部件——自适应研抛头的结构进行了仿真分析与结构优化,并通过实验验证了仿真分析结果的正确性。接着,对工具系统的作业空间进行了数学建模及优化。通过对工具系统输出研抛力的稳定性仿真和实验研究发现,有必要设计控制系统以进一步提高工具系统输出稳定性。在建立系统的动力学模型的基础上,完成了控制系统的理论设计。ADAMS和MATLAB/SIMULINK联合仿真结果表明,增加控制环节后,工具系统的输出稳定性得到了有效的提高。
With the development of modern electronic and optical technologies, researchers’attention is collected by aspheric optical parts for its excellent optical properties. As is known to all, the surface quality determines the using value of optical parts. So far, the optical polishing finished in high-precision instrument, which will make a substantial increase in processing cost, and restrict the widespread use of aspheric parts. In order to reduce the manufacturing cost of aspheric parts, a new method of aspheric manufacturing and tools based on the common NC lathe is studied. Undoubtedly, it has theory meanings and project value for the widespread use of aspheric parts.
     Because the machining accuracy of common NC lathe is not high enough, polishing can be carried out working with an additional tool and compliant control. One nodus of the compliant control is the force/position coupling in the force/position hybrid control, i.e., there exist different tool poses at the different positions and also need various polishing force servo in processing. The polishing force has something to do with the processing station, which will make a great difficulty to design a force servo control system. In this thesis, a method of decoupling the force/position hybrid control is proposed. In specific word, with the proper force servo and motion track, the direction of polishing force is kept same to the normal direction of parts’surface, and force can be controlled independently of position. At the same time, a tool system which is fixed in the common NC lathe is designed to study the aspheric manufacturing method. Generally, servo motor or hydraulic mechanism is used as force servo, whose force providing depends on the displacement. To meet the control of force servo, a new type of torque servo system consisted of Magnetorheological Fluids (MRF) damper and servo motor is proposed. For the advantage of rapid response and damping adjustable stepless of MRF damper, it will play a good role in the force servo in the active compliant control.
     In this thesis, using the virtual prototyping technology and the strategy of force/position hybrid control decoupling, a simulation equivalent model of MRF and the virtual prototype of the tool system are established in the kinematics and dynamics simulation software ADAMS. After analyzing the structure of the polishing tool, optimization which is validated by simulation outcome and experiment is put forward. Then, A mathematical modeling for operation space of the tool system is built. According to the simulation outcome, a control system is designed based on the dynamic model of the tool system to improve the force output stability of the tool system. ADAMS and MATLAB/SIMULINK co-simulation shows that the force servo property of the tool system has been improved with the control system.
引文
[1]罗松保,张建明.非球面曲面的超精密加工与测量技术的研究.制造技术与机床, 2003,9:58–62
    [2]张成.球面与非球面的区别.中华机械网.http: / /baike.machine365.com / arts/ 060411 /22 /105751.html
    [3]勾志勇,王江等.非球面设计技术综述.激光杂志,2006,27(3):2
    [4]张建明,罗松保.非球面曲面光学零件超精密加工装备与技术.光学精密工程, 2003, 1: 71 - 75
    [5]张坤领,林彬等.非球面加工现状.专题评述,2007,5:3
    [6]韩成顺等.大型光学非球面超精密磨削的几何模型研究.兵工学报, 2004, 6: 741 - 745
    [7] Kordonsky,V.I.,et al .Physical Properties of Magnetizable Structure-reversible Media. Magn.& Magn.Mater,(1990),85,pp:1143
    [8] Rabinow, J.The Magnetic Fluid Clutch,AIEE Trans,(1948), 67, pp:1308
    [9] Kordonski W I,Prokhorov I V,Gorodkin S R,et al.Magnetorheological polishing devices and methods.International Patent:29077 ,1994.
    [10]程灏波,王英伟等.永磁流变抛光纳米精度非球面技术研究.光学技术,2005,31(1):52
    [11] Kordonski W I,Golini D.Progress update in magnetorheological finishing.Int. Mod.Phys.,1999,13:2205—2212
    [12]池长清.流体力学润滑.北京:国防工业出版社,1998:11 -12
    [13]谢晋.光学非球面的超精密加工技术及非接触检测.华南理工大学学报(自然科学版) ,2004,2:94 - 98
    [14]余景池,张学军等.计算机控制光学表面成形技术.光学技术,1998,5:23 - 25
    [15]谷田部善雄(日本)著,张立士译.非球面透镜加工.光学技术通讯,1987,2:36 - 43.
    [16]杨辉,吴明根.现代超精密加工技术.航空精密制造技术,1997,1:1-8
    [17]王洪祥,宋兴永,张龙江.非球面超精密加工机床的发展状况.机械工程师, 2005,5:14 - 15
    [18] K.Uedaa,A.Amanoa,etal,Machining High-Precision Mirrors Using Newly Developed CNC Machine,Manufacturing Technology,(1991),1(40),pp:555-558
    [19]宋德兴.非球面光学零件塑料成型技术.飞达光学网,http: / /gistoptics.com / cn /download /61507.pdf.
    [20]屈明光,李倩.我国建成首座非球面光学元件产业化基地.新华网昆明3月25日电.http: / /www. sina.com.cn.
    [21]殷跃红,尉忠信,朱剑英等.机器人柔顺控制研究.机器人,Vol.20,No.3,1998:222
    [22] Whitney D E,Nevine J L.What in the Remote Center Compliance(RCC) and What Can It Do? Robot Sensors,Tactile and Non-Viaion,IFS Publication Ltd.1986.2
    [23] Whitney D E.The Mathematics of Coordinate Control of Prosthetic Arms and Manipulators.Trans ASME J of DSMC,1972,122
    [24] Whitney D E.Resolved Motion Rate Control of Manipulation and Human Proatheaes.IEEE Trans on Man-Machine System,1969,MMS-10
    [25] Alan Pugh.International Trends in Manufacturing Technology Robot Senaors.UK :IFS Ltd.1986
    [26] Goertz R C.Manipulators Used for Handling Radioactive Materials.Human Factors in Technology.McGraw-Hill Book Company,1963
    [27] Winslow W M.Method and means for translating electrical impulses into mechanical forces.United States Patent:2417850,1947.
    [28] Rabinow J.The magnetic fluid clutch.AIEE Trans.1948,67,1308
    [29] Bullough W A.Proceedings of 5th International Conference on ER Fluids.MR Suspensions and Associated Technology,World Scientific,Singapore,1996.
    [30] Dyke S J.Modeling and control ofmagnetorheological dampers forseismic response reduction.SmartMater Struct,1996,5(5):565-575
    [31] Anon.Brake cus exeecise-equipment cost.Design News,1995,50(23):39
    [32] Weiss K D,Duclos T G,Carlson J D.High strength magneto-and electro-rheological fluids.SAE Technical Paper Series 932451,1993.
    [33]黄金,杨岩,魏玉卿等.圆筒式磁流变液制动原理及力矩分析.固体力学学报,2002,6:25-29
    [34] F.Ahmadkhanlou.Design,Modeling and Control of Mangnetorheological Fluid-based Force Feedback Dampers for Telerobotic Systems:Doctor’s Degree.Ohio:The Ohio State University,2009.
    [35]宋培林.虚拟原型:机械工程的一门新兴技术.http://www.gongkong.com/Forum/ForumTopic.aspx?Id=F-B664-3ADF36F06DEE
    [36]刘淑芬,刘辉.机械领域虚拟样机技术综述.技术与工艺,2009,4(1):33
    [37]熊光愣等.虚拟样机技术.系统仿真学报,2000,13(1)
    [38]李瑞涛等.虚拟样机技术的概念及应用.机电一体化,2000,5.
    [39]赵建卫等.武器系统虚拟校风机设计环境.飞行力学,2000,18(2).
    [40]宁汝新等.面向产品全生命周期的虚拟产品开发技术.中国机械工程,2000,2.
    [41]梁海奇.基于大装配的产品装配建模研究.制造业自动化,2000,6.
    [42]唐硕等.飞行器设计与试验的虚拟样机技术.宇航学报,2000,11.
    [43]李思昆等.协作虚拟样机与协同设计方法.系统仿真学报,2001,1.
    [44]赵雯等.系统虚拟样机技术研究[J].系统仿真学报,2001,1.
    [45]张健等.开展航空发动机数值仿真研究的探讨.航空科学技术,2001,1.
    [46]王立权等.给予虚拟样机的控制系统仿真研究.哈尔滨工程大学学报,2000,6.
    [47]舒锐,胡忠辉等.一种新型非球面数控抛光方法的研究.光学技术,2005,31(3):398.
    [48]林清安.Pro/E野火3.0中文版动态机构设计与仿真.北京:电子工业出版社,2007.
    [49] http://zhtjsh.cgn.net.cn/dhlg3.asp?id=53.
    [50]李军,邢俊文,覃文洁.ADAMS实例教程.北京:北京理工大学出版社,2002.
    [51]李增刚.ADAMS入门详解与实例.北京:国防工业出版社,2006.
    [52] Ginder J M,Trigg G.Encyclopedia of Applied Physics,Vol.16.New York:VCH Publishers,1996:487~503
    [53]叶文聪.回转式MRF阻尼器温度场研究及阻尼间隙优化:硕士论文.宁波:宁波大学硕士学位论文,2009.
    [54]李军,邢俊文,覃文洁.ADAMS实例教程.北京:北京理工大学出版社2004.
    [55]辛企明,孙雨南,谢敬辉.近代光学制造技术,北京:国防工业出版社,1997.
    [56]郑凯,胡仁喜等.ADAMS 2005机械设计高级应用实例.北京:机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700