四株不同动物来源弓形虫感染小鼠和鸡免疫病理变化的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弓形虫病(Toxoplasmosis)是由刚地弓形虫(Toxoplasma gondii)引起的一种危害严重的人兽共患寄生虫病,在世界上分布广泛,大约有25%-50%的人受到感染。弓形虫的宿主非常广泛,猫科动物是其唯一的终末宿主,绝大多数温血动物均可作为该病原的中间宿主,然而不同宿主对弓形虫的易感性及转归均有不同。小鼠对其极为敏感,可引起急性的致死性感染因而常常作为弓形虫急性感染的动物模型;而鸡由于对弓形虫的感染不表现任何临床症状,被认为是不敏感的中间宿主。为了探寻这两种动物感染弓形虫后免疫病理学变化的差异,同时针对同一宿主对不同动物来源的弓形虫虫株感染后的免疫病理变化进行比较研究,特进行了如下工作:
     1.猫源弓形虫虫株的分离及其与鸡源、猪源和人源虫株基因型的鉴定
     对江苏南京地区11只家猫进行弓形虫抗体IgG的检测,筛选抗体阳性猫进行虫株的分离。利用盐酸-胃蛋白酶消化法处理阳性猫的心、脑、舌等组织,制成组织悬液腹腔接种小鼠,通过连续传代,分离到2株弓形虫虫株,分别命名为CAT2和CAT3。进而利用PCR-RFLP方法,对分离到的猫源虫株以及实验室保存的鸡源(JS)、猪源(CN)和人源(RH)共5株弓形虫虫株进行了基因型的鉴定,通过对7个等位基因5'-SAG2,3'-SAG2, SAG3, BTUB, GRA6, cB21-4和L358的扩增和酶切,证明此5株弓形虫虫株均为基因Ⅰ型。
     2.四种不同来源弓形虫虫株对小鼠和鸡致病力的比较
     小鼠对弓形虫非常敏感,而鸡通常不敏感。本研究对四种不同来源的5个虫株RH, CN, JS, CAT2和CAT3对鸡和小鼠的致病力分别进行比较,同时建立弓形虫感染雏鸡的动物模型。210只10日龄雏鸡分为21个组,每组10只,5个虫株RH,CN,JS,CAT2和CAT3按照5×108,1×108,1×107,和1×106不同剂量腹腔感染10日龄雏鸡,同时设阴性对照组,仅注射生理盐水;感染后每日观察实验鸡的临床症状,逐只测量直肠温度,记录每组鸡的死亡情况;利用PCR方法对53天未死亡的鸡进行检测,对急性死亡和53天未死亡的鸡进行病理组织切片,观察病理变化。对小鼠致病力的对比试验选用腹腔感染和灌胃感染两种途径,分别选用260只ICR小鼠,随机分为26个组,每组10只,按照不同的虫株选择1×105,1×104,1×103,1×102和1×101剂量进行感染,记录每只小鼠的存活时间;根据实验动物的存活时间对5个虫株的致病力进行比较。结果发现RH,CN, CAT2和CAT3四个虫株对小鼠和鸡的致病力无显著差异,而JS株对小鼠的致病力较弱,但对鸡的致病力较强,这说明虫株的来源对弓形虫的致病性具有重要的影响。同时发现1×107剂量的速殖子腹腔感染10日龄雏鸡,既能产生适度的临床症状,又能够使实验动物避免死亡,可作为弓形虫体内感染雏鸡的动物模型。综合考虑小鼠的感染率、存活时间以及感染过程中的偶然因素,发现1×102腹腔感染和1×104灌胃感染是小鼠模型的最佳感染剂量。
     3.四种不同来源弓形虫虫株腹腔感染小鼠免疫病理变化的比较
     本实验将JS、CAT、CN和RH弓形虫虫株腹腔感染小鼠,对小鼠感染弓形虫后的免疫病理变化进行比较。200只小鼠(18。22g)随机分成5个组,每组40只,分别命名为JS, CAT, CN, RH和阴性对照组,四个虫株JS、CAT、CN和RH的速殖子按1×102的剂量腹腔感染小鼠,阴性对照组仅注射PBS。感染后分别在第0天,3天,6天和8天采血和脾脏用于分离血清和脾脏淋巴细胞,每组10只。弓形虫循环抗原和特异性抗体(IgA,IgG, IgM和IgG的亚型IgGl、IgG2a、IgG2b和IgG3)利用ELISA方法进行检测;脾脏淋巴细胞中CD4+、CD8+T细胞和NK细胞以及MHC Ⅰ和MHC Ⅱ类分子的变化利用流式技术进行检测;细胞因子IFN-γ, IL-12, IL-4, IL-10和IL-17利用ELISA方法进行检测;血清铁、血清中NO和iNOS的活性利用比色法进行检测。感染后第6天能够检测到IgM并持续至第8天;感染后第8天能检测到IgA,而IgG及其亚型均未检测到;CD4+, CD8+T和NK细胞分别在第6天、第3天和第3天显著上升,均在第8天时显著下降,在此时间点仅CN组CD4+T细胞显著高于阴性对照组,4个感染组CD8+T细胞虽下降但仍显著高于阴性对照组,RH、CN和CAT组NK细胞显著高于阴性对照组;MHC Ⅰ分子第6天显著上升但在第8天时下降,仅CAT组显著高于阴性对照组;MHC Ⅱ分子从第3天显著下降并持续至第8天仍显著低于阴性对照组;IFN-γ和IL-12在第6天显著上升均在第8天时下降,4个感染组IFN-γ在第8天仍显著高于阴性对照组,但JS组IL-12与阴性对照组无差异;IL-10和IL-4在第3天显著上升均在第6天时显著下降,4个感染组IL-10仍显著高于阴性对照组,但IL-4与阴性对照组无差异;IL-17在第6天显著上升并持续至第8天仍高于阴性对照组;感染后第3天可检测到高浓度的NO、血清铁以及高活力的iNOS,均在第6天达到最高峰而后下降,第8天时,仅CAT组NO显著高于阴性对照组,4个感染组的iNOS与阴性对照组之间差异不显著,但血清铁仍显著高于阴性对照组。这些结果反应了小鼠抗弓形虫腹腔感染而引起的免疫病理学变化,而不同来源虫株之间存在的差异可能与虫株的生物学特性有关,说明虫株的来源对弓形虫免疫病理变化也具有重要的影响。
     4.四种不同来源弓形虫虫株灌胃感染小鼠免疫病理变化的比较
     本实验将JS、CAT、CN和RH弓形虫虫株灌胃感染小鼠,对小鼠感染弓形虫后的免疫病理变化进行比较。250只小鼠(18-22g)随机分成5个组,每组50只,分别命名为JS、CAT、CN、RH和阴性对照组,四个虫株JS、XAT、CN和RH的速殖子按1×104的剂量灌胃感染小鼠,阴性对照组仅灌服等量PBS。感染后分别在第0天,3天,6天,8天和10天采血和脾脏用于分离血清和脾脏淋巴细胞,每组10只。弓形虫循环抗原和特异性抗体(IgA、IgG、IgM和IgG的亚型IgG1、IgG2a、IgG2b和IgG3)利用ELISA方法进行检测;脾脏淋巴细胞中CD4+、CD8+T细胞和NK细胞以及MHCI和MHCⅡ类分子的变化利用流式技术进行检测;细胞因子IFN-γ, IL-12, IL-4, IL-10和IL-17利用ELISA方法进行检测;血清铁、血清中NO和iNOS的活性利用比色法进行检测。感染后第6天TCA阳性并持续至第10天;第10天时IgG显著上升并以IgG2a和IgG2b为主;IgA和IgM第6天时显著上升并持续至第10天;CD4+和CD8+T细胞第6天时开始显著上升,第8天达到高峰,各组CD4+T细胞在第10天下降,与阴性对照组无差异,而CD8+T细胞虽下降,但CN、CAT和JS仍显著高于阴性对照组;弓形虫感染后第3天,JS和CAT组NK细胞水平显著上升,第8天时,四个感染组均上升并持续至第10天;CAT组MHCI水平第3天显著上升,其余三个感染组无显著变化,第8天,四个感染组均显著上升,第10天时开始下降,但除JS组外,其余三个感染组仍显著高于阴性对照组;MHC Ⅱ分子在第3天显著下降并持续至第10天;感染后第6天,JS和CAT感染组组IFN-γ显著上升,第8天时,RH、CN和JS三个组显著上升,但CAT组下降,第10天时4个感染组均下降与阴性对照组无差异;RH和CAT组IL-12在感染后第3天显著上升,第6天时四个感染组均显著上升并持续至第8天,第10天时开始下降仅CAT组显著高于阴性对照组;RH和CAT组IL-4仅在第6天时显著上升;CN、JS和CAT组IL-17在第8天时显著上升而后开始下降,第10天时仅JS组显著高于阴性对照组;NO、血清铁和iNOS勺活力均在第3天开始显著上升并持续至第8天,第10天时下降与阴性对照组之间无差异。这些结果反应了小鼠弓形虫灌胃感染所引起的免疫病理变化。与腹腔感染小鼠相比,较晚出现的TCA,较早出现并且较高滴度的IgA以及产生的IgG说明腹腔感染和灌胃感染两种不同的感染途径影响免疫病理变化的产生。
     5.四种不同来源弓形虫虫株腹腔感染鸡免疫病理变化的比较
     本实验将JS、CAT、CN和RH弓形虫虫株腹腔感染雏鸡,对鸡感染弓形虫后的免疫病理变化进行比较。300只10日龄雏鸡随机分成5个组,每组60只,分别命名为JS,CAT, CN, RH和阴性对照组,JS、CAT、CN和RH的速殖子按1×107的剂量腹腔感染雏鸡,阴性对照组仅注射PBS。感染后分别在第0天,4天,11天,25天,39天和53天采血和脾脏,分离血清和脾脏淋巴细胞,每组取10只。弓形虫循环抗原和特异性的抗体(IgA,IgG和IgM)利用ELISA方法进行检测;脾脏淋巴细胞中CD4+,CD8+以及MHC Ⅰ和MHC Ⅱ类分子的变化利用流式技术进行检测;细胞因子IFN-γ,IL-12,IL-4,IL-10和IL-17利用ELISA方法进行检测;血清铁、血清中NO和iNOS的活性利用比色法进行检测;血细胞包括中性粒细胞、单核细胞和淋巴细胞利用血细胞分析仪直接测定。感染组高水平的IgM,IgG和IgA分别在感染后第4天,第11天和第11天出现,并持续至39、53和39天;不同感染组CD4+T细胞分别在第4天和第11天显著上升,至53天时与阴性对照组无显著差异;CD8+T细胞和MHC Ⅰ类分子在第4天显著上升,至53天时,CD8+T细胞仍显著高于阴性对照组,而MHC Ⅰ类分子在39天时与阴性对照组差异不显著;MHC Ⅱ类分子在第4天显著上升又在25天时显著下降,至53天时与阴性对照组差异不显著;IFN-γ, IL-12, IL-10和IL-17分别在感染后第4天显著上升,25天时,感染组IFN-γ和IL-10与阴性对照组差异不显著,而感染组IL-12至53天时仍显著高于阴性对照组,IL-17则无显著差异;4个感染组IL-4自始至终均无显著变化;感染组NO,血清铁以及iNOS的活力在第4天显著上升,又在第39天后与阴性对照组无显著差异。这些都反应了鸡感染弓形虫后的免疫病理学变化。与另外三个感染组相比,JS组具有更高水平的CD4+, CD8+T细胞,IFN-γ, IL-12, IL-10,NO和更高活力的iNOS,这说明其差异可能与虫株的来源有关。与腹腔感染小鼠的结果相比,IgG抗体的产生,感染早期显著上升的MHC Ⅱ,较早产生的IFN-γ, IL-12和IL-17以及无显著变化的IL-4有可能是造成鸡和小鼠对弓形虫易感性差异的原因,其确切机制仍需进一步研究。
Toxoplasmosis is a globally spread zoonosis which is caused by Toxoplasma gondii. It is estimated that around25%to50%of the world human population is carrying the parasite. T. gondii is remarkably known to have a wide range of hosts. Domestic cats and other felids are the definitive hosts, and virtually all warm blooded animals, including humans, are the intermediate hosts. The pathogenicity of T. gondii infection to most animals varies widely, ranging from inapparent infection to fatal disease conditions. It is well-known that mice are most susceptible to T. gondii and always act as an animal model of acute infection. While chickens were found to display the chronic type of infection without apparent clinical signs to toxoplasmosis, and considered to be a quite resistant intermediate host to T. gondii. To study the immunopathological changes of these two hosts trying to find why chickens are resistant to T. gondii, this research mainly focuses on the following:
     1. Isolation of Toxoplasma gondii from cats in Jiangsu Province and identification of the genotype for the different original isolates by PCR-RFLP.
     In this research,11cats from Nanjing Jiangsu Province were tested for IgG against Toxoplasma gondii. Positive cats were killed humanlly and hearts, brains and tongues of each cat were bioassayed for Toxoplasma gondii individually. Tissues of each cat were mixed with five volumes of acidic pepsin. After that, the samples were centrifuged, neutralized with1.2%sodium bicarbonate (pH8.3), mixed with antibiotics (ampicillin and gentamycin sulfate). And then lml of tissue homogenate was inoculated intraperitoneally into each of six mice. At the third blind passages of the survived mice, two strains of T. gondii were isolated from cats No.2and No.3and named CAT2and CAT3. These two isolates and other three chicken (named JS), swine (named CN) and human (named RH) original Toxoplasma gondii isolates were identified by PCR-RFLP method. Seven genetic markers (5'-SAG2,3'-SAG2, SAG3, cB21-4, L358, BTUB and GRA6) of the five isolates were obtained by PCR. Digestion of these seven loci with appropriate endonucleases revealed that these isolates had the common haplotype to the type I lineage.
     2. The pathogenicity of four isolates of T. gondii from different animals in chickens and mice
     The pathogenicity of T. gondii infection to mice and chickens varies widely. Mice are susceptible while chickens are not. In this study, five isolates (RH, CN, JS, CAT2and CAT3) of T. gondii which well conserved in liquid nitrogen in Laboratory of Veterinary Molecular and Immunological Parasitology, Nanjing Agricultural University, China were used to study the pathogenicity on chickens and mice, respectively, and to construct the animal model which infected on the broiler chickens. Two-hundred and ten chickens aging10-day-old were allocated into21groups of10chickens each. The chickens were infected intraperitoneally with these five isolates with different dosages (5×108,1×108,1×107and1×106). The negative control (-Ve) group was mockly inoculated with physiological saline alone. After that, clinical symptoms and the rectal temperatures of the chickens were checked every day. The died cases during acute phage were checked for T.gondii tachyzoites by making wet smears after necropsy. And the living cases were detected for the infection situation of T. gondii at day53by PCR method. Histopathological sections were used to observe the pathological changes in the died chickens during acute phage and the living animals at day53. For the study of pathogenicity in mice, two routes of infection were used. For one route,260ICR mice were allocated into26groups of10mice each. The mice were infected intraperitoneally and intragastrically with the tachyzoites of these five isolates, respectively. The infection doses were1×105,1×104,1×103,1×102and1×101, respectively. The survival time of each mouse was recorded post inoculation. Results show that no significant differences of pathogenicity were found in chickens and mice among the RH, CN, CAT2and CAT3isolates while the pathogenicity of JS isolate was weak to the mice but comparatively strong to the chicken. These findings suggested that the differences might be related to the sources of the isolate origin. However, the exact mechanisms of them need to be further investigated. Meanwhile, inoculation intraperitoneally at the dosage of1×107tachyzoites on the ten days old chickens can effectively infect the chickens, making them display moderate clinical signs and at the same time stimulate a proper immunopathological changes beside avoidance of losing them during the experiment suggesting that it is a suitable model to study the in vivo infection of T. gondii on chickens. Considering the infection rate, survival time and the causal factors during the infection of mice, it was found that1×102intraperitoneally injected and1×104intragastrically delievered were the suitable dosages to experimentally infect the mice model in this study.
     3. Comparisons of immunopathological changes of four isolates of Toxoplasma gondii from different animals intraperitoneally infected in mice
     A total of200,(18-22g) mice were allocated randomly into5groups which named JS, CAT, CN, RH and a negative control group (-Ve) with40mice in each group. Tachyzoites of four different T. gondii isolates JS, CAT, CN and RH were inoculated intraperitoneally with the dose of1×102in the four designed groups, respectively. The negative control (-Ve) group was mockly inoculated with PBS alone. Blood and spleen samples were obtained on the day of inoculation (day0) and at days3,6and8post-infection to screen the immune responses. Toxoplasma circulating antigens (TCA) and T. gondii specific antibodies (IgA, IgG, IgE, IgM and subsets of IgG) in the serum were detected by enzyme-linked immunosorbent assay (ELISA) method. Subsets of T-lymphocytes (CD4+and CD8+), NK cells and major histocompatibility complex (MHC) molecules (MHC-I and MHC-II) from spleen cells were analyzed by flow cytometric method. The kinetics of cytokines (IFN-y, IL-12, IL-4, IL-10and IL-17) were evaluated by ELISA method. Serum iron, serum nitric oxide (NO) and inducible nitric oxide synthase (iNOS) activity changes were detected by colorimetric technique. IgM specific antibody to T. gondii was first to be found at day6and this level was kept untill the end of the experiment, meanwhile IgA was first detected at day8. However, no specific IgG, subsets of IgG and IgE antibodies were found during the experiment. Flow cytometric analysis indicated that increases of CD4+, CD8+T lymphocytes and NK cells in the four infected groups at days6,3and3, respectively. Thereafter, all these three factors were dropped at day8. For CD4+T lymphocytes, only CN group was showed a significant increase compared to the negative control group, while RH, CN and CAT groups were significantly higher for NK cells.However, all these four infected groups were significantly higher than the negative control group for CD8+T lymphocytes at this timepoint. MHC class I increased in the four infected groups at day6and decreased at day8while MHC class II was down-regulated from day3to8in the four infected groups but no significant differences were shown among the four infected groups. Increases in expression of IFN-y and IL-12were detected in the four infected groups at day6and decreased at day8. However, the levels of IFN-y in the four infected groups were still higher than the negative control group but only RH, CN and CAT groups showed higher levels of IL-12. Notable increases of IL-10and IL-4in the infected groups were found at day3, but dropped at day6. At this time, the levels of IL-10were still higher than the negative control group but IL-4was not. Levels of IL-17were increased markedly at day6 and kept the high levels to the day8of the experiment. A significant increase in the concentration of NO, serum iron and the activity of iNOS were observed in the infected groups at day3, and reached the peaks at day6. After that, concentrations of serum iron in the four targeted groups and the concentration of NO in CAT group were significantly higher than the negative control group at day8. However, no significant differences regarding the activity of iNOS were found in these four infected groups. These findings might partially be explain the immunopathological changes through which T. gondii infect mice. Differences of the detected markers among the four isolates suggested that the bionomic characteristics of varied origin isolates might be present variance when infected the certain host.
     4. Comparisons of immunopathological changes of four isolates of Toxoplasma gondii from different animals intragastrically infected in mice
     A total of250,(18-22g) mice were allocated randomly into5groups which named JS, CAT, CN, RH and a negative control group (-Ve) with50mice in each group. Tachyzoites of four different T. gondii isolates JS, CAT, CN and RH were inoculated intragastrically with the dose of1×104in the four designed groups, respectively. The negative control (-Ve) group was mockly inoculated with PBS alone. Blood and spleen samples were obtained on the day of inoculation (day0) and at days3,6,8and10post-infection to screen the immune responses. Toxoplasma circulating antigens (TCA) and T. gondii specific antibodies (IgA, IgG, IgE, IgM and subsets of IgG) in the serum were detected by ELISA method. Subsets of T-lymphocytes (CD4+and CD8+), NK cells and major histocompatibility complex (MHC) molecules (MHC-Ⅰ and MHC-Ⅱ) from spleen cells were analyzed by flow cytometric method. The kinetics of cytokines (IFN-y, IL-12, IL-4, IL-10and IL-17) were evaluated by ELISA method. Serum iron, serum nitric oxide (NO) and inducible nitric oxide synthase (iNOS) activity changes were detected by colorimetric technique. All the animals in the four infected groups were positive in TCA at day6and the high levels were kept untill the end of the experiment. IgG specific antibody to T. gondii was first to be detected at day10and the subsets IgG2a and IgG2b were both found while IgGl and IgG3were not. IgA and IgM antibodies were first to be found at day6and kept the high levels till day10without any significant differences among the four infected groups. Flow cytometric analysis indicated that increases of CD4+and CD8+T lymphocytes in the four infected groups at day6and they reached the peaks at day8. At day10, the levels of CD4+in the four infected groups were decreased without any significant differences compared to the negative control group. However, the levels of CD8+in CN, CAT and JS groups were still higher than the control negative. At day3, only JS and CAT groups were showed a markedly increase in NK cells while all the four infected groups were significantly higher than the negative control group from day8to10. Similar with NK cells, MHC class I molecules of CAT group were increased notablely at day3while all the four infected groups got the higher levels at day8. At day10, all the targeted groups except JS were still higher than the control negative. However, MHC class II molecules were down-regulated from day3to10without any significant differences among the four infected groups. Increases in expression of IFN-y were detected in the different infected groups at days6and8, respectively, and dropped to the level of negative control group at day10. For IL-12, levels of RH and CAT groups were started to increase at day3. However, at day6all the infected groups showed a significant increase. Except of CAT group, at day10, the levels of IL-12were dropped and showed no significance compared with the negative control group. For IL-4, only RH and CAT groups showed the significant increase at day6. IL-17of CN, JS and CAT groups was increased at day8and level declined at day10except JS group. A noteably increase in the concentrations of NO, serum iron and the activity of iNOS were observed in the infected groups at day3and kept the levels to day8. While no significant differences were found at day10when compared to the negative control group. These findings might partially explain the immunopathological changes through which T. gondii infect mice. When compared with the results of intraperitoneally infected mice, positive response of IgG antibody, higher titres and early expressed of IgA and delayed TCA might be present variance when using different routes to establish an infection with T. gondii.
     5. Comparisons of the immunopathological changes with four different isolates of Toxoplasma gondii in chickens
     In this study,4isolates (JS, CAT, CN and RH) were used to compare the immunopathological changes in chickens and to investigate whether the origins of T. gondii could play some roles in the pathogenicities of T. gondii and the susceptibilities of different animals. A total of300,10-day-old chickens were allocated randomly into five groups which named JS, CAT, CN, RH and a negative control group (-Ve) with sixty birds in each group. Tachyzoites of JS, CAT, CN and RH were inoculated intraperitoneally with the dose of1×107in the four designed groups, respectively. The negative control (-Ve) group was mockly inoculated with PBS alone. Blood and spleen samples were obtained on the day of inoculation (day O) and at days4,11,25,39and53post-infection to screen the immunopathological changes. Toxoplasma gondii circulating antigens (TCA) and T. gondii specific antibodies (IgA, IgG and IgM) in the serum were detected by ELISA method. Subsets of T-lymphocytes (CD4+and CD8+) and major histocompatibility complex (MHC) molecules (MHC-Ⅰ and MHC-Ⅱ) from spleen cells were analyzed by flow cytometric method. The kinetics of cytokines (IFN-y, IL-12, IL-4, IL-10and IL-17), serum iron, serum nitric oxide (NO) and inducible nitric oxide synthase (iNOS) activity changes were evaluated by ELISA method. Differential cell counts including neutrophils, lymphocytes and monocytes in the peripheral blood were carried out with an automated electronic cell Coulter counter. Higher levels of specifc IgA, IgG and IgM antibodies were detected in the targated groups. Increased CD4+and CD8+T cells, highly expressed MHC I molecules and up-regulated MHC Ⅱ molecules were noticed during the early stages of infection. However, MHC Ⅱ molecules was down-regulated after the the early stages. High concentrations of IFN-y, IL-12, IL-10and IL-17were also observed. Higher concentrations of NO, iron and high activity of iNOS were also noticed in the infected groups. These findings might partially explain the resistance to T. gondii infection in chickens. Compared to the other3isolates, JS group showed significant high levels of CD4+and CD8+T cells, high levels of IFN-y, IL-12, IL-10, high concentrations of NO and high activity of iNOS. These might be related to the sources of the isolates origins. When compared with the results of mice, positive response of IgG antibody, up-regulated MHC II molecules at the early stage of infection and early expressed of IFN-y and IL-12might be the reasons for the sensitive differences of chicken and mouse when infected with T. gondii.
引文
[1]于恩庶,陈黛西,林师敬.福建猫及兔体内弓形虫的发现[J].微生物学报,1957,5(11):101-110.
    [2]谢天华.人类弓浆虫病[J].江西医药,1964,4(2):121.
    [3]吕元聪.我国家畜弓形体病免疫诊断进展[J]中国兽医科技,1994,24(7):17-18.
    [4]周永华,吴菁,王崇功.弓形虫病110例临床分析[J].中国人兽共患病杂志,2002,18(3):112-113.
    [5]Webster J P. The effect of Toxoplasma gondii on animal behavior:playing cat and mouse[J]. SchizophrBull,2007,33(3):752-756.
    [6]Murphy R G, Williams R H, Hughes J M, Hide G, Ford N J, Oldbury D J. The urban house mouse (Mus domesticus) as a reservoir of infection for the human parasite Toxoplasma gondii:an unrecognised public health issue [J]. Int J Environ Health Res,2008,18(3):177-185.
    [7]Lamberton P H, Donnelly C A, Webster J P. Specificity of the Toxoplasma gondii-altered behaviour to definitive versus non-definitive host predation risk [J]. Parasitology,2008,135(10):1143-1150.
    [8]Takashima Y, Suzuki K, Xuan X, Nishikawa Y, Unno A, Kitoh K. Detection of the initial site of Toxoplasma gondii reactivation in brain tissue [J]. Int J Parasitol,2008,38(5):601-607.
    [9]Petersen E. Toxoplasmosis[J]. Semin Fetal Neonatal Med,2007,12:214-223.
    [10]李秋英,罗小年,李莉.精神分裂隙症和情感障碍与弓形虫感染的比较研究[J].湖北医科大学学报,1999,20:222-223..
    [11]张桂宁,潘玉珍,赫凤.养猫养狗与弓形体感染的关系[J].中国人兽共患病杂志,1988,4(1):40-41.
    [12]中华医学杂志编委会.弓形虫病防治专题座谈会纪要[J].中华医学杂志,2004,16(6):446-448.
    [13]Dubey J P, Graham D H, Blackstonb C R. Biological and genetic characterisation of Toxoplasma gondii isolates from chickens (Gallus domesticus) from Sao Paulo, Brazil:unexpected findings[J]. Parasitol,2002,32:99-105.
    [14]Dubey J P, Graham D H, Dahlb E Hilali M, El-Ghaysh A, Sreekumar C, Kwok O C H, Shena S K, Lehmann T. Isolation and molecular characterization of Toxoplasma gondii from chickens and ducks from Egypt[J]. Vet Parasitol,2003,114:89-95.
    [15]Dubey J P, Jorge E, Angela Bedoy, Fabiana, Lora M C B, Vianna D, Hill O C H, Kwok S K, Shen P L Marcet T. Genetic and biologic characteristics of Toxoplasma gondii isolates in free-range chickens from Colombia, South America[J]. Vet Parasitol,2005,134:67-72.
    [16]任家淡.山西省畜禽弓形虫感染分布调查[J].中国兽医寄生虫病,1993,1(1):50-52.
    [17]赵玉强,甄天民,王金祥.山东省动物弓形虫感染调查[J].预防医学情报杂志,2001,17(3):185.
    [18]苑文英,马凯,杨宏莉.河北省动物弓形虫感染调查[J].中国血吸虫病防治杂志,2004,16(1):72
    [19]Zhu J, Yin J, Xiao Y, Jiang N, Ankarlev J, Lindh J, Chen Q. A sero-epidemiological survey of Toxoplasma gondii infection in free-range and caged chickens in northeast China[J]. Vet Parasitol,2008,158:360-363.
    [20]Yan C, Yue C L, Yuan Z G, He Y, Yin C C, Lin R Q, Dubey J P, Zhu X Q. Toxoplasma gondii infection in domestic ducks, free-range and caged chickens in southern China[J]. Vet Parasitol, 2009,165:337-340.
    [21]Zhao G W, Shen B, Xie Q, Xu L X, Yan R F, Song X K, Hassan I A, Li X R. Detection of Toxoplasma gondii in free-range chickens in China based on circulating antigens and antibodies[J] Vet Parasitol,2012,185:72-77.
    [22]杨家祥,陈玉洪,常志勇.猪圆环病毒与蓝耳病、弓形虫混合感染的防治报告[J].湖北畜牧兽医,2005(4):48-49.
    [23]金璐娟,刘景霞.鸡弓形虫与大肠杆菌混合感染的诊治[J].中国家禽,2005,27(6):21-22.
    [24]刘德福.奶牛附红细胞体病并发弓形虫病的诊治报告[J].畜牧与兽医,2004,36(50):34-35.
    [25]Dubey J P, Fayer R, Lindsay D S. Zoonotic protozoa:from land to sea[J].Trends Parasitol,2004, 20(11):531-536.
    [26]Dubey J P, Edelhofer R, Marcet P, Vianna M C, Kwok O C, Lehmann T. Genetic and biologic characteristics of Toxoplasma gondii infections in free-range chickens from Austria[J]. Vet Parasitol, 2005,133:299-306.
    [27]Dubey J P, Sundar N, Gennari S M, Minervino A H, Farias N A, Ruas J L, Cavalcante, G T, Kwok O C, Su C. Biologic and genetic comparison of Toxoplasma gondii isolates in free-range chickens from the northern Para state and the southern state Rio Grande do Sul, Brazil revealed highly diverse and distinct parasite populations[J]. Vet Parasitol,2007,143:182-188.
    [28]Dubey J P, Patitucci A N, Su C, Sundar N, Kwok O C, Shen S K. Characterization of Toxoplasma gondii isolates in free-range chickens from Chile, South America[J]. Vet Parasitol,2006,140:76-82.
    [29]Sobrino R, Cabezon O, Millan J, Pabon M, Arnal M C, Luco D F, Gortazar C, Dubey J P, Almeria S. Seroprevanlence of Toxoplasma gondii antibodies in wild carnivores from Spain[J].Vet Parasitol, 2007,148(3-4):187-92.
    [30]李祥瑞.弓形虫病的流行的新趋势[J].动物医学进展,2010,31:234-236.
    [31]Dubey J P. Toxoplasmosis of Animals and Humans[M],2009. Boca Raton, CRC Press, Second edition,7-25.
    [32]孙新.细胞培养和动物接种分离弓形虫病原比较研究[J].蚌埠医学院学报,1996,21(5):291-292.
    [33]邓茂刚.猪弓形虫间接红细胞凝集试验[J].山东畜牧兽医,2008,29(2):123.
    [34]张述义,魏梅雄,王龙英.改良凝集试验(MAT)与间接血凝试验(IHAT)和酶联免疫吸附试验 (ELISA)检测弓形虫抗体的比较分析[J].寄生虫与医学昆虫学报,2001,8(4):199-202.
    [35]Dubey J P, Desmonts G Serological reponses of equids fed Toxoplasma gondii oocysts [J]. J Equ Vet Sci,1987,48:1239-1243.
    [36]Dubey J P,Thulliez P, Weigel R M, Andrews C D, Lind P, Powell E C. Sensitivity and specificity of various serologic tests for detection of Toxoplasma gondii infection in naturally infected sows [J].Am J Vet Res,1995,56:1030-1036.
    [37]Veturini M C, Bacigalupea D, Venturinia L, Machuca M, Perfumo C J, Dubey J P. Detection of antibodies to Toxoplasma gondii in stillborn piglets in Argentina [J]. Vet Parasitol,1999,85: 331-334.
    [38]江涛,何会时,聂浩.ELISA和LAT检测猪血清弓形虫抗体的比较[J].吉林畜牧兽医,2007(3):9-13.
    [39]陈子庆,王海琦.SPA-ELISA检测抗弓形虫抗体的实验研究[J].南京医科大学学报,2006,15(1):71-73.
    [40]李辉,许汴利,邓艳.弓形虫抗原检测方法的研究[J].中国寄生虫学与寄生虫病杂志,2006,24(1):67-69.
    [41]李健,杨秀珍,梁东春.检测弓形虫PCR-ELISA方法的建立[J].中国病原生物学杂志,2006,1(2):135-137.
    [42]Sawa D, Morris J C, Ohnson J D, Holliman R E. Polymerase chain reaction for detection of Toxoplasma gondii [J]. J Med Microbiol,1990,32 (1):25-31.
    [43]Burg J L,Grover C M,Pouletty P, Boothroyd J C. Direct and sensitive detection of a pat hogenic protozoan, Toxoplasma gondii, by polymerase chain reaction[J]. J Clin Microbiol,1989,27 (8): 1787-1792.
    [44]闫若潜,刘光辉,赵雪丽.猪弓形虫特异性PCR诊断方法的建立及应用[J].中国动物检疫,2007,24(3):28-31.
    [45]Homan W L.Vercammen M, De Braekeleer J. Identification of a 2002 to 3002 fold repetitive 529bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR[J]. Int J Parasitol,2008,30(1):69-75.
    [46]廖申权,翁亚彪,宋慧群.2例猪弓形虫病的特异PCR诊断与虫株分离[J].热带医学杂志,2006,6(9):969-971.
    [47]李健,李克秋,杨秀珍.检测弓形虫的PCR法和ELISA法的比较[J].天津医科大学学报,2006,12(1):27-29.
    [48]赵锦,耿艺介,何建凡.弓形虫乙肝病毒多重PCR及芯片杂交技术的研究[J].中国热带医学,2005,(5):937-939.
    [49]卢慎.应用间接原位PCR诊断弓形虫淋巴结炎[J].江苏大学报,2008,18(1):70-71.
    [50]李爽,甘绍伯,彭瑞云.间接原位PCR检测实验性弓形虫感染病理标本[J].寄生虫与医学昆虫学报,2000,7(2):65-69.
    [51]黄璋琼,李春花,罗志武.弓形虫(Toxoplasma gondii)的PCR检测方法在笼养猕猴群中的应用[J].中国比较医学杂志,2008,18(6):20-24.
    [52]王素华.弓形虫半巢式PCR检测方法的建立[J].检验检疫科学,2008(1):6-8.
    [53]高娟,贾印峰.荧光定量PCR检测孕妇弓形虫感染的实验观察[J].中国病原生物学杂志,2008,3(6):4-9.
    [54]Notomi T, Okayama H, Masubuchi H. Loop-mediated isotherm alamplification of DNA [J]. Nucl Acids Res,2009,28 (12):63.
    [55]Sotiriadou I, Karanis P. Evaluation of loop-mediated isothermal amplification for detection of Toxoplasma gondii in water sample and comparative findings by polymerase chain reaction and immunofluores cence test[J].Diagn Micr Infec Dis,2008,62:357-365.
    [56]Zhang H, Thekisoe O M, Aboge G O, Kyan H, Yamagishi J, Inoue N, Nishikawa Y, Zakimi S, Xuan X. Toxoplasma gondii:Sensitive and rapid detection of infection by loop-mediated isothermal amplification method[J]. Exp Parasitol,2009,122 (1):47-50.
    [57]Krasteva D,Toubiana M, H artati S, Kusumawati A, Dubremetz J F, Widada J S. Development of loop-mediated isothermal amplification as a diagnostic tool of toxoplasmasis[J]. Vet Parasitol,2009, 162 (4):327-331.
    [58]杨秋林,张如胜,伍和平.应用环介导等温扩增技术检测弓形虫[J].中国寄生虫学与寄生虫病杂志,2008,26(4):304-306.
    [59]刘郎,贺光,索勋.利用环介导等温扩增技术对人工感染弓形虫小鼠早期诊断的研究[J].中国兽医杂志,2009,45(10):29-31.
    [60]于恩庶.弓形虫病学[M].福州:福建省科学技术出版社,1992,238-240.
    [61]Rosowsky A, Forsch R A, Queener S F. Inhibition of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductases by 2,4-diamino-5-[2-methoxy-5-(omega-carboxyalkyloxy) benzyl] pyrimidines:marked improvement in potency relative to t rimet hoprim and species selectivity relative to piritrexim[J]. J Med Chem,2002,45 (1):233-241.
    [62]Mui E J, Schiehser G A, Milhous W K, Hsu H, Roberts C W, Kirisits M, Muench S, Rice D, Dubey J P, Fowble J W, Rathod P K, Queener S F, Liu S R, Jacobus D P, McLeod R. Novel triazine JPC-20672B inhibits Toxoplasma gondii in vitro and in vivo[J]. Plos Negl Trop Dis,2008,2 (3): 190-20.
    [63]Chang H R, Pechere J C. In vitro effects of four macrolides roxithromycin, spiramycin, azithromycin on Toxoplasma gondii [J]. Amtimicrob Agents Chemorther,1988,32 (4):524-529.
    [64]Huskinson-Mark J, Araujo F G, Remington J S. Evaluation of the effect of drugs on the cyst form of Toxoplasma gondii[J].J Infect Dis,1991,164(1):170-171.
    [65]田春林,何登贤.阿奇霉素对体外弓性虫作用的实验研究[J].广西医科大学学报,2008,20(2):189-191.
    [66]舒衡平,蒋立平,刘多.美浓霉素体外抗弓形虫作用的效果观察[J].中国人兽共患病杂志,2007,16(5):74-76.
    [67]赵艳军,贺耀亮,李丙午.甲硝唑治疗儿童弓形虫病的临床疗效观察[J].适宜诊疗技术,2006,21(1):13-14.
    [68]Szajnman S H, Garcia Linares, G E, Li Z H, Jiang C, Galizzi M, Bontempi E J, Ferella M, Moreno S N, Docampo R, Rodriguez J B. Synthesis and biological evaluation of 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase [J]. Bioorg Med Chem,2008,16 (6):3283-3290.
    [69]Wei S, Daniel B J, Brumlik M J, Burow M E, Zou W, Khan I A, Wadsworth S, Siekierka J, Curiel T J. Drugs designed to inhibit human p38 mitogen-activated protein kinase activation treat Toxoplasma gondii and Encephalito-zoon cuniculi infection[J]. Antimicrob Agent and Chemot her, 2007,51 (12):4324-4328.
    [70]Bougdour A, Maubon D, Baldacci P, Ortet P, Bastien O, Bouillon A, Barale J C, Pelloux H, Menard R, Hakimi M A. Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites[J]. J Exp Med,2009,206 (4):953-966.
    [71]易得保,王秀虎.蛋白酶抑制剂对弓形虫发育和感染影响的初步研究[J].中国病原生物学杂志,2008,3(8):588-590.
    [72]程璟侠,于娟.家蝇蛹抗弓形虫抗菌肽的分离纯化[J].中国媒介生物学及控制杂志,2008,19(4):309-311.
    [73]赵瑞君,刘成芳.家蝇抗菌肽对弓形虫的抑制作用研究[J].中国媒介生物学及控制杂志,2005,16(3):189-190.
    [74]司进,朱荫昌.抗弓形虫靶向抗菌肽构建及其效应的初步评价[J].中国血吸虫病防治杂志,2005,17(5):365-360.
    [75]姚俊敏,蔡玥,施晓华,等.蒿甲醚早期治疗实验小鼠弓形虫病初步观察[J].中国寄生虫学与寄生虫病杂志,2003,21(6):371.
    [76]郭广洲,李哲.扁桃酸对小鼠实验感染弓形虫的疗效[J].中国寄生虫病防治杂志1999,12(4):256-257.
    [77]司开卫,李哲.扁桃酸对感染小鼠腹水中假包囊内弓形虫速殖子作用[J].西安交通大学学报, 2004,25(1):42-44.
    [78]程彦斌,魏琳琳,司开卫.(十)—松萝酸治疗小鼠急性弓形虫病的初步研究[J].热带医学杂志,2008,8(6):536-538.
    [79]吴亮,陈盛霞,姜旭淦.银杏酸、阿奇霉素和大蒜素抗弓形虫增殖效果的研究[J].中国人兽共患病学报,2008,24(8):736-740.
    [80]Jiang J H, Jin C M, Kim Y C, Kim, H S, Park W C, Park H. Anti-toxoplasmosis effects of oleuropein isolated from Fraxinus rhychophylla[J]. Biol Pharm Bull,2008,31 (12):2273-2276.
    [81]张蔚,刘元姣.常青胶囊抗弓形虫作用的超微结构的研究[J].中国人兽共患病学报,2006,22(1):51-53.
    [82]Nagamune K, Hicks L M, Fux B, Brossier F. Chini E N, Sibley L D. Abscisic acid control calcium-dependent egress and development in Toxoplasma gondii[J].Nature,2008,451:207-210.
    [83]余振华,胡颖新,曹健.氯喹治疗小鼠弓形虫感染的实验观察[J].中国寄生虫病防治杂志,2005,18(3):184-186.
    [84]Scheibel L W. Role Role of calcium/calmodulin-mediated processes in protozoa [J]. Int Rev Cytol, 1992,134(1):165-242.
    [85]Narasimhan J, Joyce B R, Naguleswaran A, Smith A T, Livingston M R, Dixon S E, Coppens I, Wek R C, Sullivan W J. Translation regulation by eukaryotic initiation factor-2 kinases in the development of latent cysts in Toxoplasma gondii[J]. J Bio Chem,2008,283 (24):16591-16601.
    [86]Fox B A, Ristuccia J G, Bzik D J. Genetic identification of essential indels and domains in carbamoyl phosphate synthetase Ⅱ of Toxoplasma gondii[J]. Int J Parasitol,2009,39 (5):533-539.
    [1]于恩庶.弓形虫病学[M].福州:福建省科学技术出版社,1992,61.
    [2]Catherine M, Nicola R, Rowan J, Smith N C. The immunobiology of the innate response to Toxoplasma gondii [J]. International Journal for Parasitology,2009,39:23-39.
    [3]Matowicka-Karna J, Dymicka-Piekarska V, Kemona H. Does Toxoplasma gondii infection affect the levels of IgE and cytokines (IL-5, IL-6, IL-10, IL-12, and TNF-alpha) [J]? Clin Dev Immunol 2009,374696.
    [4]Aliberti J, Bafica A. Anti-inflammatory pathways as a host evasion mechanism for pathogens [J]. Prostaglandins Leukot Essent Fatty Acids,2005,73:283-288.
    [5]Khosroshahi K H, Ghaffarifar F, Sharifi Z, D'Souza S, Dalimi A, Hassan Z M, Khoshzaban F. Comparing the effect of IL-12 genetic adjuvant and alum non-genetic adjuvant on the efficiency of the cocktail DNA vaccine containing plasmids encoding SAG-1 and ROP-2 of Toxoplasma gondii[J]. Parasitol Res.2012, DOI:10.1007/s00436-012-2852-7.
    [6]Lieberman L A, Cardillo F, Owyang A M, Rennick D M. Cua D J, Kastelein R A, Hunter C A. IL-23 provides a limited mechanism of resistance to acute toxoplasmosis in the absence of IL-12 [J]. J Immunol,2004,173:1887-1893.
    [7]Kohlhapp F J, Zloza A, O'Sullivan J A, Moore T V, Lacek A T, Jagoda M C, McCracken J, Cole D J, Guevara-Patino J A. CD8+T Cells Sabotage Their Own Memory Potential through IFN-gamma-Dependent Modification of the IL-12/IL-15 Receptor alpha Axis on Dendritic Cells[J]. J Immunol,2012,188:3639-3647.
    [8]Liu C H, Fan Y T, Dias A, Esper L, Corn R A, Bafica A, Machado F S, Aliberti J. Cutting edge: dendritic cells are essential for in vivo IL-12 production and development of resistance against Toxoplasma gondii infection in mice [J]. J Immunol,2006,177:31-35.
    [9]Aliberti J, Bafica A. Anti-inflammatory pathways as a host evasion mechanism for pathogens [J]. Prostaglandins Leukot Essent Fatty Acids,2005,73:283-288.
    [10]Lang C, Hildebrandt A, Brand F, Opitz L, Dihazi H, Luder C G. Impaired chromatin remodelling at STAT1-regulated promoters leads to global unresponsiveness of Toxoplasma gondii-Infected macrophages to IFN-gamma[J]. PLoS Pathog,2012,8:e1002483.
    [11]Bohne W, Heesemann J, Gross U. Induction of bradyzoite-specific Toxoplasma gondii antigens in cinterferon-treated mouse macrophages [J]. Infect Immun,1993,61:1141-1145.
    [12]Melzer T, Duffy A, Weiss L M, Halonen S K. The gamma interferon (IFN-gamma)-inducible GTP-binding protein IGTP is necessary for toxoplasma vacuolar disruption and induces parasite egression in IFN-gamma-stimulated astrocytes[J]. Infect Immun,2008,76:4883-4894.
    [13]Scharton-Kersten T M, Wynn T A, Denkers E Y, E.Y., Bala S, Grunvald E, Hieny S, Gazzinelli R T. Sher A. In the absence of endogenous IFN-y, mice develop unimpaired IL-12 responses to Toxoplasma gondii while failing to control acute infection [J]. J Immunol,1996,157:4045-4054.
    [14]Ghaffarifar F, Abdolah Pour M, Sharifi Z, Dalimi Asl A, A1-Kawaz E. The Effect of Vitamin D3 Alone and Mixed With IFN-gamma on Tachyzoites of Toxoplasma gondii (RH Strain) Proliferation and Nitric Oxide (NO) Production in Infected Macrophages of BALB/C Mice[J]. Iran J Parasitol, 2010,5:48-56.
    [15]Coleman J W. Nitricoxide in immunity and inflammation [J]. Int Immunopharmacol,2001,1: 1397-1406.
    [16]Tobin C M, Knoll L J. A patatin-like protein protects Toxoplasma gondii from degradation in a nitric oxide-dependent manner[J]. Infect Immun,2011,80:55-61.
    [17]Khan I A, Schwartzman J D, Matsuura T, Kasper L H. A dichotomous role for nitric oxide during acute Toxoplasma gondii infection in mice [J]. Proc Natl Acad Sci,1997,94:13955-13960.
    [18]Kang K M, Lee G S, Lee J H, Choi I W, Shin D W, Lee Y H. Effects of iNOS inhibitor on IFN-y production and apoptosis of splenocytes in genetically different strains of mice infected with Toxoplasma gondii [J]. Korean J Parasitol,2004,42:175-183.
    [19]Lee Y H, Kasper L H. Immune responses of different mouse strains after challenge with equivalent lethal doses of Toxoplasma gondii [J]. Parasite,2004,11:89-97.
    [20]Bout D, Moretto M, Dimier-Poisson I, Gatel D B. Interaction between Toxoplasma gondii and enterocyte [J]. Immunobiology,1999,201:225-228.
    [21]Suzuki Y, Halone S, Wang X, Wen X. Cerebral toxoplasmosis:pathogenesis and host resistance [J]. Perspectives and Methods,2007,567-591.
    [22]Silva N M, Rodrigues C V, Santoro M M, Reis L F, Alvarez-Leite J I, Gazzinelli R T. Expression of indoleamine 2,3-dioxygenase, tryptophan degradation, and kynurenine formation during in vivo infection with Toxoplasma gondii:induction by endogenous gamma interferon and requirement for interferon regulatory factor [J]. Infect Immun,2002,70:859-868.
    [23]Butcher B A, Greene R I, Henry S C, Annecharico K L, Weinberg J B, Denkers E Y, Sher A, Taylor G A. P47 GTPases regulate Toxoplasma gondii survival in activated macrophages [J]. Infect Immun, 2005,73:3278-3286.
    [24]Yap G S, Shaw M H, Ling Y, Sher A. Genetic analysis of host resistance to intracellular pathogens: lessons from studies of Toxoplasma gondii infection [J]. Microbes Infect,2006,8:1174-1178.
    [25]Shaw M H, Freeman G J, Scott M F, Fox B A, Bzik D J, Belkaid Y, Yap G S. Tyk2 negatively regulates adaptive Th1 immunity by mediating IL-10 signaling and promoting IFN-γ dependent IL-10 reactivation [J]. J Immunol,2006,176:7263-7271.
    [26]Mennechet F J, Kasper L H, Rachinel N, Minns L A, Luangsay S, Vandewalle A, Buzoni-Gatel D. Intestinal intraepithelial lymphocytes prevent pathogen-driven inflammation and regulate the Smad/T-bet pathway of lamina propria CD4+T cells [J]. Eur J Immunol,2004,34:1059-1067.
    [27]Villarino A V, Stumhofer J S, Saris C J M, Kastelein R A, de Sauvage F J, Hunter C A. IL-27 limits IL-2 production during Thl differentiation [J]. J Immunol,2006,176:237-247.
    [28]Buzoni-Gatel D, Schulthess J, Menard L C, Kasper L H. Mucosal defences against orally acquired protozoan parasites, emphasis on Toxoplasma gondii infections[J]. Cell. Microbiol,2006,8: 535-544.
    [29]Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses[J]. Nat. Immunol,2004,5:987-995.
    [30]Mennechet F J, Kasper L H, Rachinel N, Li W, Vandewalle A, Buzoni-Gatel D. Lamina propria CD4+T lymphocytes synergize with murine intestinal epithelial cells to enhance proinflammatory response against an intracellular pathogen[J]. J. Immunol,2002,168:2988-2996.
    [31]Combe C L, Moretto M M, Schwartzman J D, Gigley J P, Bzik D J, Khan I A. Lack of IL-15 results in the suboptimal priming of CD4+T cell response against an intracellular parasite[J]. Proc. Natl. Acad. Sci. USA,2006,103:6635-6640.
    [32]Khan I A, Moretto M, Wei X Q, Williams M, Schwartzman J D, Liew F Y. Treatment with soluble interleukin-15Ra exacerbates intracellular parasitic infection by blocking the development of memory CD8+T cell response[J]. J. Exp. Med,2002,195:1463-1470.
    [33]Lieberman L A, Villegas E N, Hunter C A. Interleukin-15-deficient mice develop protective immunity to Toxoplasma gondii[J]. Infect. Immun,2004,72:6729-6732.
    [34]Kasper L, Courret N, Darche S, Luangsay S., Mennechet F, Minns L, Rachinel N, Ronet C, Buzoni-Gatel D. Toxoplasma gondii and mucosal immunity[J]. Int. J. Parasitol,2004,34:401-409.
    [35]Lepage A C, Buzoni-Gatel D, Bout D T, Kasper L H. Gut-derived intraepithelial lymphocytes induce long term immunity against Toxoplasma gondii[J]. J. Immunol,1998,161:4902-4908.
    [36]Van Gisbergen K P, Geijtenbeek T B, van Kooyk Y. Close encounters of neutrophils and DCs[J]. Trends Immunol,2005,26:626-631.
    [37]Sukhumavasi W, Egan C E, Denkers E Y. Mouse neutrophils require JNK2 MAPK for Toxoplasma gondii-induced IL-12p40 and CCL2/MCP-1 release[J]. J.Immunol,2007,179:3570-3577.
    [38]Kelly M N, Kolls J K, Happel K, Schwartzman J D, Schwarzenberger P, Combe C, Moretto M, Khan I A. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection[J]. Infect. Immun, 2005,73:617-621.
    [39]Jensen K D, Wang Y, Wojno E D, Shastri A J, Hu K, Cornel L, Boedec E, Ong Y C, Chien Y H, Hunter C A, Boothroyd J C, Saeij J P. Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation[J]. Cell Host Microbe,2011,9:472-483.
    [40]Marshall E S, Elshekiha H M, Hakimi M A, Flynn R J. Toxoplasma gondii peroxiredoxin promotes altered macrophage function, caspase-1-dependent IL-lbeta secretion enhances parasite replication[J]. Vet Res,2011,42:80.
    [41]Zhou D H, Yuan Z G, Zhao F R, Li H L, Zhou Y, Lin R Q, Zou F C, Song H Q, Xu M J, Zhu X Q. Modulation of mouse macrophage proteome induced by Toxoplasma gondii tachyzoites in vivo[J]. Parasitol Res,2011,109:1637-1646..
    [42]Goldszmid R S, Bafica A, Jankovic D, Feng C G, Caspar P, Winkler-Pickett R, Trinchieri G, Sher, A. TAP-1 indirectly regulates CD4+T cell priming in Toxoplasma gondii infection by controlling NK cell IFN-c production[J]. J. Exp. Med,2007,204:2591-2602.
    [43]French A R, Holroyd E B, Yang L, Kim S, Yokoyama W M. IL-18 acts synergistically with IL-15 in stimulating natural killer cell proliferation[J]. Cytokine,2006,35:229-234.
    [44]Khan I A, Thomas S Y, Moretto M M, Lee F S, Islam S A, Combe C, Schwartzman J D, Luster A D. CCR5 is essential for NK cell trafficking and host survival following Toxoplasma gondii infection[J]. PLoS Pathog,2006,2:e49.
    [45]Guan H, Moretto M, Bzik D J, Gigley J, Khan I A.. NK cells enhance dendritic cell response against parasite antigens via NKG2D pathway[J]. J. Immunol,2007,179:590-596.
    [46]Combe C L, Curiel T J, Moretto M M, Khan I A. NK cells help to induce CD8(+)-T-cell immunity against Toxoplasma gondii in the absence of CD4(+) T cells[J]. Infect. Immun,2005,73: 4913-4921.
    [1]苑文英,赵盛,李俊娟.细胞免疫在弓形虫感染中的作用[J].医学研究与教育,2009,26(3):81-83.
    [2]Bokken G C, van Eerden E, Opsteegh M, Augustijn M, Graat E A, Franssen F F, Gorlich K, Buschtons S, Tenter A M, van der Giessen J W, Bergwerff A A, van Knapen F. Specific serum antibody responses following a Toxoplasma gondii and Trichinella spiralis co-infection in swine[J]. Vet Parasitol,2011,184:126-132
    [3]Silva D A, Silva N M, Mineo T W, Pajuaba Neto A A, Ferro E A, Mineo J R. Heterologous antibodies to evaluate the kinetics of the humoral immune response in dogs experimentally infected with Toxoplasma gondii RH strain[J]. Vet Parasitol,2002,107:181-195.
    [4]Jungersen G, Jensen L, Riber U, Heegaard P M, Petersen E, Poulsen J S, Bille-Hansen V, Lind P. Pathogenicity of selected Toxoplasma gondii isolates in young pigs[J]. Int J Parasitol,1999,29: 1307-1319.
    [5]Vitaliano S N, Mineo T W, Andre M R, Machado R Z, Mineo J R, Werther K. Experimental infection of Crested Caracara (Caracara plancus) with Toxoplasma gondii simulating natural conditions[J]. Vet Parasitol,2010,172:71-75.
    [6]Velmurugan G V, Tewari A K, Rao J R, Baidya S, Kumar M U, Mishra A K. High-level expression of SAG1 and GRA7 gene of Toxoplasma gondii (Izatnagar isolate) and their application in serodiagnosis of goat toxoplasmosis[J]. Vet Parasitol,2008,154:185-192.
    [7]Conde M, Caballero J M, Rodriguez-Ponce E, Ruiz A, Gonzalez J. Analysis of IgG response to experimental infection with RH Toxoplasma gondii in goats[J]. Comp Immunol Microbiol Infect Dis,2001,24:197-206.
    [8]Omata Y, Terada K, Taka A, Isamida T, Kanda M, Saito A. Positive evidence that anti-Toxoplasma gondii IgA antibody exists in the intestinal tract of infected cats and exerts protective activity against the infection[J]. Vet Parasitol,2007,73:1-11.
    [9]Lappin M R, Burney D P, Hill S A, Chavkin M J. Detection of Toxoplasma gondii-specific IgA in the aqueous humor of cats[J]. Am J Vet Res,1995,56:774-778.
    [10]Burney D P, Lappin M R, Cooper C, Spilker M M. Detection of Toxoplasma gondii-specific IgA in the serum of cats[J]. Am J Vet Res,1995,56:769-773.
    [11]Bout D, Moretto M, Dimier-Poisson I. Interaction between Toxoplasma gondii and enterocyte[J]. Immunobiology,1999,201(2):225-228.
    [12]申金雁,孟晓丽,殷国荣.弓形虫感染鼠小肠IgA分泌细胞数量与IgA水平动态变化[J].中 国寄生虫学与寄生虫病杂志,2010,28(1):21-25.
    [13]McLeod R, Mack D G Secretory IgA specific for Toxoplasma gondii[J]. J Immunol,1986,136 (7): 2640-2643.
    [14]Kasper L H, Buzoni-Gatel D. Ups and downs of mucosal cellular immunity against protozoan parasites[J]. Infect Immun,2001,69 (1):421-429.
    [15]Capron M, Bazin H, Joseph M, Capron A. Evidence for IgE-dependent cytotoxicity by rate eostnophilis[J]. J Immunol,2009,126(5):1764-1769.
    [16]Joseph M, Auriault C, Capron A, Vorng H, Viens P. A new function for platelets:IgE-dependent killing of schistosomes[J]. Nature,1983,303:810-812.
    [17]Hemida M H, Mahmoud N S, El M M, Ammar el S G, Kilany Y F, El T D, El D T. Interleukin (I1)-12,I1-5 and total IgE in hepatosplenic schistosomiasis with or without asthma[J]. J Egypt Soc Parasitol,2011,40:367-376
    [18]Watanabe N, Kobayashi A. Regulation of Immunoglobulin E production in mice immunized with an extract of toxoplasma gondii[J]. Infect Immun,1989,57(5):1405-1408.
    [19]Vouldoukis I, Mazier D, Moynet D, Thiolat D, Malvy D, Mossalayi M D. IgE mediates killing of intracellular Toxoplasma gondii by human macrophages through CD23-dependent, interleukin-10 sensitive pathway[J]. PLoS One,2011,6:e18289
    [20]Cong H, Mui E J, Witola W H, Sidney J, Alexander J, Sette A, Maewal A, El Bissati K, Zhou Y, Suzuki Y, Lee D, Woods S. Sommerville C, Henriquez F L, Roberts C W, McLeod R. Toxoplasma gondii HLA-B*0702-restricted GRA7(20-28) peptide with adjuvants and a universal helper T cell epitope elicits CD8(+) T cells producing interferon-gamma and reduces parasite burden in HLA-B*0702 mice[J]. Hum Immunol,2012,73:1-10
    [21]Gigley J P, Bhadra R, Khan I A. CD8 T Cells and Toxoplasma gondii:A New Paradigm[J]. J Parasitol Res,2011,243796.
    [22]Kang H, Remington J S, Suzuki Y. Decreased resistance of B cell-deficient mice to infection with Toxoplasma gondii despite unimpaired expression of IFN-gamma, TNF-alpha, and inducible nitric oxide synthase[J]. J Immunol,2000,164(5):2629-2634.
    [23]吴玉章等译,基础免疫学[M].北京:科学出版社,2003:1390-1407.
    [24]Sayles P C, Gibson G W, Johnson L L. B cells are essential for vaccination-induced resistance to virulent Toxoplasma gondii [J]. Infect Immun,2000,68:1026-1033.
    [25]Hoerauf A, Solbach W, Lohoff M, Rollinghoff M. The Xid defect determines an improved clinical course of murine leishmaniasis in susceptible mice [J]. Int Immunol,1994,6(8):1117-1124.
    [26]Chen M, Mun H S, Piao L X, Aosai F, Norose K, Mohamed R M, Belal U S, Fang H, Ahmed A K, Kang H K, Matsuzaki G, Kitamura D. Yano A. Induction of protective immunity by primed B-l cells in Toxoplasma gondii-infected B cell-deficient mice[J]. Microbiol Immunol,2003,47: 997-1003.
    [27]Chen M, Aosai F, Mun H S, Norose K, Hata H, Yano A. Anti-HSP70 autoantibody formation by B-1 cells in Toxoplasma gondii-infected mice [J].Infect Immun,2000,68(9):4893-4899.
    [28]Chen M, Aosai F, Norose K, Mun H S, Yano A. The role of anti-HSP70 autoantibody-forming V(H)1-J(H)1 B-1 cells in Toxoplasma gondii-infected mice [J].Int Immunol,2003,15(1):39-47.
    [29]Bergmann C C, Ramakrishna C, Kornacki M, Stohlman S A. Impaired T cell immunity in B cell-deficient mice following viral central nervous system infection [J]. J Immunol,2001,167(3): 1575-1583.
    [30]Matsuzaki G, Vordermeier H M, Hashimoto A, Nomoto K, Ivanyi J. The role of B cells in the establishment of T cell response in mice infected with an intracellular bacteria, Listeria monocytogenes [J]. Cell Immunol,1999,194(2):178-185.
    [31]Chen M, Mun H S, Piao L X, Aosai F, Norose K, Mohamed R M, Belal U S, Fang H, Ahmed A K, Kang H K, Matsuzaki G, Kitamura D, Yano A. Induction of protective immunity by primed B1 cells in Toxoplasma gondii-infected B cell-deficient mice[J]. Microbiol Immunol,2003,47(12): 997-1003.
    [32]Mun H S, Aosai F, Fang H, Piao L X, Winn T, Norose K, Yano A. A novel B-2 suppressor cell regulating susceptibility/resistance of mice to Toxoplasma gondii infection[J]. Microbiol Immunol, 2005,49(9):853-858.
    [33]Li W, Buzoni-Gatel D, Debbabi H, Hu M S, Mennechet F J, Durell B G, Noelle R J, Kasper L H. CD40/CD154 ligation is required for the development of acute ileitis following oral infection with an intracellular pathogen in mice [J].Gastroenterology,2002,122(3):762-773.
    [34]Duquesine V, Auriault C, Darcy F. Protection of nude rots against Toxoplasma gondii infection by excreted secreted antigen-specific help T cells[J]. Infection and Immunity,1990,58(7):2120-2126.
    [35]Couper K N, Lanthier P A, Perona-Wright G, Kummer L W, Chen W, Smiley S T, Mohrs M, Johnson L L. Anti-CD25 antibody-mediated depletion of effector T cell populations enhances susceptibility of mice to acute but not chronic Toxoplasma gondii infection[J]. J Immunol,2009, 182,3985-3994.
    [36]Ahn H J, Kim J Y, Nam H W. IL-4 independent nuclear translocalization of STAT6 in HeLa cells by entry of Toxoplasma gondii[J]. Korean J Parasitol,2009,47:117-124.
    [37]Suzuki Y, Yang Q, Yang S, Nguyen N, Lim S, Liesenfeld O, Kojima T, Remington J S. IL-4 is protective against development of Toxoplasmic encephalitis[J]. J Immunol,1996,157(6) 2564- 2569.
    [38]Vouldoukis I, Mazier D, Moynet D, Thiolat D, Malvy D, Mossalayi M D. IgE mediates killing of intracellular Toxoplasma gondii by human macrophages through CD23-dependent, interleukin-10 sensitive pathway. PLoS One,2011,6:e18289.
    [39]Sabin A B, Feldman H A. Dyes as Microchemical Indicators of a New Immunity Phenomenon Affecting a Protozoon Parasite (Toxoplasma) [J]. Science,1948,108:660-663.
    [40]Masihi K N, Werner H. The effect of passively transferred heterologous serum on Toxoplasma gondii in NMRI mice. Influence of the treatment on course of infection and cyst formation[J]. Zentralbl Bakteriol OrigA,1978,240:135-142.
    [41]杜重波,张德林,马军武.弓形虫病免疫的研究—弓形虫分泌排泄抗原制备及其对怀孕母羊免疫效果的观测[J].中国兽医科技,1994,(10):5-8.
    [42]Coughlan S N, Saman E, Jacobs D, Mercier C, Cesbron-Delauw M F, Trees A J. Cellular and humoral responses to recombinant antigens in sheep inflected with Toxoplasma gondii[J], Parasite Immunol,2011,17:465-468.
    [43]Waine G J, McManus D P. Nucleic acids:vaccines of the future[J]. Parasitol Today,1995,3(11): 113-116.
    [44]Dannemann B R, Morris V A, Araujo F G, Remington J S. Assessment of human natural killing and lymphokine-activated killer cell cytotoxicity against Toxoplasma gondii tachyzoites and cysts[J]. J Immunol,2009,143:2684-2691.
    [45]Erbe D V, Pfefferkorn E R, Fanger M W. Function of the various human IgG Fc receptors in mediating killing of Toxoplasma gondii[J]. J Immunol,1991,146 (9):3145-3151.
    [1]陈昌源.家养宠物与人群弓形虫感染情况的研究[J].中国人兽共患病杂志2001,17(1):76-77.
    [2]张翰,周东辉,陈强,唐剑栋,宋慧群,朱兴全.猫源弓形虫虫株的分离与鉴定[J].中国兽医科学2007,37(02):160-162.
    [3]Weifeng Qian, Hui Wang, Chunlei Su, Dan Shan, Xia Cui, Na Yang, Chaochao Lv, Qun Liu. Isolation and characterization of Toxoplasma gondii strains from stray cats revealed a single genotype in Beijing, China[J].Vet Parasitol,2012, doi:10.1016/j.vetpar.
    [4]杨振.中国部分地区水生动物弓形虫感染情况调查[D].南京农业大学硕士学位论文,2010.
    [5]Dubey J P, Zhu X Q, Sundar N, Zhang H, Kwok O C, Su C. Genetic and biologic characterization of Toxoplasma gondii isolates of cats from China[J]. Vet Parasitol 2007,145:352-356.
    [6]于咏兰,付丽娟,汪明.北京地区犬猫弓形虫病血清学调查[J].中国兽医杂志2006,42(5):7-9.
    [7]Dubey J P, Graham D H, Dahl E, Hilali M, El-Ghaysh A, Sreekumar C, Kwok O C, Shen S K, Lehmann T. Isolation and molecular characterization of Toxoplasma gondii from chickens and ducks from Egypt[J]. Vet Parasitol 2003,114:89-95.
    [8]Dubey J P, Graham D H, da Silva D S, Lehmann T, Bahia-Oliveira L M. Toxoplasma gondii isolates of free-ranging chickens from Rio de Janeiro, Brazil:mouse mortality, genotype, and oocyst shedding by cats. J Parasitol 2003,89:851-853.
    [9]Dubey J P, Gomez-Marin J E, Bedoya A, Lora F, Vianna M C, Hill D, Kwok O C, Shen S K, Marcet P L, Lehmann T. Genetic and biologic characteristics of Toxoplasma gondii isolates in free-range chickens from Colombia, South America. Vet Parasitol 2005,134:67-72.
    [10]Dubey J P, Su C, Oliveira J, Morales J A, Bolanos R V, Sundar N, Kwok O C, Shen S K. Biologic and genetic characteristics of Toxoplasma gondii isolates in free-range chickens from Costa Rica, Central America. Vet Parasitol 2006,139:29-36.
    [1]Howe D K, Sibley L D. Toxoplasma gondii comprises three clonal lineages:correlation of parasite genotype with human disease[J]. Journal of Infectious Diseases,1995,172:1561-1566.
    [2]Mondragon R, Howe D K, Dubey J P, Sibley L D. Genotypic analysis of Toxoplasma gondii isolates from pigs[J]. Journal of Parasitology,1998,84:639-641.
    [3]Dubey J P, Edelhofer R, Marcet P, Vianna M C B, Kwok O C H, Lehmann T. Genetic and biologic characteristics of Toxoplasma gondii infections in free range chickens from Austria[J]. Veterinary Parasitology,2005,133:299-306.
    [4]Zhao G W, Shen B, Xie Q, Xu L X, Yan R F, Song X K, Hassan I A, Li X R. Isolation and molecular characterization of Toxoplasma gondii from chickens in the People's Republic of China[J]. Agricultural Sciences in China.(in press)
    [5]Howe D K, Honore S, Derouin F, Sibley L D. Determination of genotypes of Toxoplasma gondii strains isolated from patients with toxoplasmosis[J]. Journal of Clinical Microbiology,1997,35: 1411-1414.
    [6]Grigg M E, Ganatra J, Boothrooyd J C, Margolis T P. Unusual abundance of atypical strains associated with human ocular toxoplasmosis[J]. Journal of Infectious Diseases,2001,184:633-639.
    [7]Khan A, Su C, German M, Storch G A, Clifford D B, Sibley L D. Genotyping of Toxoplasma gondii strains from immunocompromised patients reveals high prevalence of type I strains[J]. Journal of Clinical Microbiology,2005,43:5881-5887.
    [8]Su C, Howe D K, Dubey J P, Ajioka J W, Sibley L D. Identification of quantitative trait loci controlling acute virulence in Toxoplasma gondii[S]. Proceedings of the National Academy of Sciences of the United States of America,2002,99:10753-10758.
    [9]Ajzenberg D, Banuls A L,Tibayrenc M. Microsatellite analysis of Toxoplasma gondii shows considerable polymorphism structured into two main clonal groups[J]. International Journal for Parasitology,2002,32:27-38.
    [10]Dubey J P, Su C, Oliveira J, Morales J A, Bolanos R V, Sundar N, Kwok O C, Shen S K. Biologic and genetic characteristics of Toxoplasma gondii isolates in free-range chickens from Costa Rica, Central America[J]. Vet Parasitol,2006,139:29-36.
    [11]Zhou P, Zhang H, Lin R Q, Zhang D L, Song H Q, Su C, Zhu X Q. Genetic characterization of Toxoplasma gondii isolates from China[J]. Parasitology International,2009,58:193-195.
    [1]于恩庶.中国弓形虫病[M].香港:亚洲医药出版社,2000:1-2.
    [2]Lige B, Romano J D, Bandaru V V, Ehrenman K, Levitskaya J, Sampels V, Haughey N J, Coppens I. Deficiency of a Niemann-Pick, type C1-related protein in toxoplasma is associated with multiple lipidoses and increased pathogenicity[J]. PLoS Pathog,2011,7:e1002410..
    [3]Dubey J P. Toxoplasmosis of animals and humans[M]. Second Edition. Boca Raton, Beltsville, Maryland,2009, CRC Press pp:47-51.
    [4]Thiptara A, Kongkaew W, Bilmad U, Bhumibhamon T, Anan S. Toxoplasmosis in piglets[J]. Ann N YAcad Sci,2006,1081:336-338.
    [5]Habib F S, Ali N M, El-Kadery A A, Soffar S A, Abdel-Razek M G. Sequential recognition of antigenic markers of Toxoplasma gondii tachyzoite by pooled sera of mice with experimental toxoplasmosis[J]. Parasitol Res,2010,108:151-160.
    [6]Jungersen G, Jensen L, Riber U, Heegaard P M, Petersen E, Poulsen J S, Bille-Hansen V, Lind P. Pathogenicity of selected Toxoplasma gondii isolates in young pigs[J]. Int J Parasitol,1999,29: 1307-1319.
    [7]Solano Aguilar G I, Beshah E, Vengroski K G, Zarlenga D, Jauregui L, Cosio M, Douglass L W, Dubey J P, Lunney J K. Cytokine and lymphocyte profiles in miniature swine after oral infection with Toxoplasma gondii oocysts[J]. Int J Parasitol,2001,31:187-195.
    [8]Kaneto C N, Costa A J, Paulillo A C, Moraes F R, Murakami T O, Meireles M V. Experimental toxoplasmosis in broiler chicks[J]. Vet Parasitol,1997,69:203-210.
    [9]Albuquerque M C, Almeida Mda G, Amendoeira M R. Retinochoroiditis toxoplasmosis susceptibility and gene polymorphism[J]. Arq Bras Oftalmol,2011,74:227..
    [1]于恩庶.中国弓形虫病[M].第一版.香港:亚洲医学出版社.2000,2.
    [2]Tenter A M, Heckeroth A R, Weiss L M. Toxoplasma gondii:from animals to humans[J]. Int J Parasitol,2000,30:1217-1258.
    [3]Dubey, J P. Toxoplasmosis of animals and humans[M]. Second Edition. Boca Raton, Beltsville, Maryland.2009, CRC Press pp:47-51..
    [4]Liao S Q, W Y, Song H Q. Diagnosis of swine toxoplasmosis by specific PCR assay and the isolation of Toxoplasma gondii strains[J]. J Trop Med,2006,6:969-971.
    [5]Thiptara A, Kongkaew W, Bilmad U, Bhumibhamon T, Anan S. Toxoplasmosis in piglets[J]. Ann N YAcad Sci,2006,1081:336-338.
    [6]杨培梁,王元占,陈晓光.弓形虫感染实验动物模型的特点及建模方案的选择[J].中国比较医学杂志,2009,6:82-86.
    [7]Wang Y H, Li X R, Wang G X, Yin H, Cai X P, Fu B Q, Zhang D L. Development of an immunochromatographic strip for the rapid detection of Toxoplasma gondii circulating antigens[J]. Parasitol Int,2011,60:105-107.
    [8]苑文英,赵盛,李俊娟.细胞免疫在弓形虫感染中的作用.医学研究与教育,2009,26(3):81-83.
    [9]于恩庶.弓形虫病学[M].福州:福建省科学技术出版社,1992,61.
    [10]申金雁,孟晓丽,殷国荣.弓形虫感染鼠小肠IgA分泌细胞数量与IgA水平动态变化[J].中国寄生虫学与寄生虫病杂志,2010,28(1):21-25.
    [11]Conde M, Caballero J M, Rodriguez-Ponce E, Ruiz A, Gonzalez J. Analysis of IgG response to experimental infection with RH Toxoplasma gondii in goats[J]. Comp Immunol Microbiol Infect Dis,2001,24:197-206.
    [12]Charles E, Joshi S, Ash J D, Fox B A, Farris A D, Bzik D J, Lang M L, Blader I J. CD4 T-cell suppression by cells from Toxoplasma gondii-infected retinas is mediated by surface protein PD-L1[J]. Infect Immun,2010,78:3484-3492.
    [13]Cong H, Mui E J, Witola W H, Sidney J, Alexander J, Sette A, Maewal A, El Bissati K, Zhou Y, Suzuki Y, Lee D, Woods S, Sommerville C, Henriquez F L, Roberts C W, McLeod R. Toxoplasma gondii HLA-B*0702-restricted GRA7(20-28) peptide with adjuvants and a universal helper T cell epitope elicits CD8(+) T cells producing interferon-gamma and reduces parasite burden in HLA-B*0702 mice[J]. Hum Immunol,2011,73:1-10..
    [14]Denkers E Y. T lymphocyte-dependent effector mechanisms of immunity to Toxoplasma gondii[J]. Microbes Infect,1999,1:699-708.
    [15]Goldszmid R S, Bafica A, Jankovic D, Feng C G, Caspar P, Winkler-Pickett R, Trinchieri G, Sher A. TAP-1 indirectly regulates CD4+T cell priming in Toxoplasma gondii infection by controlling NK cell IFN-gamma production[J]. J Exp Med,2007,204:2591-2602..
    [16]Agudelo O, Bueno J, Villa A, Maestre A. High IFN-gamma and TNF production by peripheral NK cells of Colombian patients with different clinical presentation of Plasmodium falciparum[J]. Malar J,2012,11:38.
    [17]Lang C, Algner M, Beinert N, Gross U, Luder C G. Diverse mechanisms employed by Toxoplasma gondii to inhibit IFN-gamma-induced major histocompatibility complex class Ⅱ gene expression[J]. Microbes Infect,2006,8:1994-2005.
    [18]Luder C G, Lang C, Giraldo-Velasquez M, Algner M, Gerdes J, Gross U. Toxoplasma gondii inhibits MHC class Ⅱ expression in neural antigen-presenting cells by down-regulating the class Ⅱ transactivator CIITA[J]. J Neuroimmunol,2003,134:12-24.
    [19]Luder C G K, Lang T, Beuerle B, Gross U. Down-regulation of MHC class Ⅱ molecules and inability to up-regulate class I molecules in murine macrophages after infection with Toxoplasma gondu[J]. Clin Exp Immunol,1998,112:308-316.
    [20]Aliberti J, Bafica A. Anti-inflammatory pathways as a host evasion mechanism for pathogens [J]. Prostaglandins Leukot Essent Fatty Acids,2005,73:283-288.
    [21]Suzue K, Asai T, Takeuchi T. In vivo role of IFN-γ by antigen presenting cells in early host defense against intracellular pathogens [J]. Eur J Immunol,2003,33:2666-2675.
    [22]Bohne W, Heesemann J, Gross U. Induction of bradyzoite-specific Toxoplasma gondii antigens in cinterferon-treated mouse macrophages [J]. Infect Immun,1993,61:1141-1145.
    [23]Liu C H, Fan Y T, Dias A, Esper L, Corn R A, Bafica A, Machado F S, Aliberti J. Cutting edge: dendritic cells are essential for in vivo IL-12 production and development of resistance against Toxoplasma gondii infection in mice [J]. J Immunol,2006,177:31-35.
    [24]Dogruman-A1 F, Fidan I, Celebi B, Yesilyurt E, Erdal B, Babur C, Kustimur S. Cytokine profile in murine toxoplasmosis[J]. Asian Pac J Trop Med,2011,4:16-19.
    [25]Miller C M, Boulter N R, Ikin R J, Smith N C. The immunobiology of the innate response to Toxoplasma gondii[J]. Int J Parasitol,2009,39:23-39.
    [26]Tobin C M, Knoll L J. A patatin-like protein protects Toxoplasma gondii from degradation in a nitric oxide-dependent manner[J]. Infect Immun,2011,80:55-61.
    [27]Tung J T, Venta P J, Caron J P. Inducible nitric oxide expression in equine articular chondrocytes: effects of antiinflammatory compounds[J]. Osteoarthritis Cartilage,2002,10:5-12.
    [28]Bout D, Moretto M, Dimier-Poisson I, Gatel D B. Interaction between Toxoplasma gondii and enterocyte[J]. Immunobiology,1999,201:225-228.
    [29]Song H, Yan R, Xu L, Song X, Shah M A, Zhu H, Li X. Efficacy of DNA vaccines carrying Eimeria acervulina lactate dehydrogenase antigen gene against coccidiosis[J]. Exp Parasitol,2010, 126:224-231.
    [1]Kasper L, Courret N, Darche S, Luangsay S, Mennechet F, Minns L, Rachinel N, Ronet C, Buzoni-Gatel D. Toxoplasma gondii and mucosal immunity[J]. Int J Parasitol,2004,34:401-409.
    [2]Zenner L, Darcy F, Capron A, Cesbron-Delauw M F. Toxoplasma gondii:kinetics of the dissemination in the host tissues during the acute phase of infection of mice and rats[J]. Exp Parasitol,1998,90:86-94.
    [3]赖植发.弓形虫慢性感染动物模型的研究[D].第一军医大学硕士论文,2006,PP:6-20.
    [4]苑文英,赵盛,李俊娟.细胞免疫在弓形虫感染中的作用[J].医学研究与教育,2009,26(3):81-83.
    [5]Sakikawa M, Noda S, Hanaoka M, Nakayama H, Hojo S, Kakinoki S, Nakata M, Yasuda T, Ikenoue T, Kojima T. Anti-Toxoplasma antibody prevalence, primary infection rate, and risk factors in a study of toxoplasmosis in 4,466 pregnant women in Japan[J]. Clin Vaccine Immunol,2011,19: 365-367.
    [6]Bokken G C, van Eerden E, Opsteegh M, Augustijn M, Graat E A, Franssen F F, Gorlich K, Buschtons S, Tenter A M, van der Giessen J W, Bergwerff A A, van Knapen F. Specific serum antibody responses following a Toxoplasma gondii and Trichinella spiralis co-infection in swine[J]. Vet Parasitol,2011,184:126-132.
    [7]Dunay I R, Sibley L D. Monocytes mediate mucosal immunity to Toxoplasma gondii[J]. Curr Opin Immunol,2010,22:461-466.
    [8]申金雁,孟晓丽,殷国荣.弓形虫感染鼠小肠IgA分泌细胞数量与IgA水平动态变化[J].中国寄生虫学与寄生虫病杂志,2010,28(1):21-25.
    [9]Santana S S, Silva D A, Vaz L D, Pirovani C P, Barros G B, Lemos E M, Dietze R, Mineo J.R, Cunha-Junior J P. Analysis of IgG subclasses (IgG1 and IgG3) to recombinant SAG2A protein from Toxoplasma gondii in sequential serum samples from patients with toxoplasmosis [J]. Immunol Lett, 2012,143:193-201.
    [10]Gigley J P, Bhadra R, Khan I A. CD8 T Cells and Toxoplasma gondii:A New Paradigm[J]. J Parasitol Res 2011,243796.
    [11]Ploix C C, Noor S, Crane J, Masek K, Carter W, Lo D D, Wilson E H, Carson M J. CNS-derived CCL21 is both sufficient to drive homeostatic CD4+T cell proliferation and necessary for efficient CD4+T cell migration into the CNS parenchyma following Toxoplasma gondii infection[J]. Brain Behav Immun,2011,25:883-896.
    [12]Denkers E Y, Scharton-Kersten T, Barbieri S, Caspar P, Sher A. A role for CD4+NK1.1+T lymphocytes as major histocompatibility complex class Ⅱ independent helper cells in the generation of CD8+effector function against intracellular infection[J]. J Exp Med,1996,184:131-139.
    [13]Abou-Bacar A, Pfaff A W, Georges S, Letscher-Bru V, Filisetti D, Villard O, Antoni E, Klein J P, Candolfi E. Role of NK cells and gamma interferon in transplacental passage of Toxoplasma gondii in a mouse model of primary infection[J]. Infect Immun,2004,72:1397-1401.
    [14]Lang C, Algner M, Beinert N, Gross U, Luder C G Diverse mechanisms employed by Toxoplasma gondii to inhibit IFN-gamma-induced major histocompatibility complex class Ⅱ gene expression[J]. Microbes Infect,2006,8:1994-2005.
    [15]Carsten G K, Lu dera, Frank Seeberb. Toxoplasma gondii and MHC-restricted antigen resentation: on degradation, transport and modulation[J]. Int J Parasitol,2001,31:1355-1369.
    [16]Luder C G K, Lang T, Beuerle B, Gross U. Down-regulation of MHC class Ⅱ molecules and inability to up-regulate class I molecules in murine macrophages after infection with Toxoplasma gondii[J]. Clin Exp Immunol,1998,112:308-316.
    [17]Pifer R, Yarovinsky F. Innate responses to Toxoplasma gondii in mice and humans[J]. Trends Parasitol,2011,27:388-393.
    [18]Suzue K, Asai T, Takeuchi T. In vivo role of IFN-y by antigen presenting cells in early host defense against intracellular pathogens [J]. Eur J Immunol,2003,33:2666-2675.
    [19]Khosroshahi K H, Ghaffarifar F, Sharifi Z, D'Souza S, Dalimi A, Hassan Z M, Khoshzaban F. Comparing the effect of IL-12 genetic adjuvant and alum non-genetic adjuvant on the efficiency of the cocktail DNA vaccine containing plasmids encoding SAG-1 and ROP-2 of Toxoplasma gondii [J]. Parasitol Res,2012,DOI:10.1007/s00436-012-2852-7.
    [20]Pifer R, Benson A, Sturge C R, Yarovinsky F. UNC93B1 is essential for TLR11 activation and IL-12-dependent host resistance to Toxoplasma gondii[J]. J Biol Chem,2011,286:3307-3314.
    [21]Pfaff A W, Mousli M, Senegas A, Marcellin L, Takikawa O, Klein J P, Candolfi E. Impact of foetus and mother on IFN-gamma-induced indoleamine 2,3-dioxygenase and inducible nitric oxide synthase expression in murine placenta following Toxoplasma gondii infection[J]. Int J Parasitol, 2008,38:249-258.
    [22]Lieberman L A, Cardillo F, Owyang A M, Rennick D M, Cua D J, Kastelein R A, Hunter C A. IL-23 provides a limited mechanism of resistance to acute toxoplasmosis in the absence of IL-12[J]. J Immunol,2004,173:1887-1893.
    [23]Dogruman-A1 F, Fidan I, Celebi B, Yesilyurt E, Erdal B, Babur C, Kustimur S. Cytokine profile in murine toxoplasmosis[J]. Asian Pac J Trop Med,2011,4:16-19.
    [24]Fang R, Nie H, Wang Z, Tu P, Zhou D, Wang L, He L, Zhou Y, Zhao J. Protective immune response in BALB/c mice induced by a suicidal DNA vaccine of the MIC3 gene of Toxoplasma gondii[J]. Vet Parasitol,2009,164:134-140.
    [25]Miller C M, Boulter N R, Ikin R J, Smith N C. The immunobiology of the innate response to Toxoplasma gondii[J]. Int J Parasitol,2009,39:23-39.
    [26]Bout D, Moretto M, Dimier-Poisson I, Gatel D B. Interaction between Toxoplasma gondii and enterocyte[J]. Immunobiology,1999,201:225-228.
    [1]Jing L X, Du C S, Han Y, Zhang P, Li Y J. Survey of Toxoplasma gondii infection in 93 pregnant women in DaLian[J]. Pract Prevent Med,2005,12:653-655.
    [2]Ivana K, Olgica D D, Sofija K R, Aleksandra N. Cross-sectional survey on Toxoplasma gondii infection in cattle, sheep and pigs in Serbia:Seroprevalence and risk factors[J]. Vet Parasitol,2006, 135:121-131.
    [3]Tenter A M, Heckeroth A R, Weiss L M. Toxoplasma gondii:from animals to humans[J]. Int J Parasitol,2000,30:1217-1258.
    [4]Scallan E, Hoekstra R M, Angulo F J, Tauxe R V, Widdowson M A, Roy S L, Jones J L, Griffin P M. Foodborne illness acquired in the United States--major pathogens[J]. Emerg Infect Dis,2011,17: 7-15.
    [5]Dubey J P. Toxoplasmosis[J]. J Am Vet Med Assoc,1986,189:166-170.
    [6]Innes E A. Toxoplasmosis:comparative species susceptibility and host immune response[J]. Comp Immunol Microbiol Infect Dis,1997,20:131-138.
    [7]Dubey J P. Toxoplasmosis of animals and humans[M]. Second Edition. Boca Raton, Beltsville, Maryland,2009, CRC Press pp:47-51.
    [8]Gustafsson K, Uggla A. Serologic survey for Toxoplasma gondii infection in the brown hare (Lepus europaeus P.) in Sweden[J]. J Wildl Dis,1994,30:201-204.
    [9]Thiptara A, Kongkaew W, Bilmad U, Bhumibhamon T, Anan S. Toxoplasmosis in piglets[J]. Ann N YAcad Sci,2006,1081:336-338.
    [10]Gumbrell R. Sheep abortion in New Zealand:1989[J]. Surveillance,1990,17:22-23.
    [11]Zhao G, Shen B, Xie Q, Xu L X, Yan R F, Song X K, Hassan I A, Li X R. Detection of Toxoplasma gondii in free-range chickens in China based on circulating antigens and antibodies[J]. Vet Parasitol, 2012,185:72-77.
    [12]Dubey J P, Graham D H, Dahl E, Sreekumar C, Lehmann T, Davis M F, Morishita T Y. Toxoplasma gondii isolates from free-ranging chickens from the United States[J]. J Parasitol,2003,89: 1060-1062.
    [13]Dubey J P, Huong L T, Lawson B W, Subekti D T, Tassi P, Cabaj W, Sundar N, Velmurugan G V, Kwok O C, Su C. Seroprevalence and isolation of Toxoplasma gondii from free-range chickens in Ghana, Indonesia, Italy, Poland, and Vietnam[J]. J Parasitol,2008,94:68-71.
    [14]Work K, Eriksen L, Fennestad K L, Moller T, Siim J C. Experimental toxoplasmosis in pregnant sows. I. Clinical, parasitological and serological observations[J]. Acta Pathol Microbiol Scand B Microbiol Immunol,1970,78:129-139.
    [15]Jungersen G, Jensen L, Riber U, Heegaard P M, Petersen E, Poulsen J S, Bille-Hansen V, Lind P. Pathogenicity of selected Toxoplasma gondii isolates in young pigs[J]. Int J Parasitol,1999,29: 1307-1319.
    [16]Solano Aguilar G I, Beshah E, Vengroski K G, Zarlenga D, Jauregui L, Cosio M, Douglass L W, Dubey J P, Lunney J K. Cytokine and lymphocyte profiles in miniature swine after oral infection with Toxoplasma gondii oocysts[J]. Int J Parasitol,2001,31:187-195.
    [17]Howe D K, Sibley L D. Toxoplasma gondii comprises three clonal lineages:correlation of parasite genotype with human disease[J]. J Infect Dis,1995,172:1561-1566.
    [18]Howe D K, Honore S, Derouin F, Sibley L D. Determination of genotypes of Toxoplasma gondii strains isolated from patients with toxoplasmosis[J]. J Clin Microbiol,1997,35:1411-1414.
    [19]Mondragon R, Howe D K, Dubey J P, Sibley L D. Genotypic analysis of Toxoplasma gondii isolates from pigs[J]. J Parasitol,1998,84:639-641.
    [20]Choi K D, Lillehoj H S, Zalenga D S. Changes in local IFN-y and TGF-β4 mRNA expression and intraepithelial lymphocytes following Eimeria acervulina infection[J]. Vet Immunol Immunopathol, 1999,71:263-275.
    [21]Wang Y H, Li X R, Wang G X, Yin H, Cai X P, Fu B Q, Zhang D L. Development of an immunochromatographic strip for the rapid detection of Toxoplasma gondii circulating antigens[J]. Parasitol Int,2011,60:105-107.
    [22]Darcy F, Deslee D, Santoro F, Charif H, Auriault C, Decoster A, Duquesne V, Capron A. Induction of a protective antibody-dependent response against toxoplasmosis by in vitro excreted/secreted antigens from tachyzoites of Toxoplasma gondii[J]. Parasite Immunol,1988,10:553-567.
    [23]Buxton D, Thomson K, Maley S, Wright S, Bos H J. Vaccination of sheep with a live incomplete strain (S48) of Toxoplasma gondii and their immunity to challenge when pregnant[J]. Vet Rec, 1991,129:89-93.
    [24]Maley S W, Thomson K M, Bos H J, Buxton D. Serological diagnosis of toxoplasmosis in sheep following vaccination and challenge[J]. Vet Rec,1997,140:558-559.
    [25]Vitor R W, Ferreira A M, Fux B. Antibody response in goats experimentally infected with Toxoplasma gondii[J]. Vet Parasitol,1999,81:259-263.
    [26]Jungi T W, Adler H, Adler B, Thony M, Krampe M, Peterhans E. Inducible nitric oxide synthase of macrophages. Present knowledge and evidence for species-specific regulation[J]. Vet Immunol Immunopathol,1996,54:323-330.
    [27]Alexander J, Hunter C A. Immunoregulation during toxoplasmosis[J]. Chem Immunol,1998,70: 81-102.
    [28]Yap G S, Sher A. Cell-mediated immunity to Toxoplasma gondii:initiation, regulation and effector function[J]. Immunobiology,1999,201:240-247.
    [29]Denkers E Y. T lymphocyte-dependent effector mechanisms of immunity to Toxoplasma gondii[J]. Microbes Infect,1999,1:699-708.
    [30]Denkers E Y. A Toxoplasma gondii Superantigen:Biological effects and implications for the host-parasite interaction[J]. Parasitol Today,1996,12:362-366.
    [31]Montoya J G, Lowe K E, Clayberger C, Moody D, Do D, Remington J S, Talib S, Subauste C S. Human CD4+ and CD8+ T lymphocytes are both cytotoxic to Toxoplasma gondii-infected cells[J]. Infect Immun,1996,64:176-181.
    [32]Neumann U, Wischner H, Siegmann O. Lack of immunostimulatory effect of N-acetyl muramyl-L-alanyl-D-isoglutamine on selected chicken immune functions[J]. Comp Immunol Microbiol Infect Dis,1982,5:413-421.
    [33]Lang C, Algner M, Beinert N, Gross U, Luder C G. Diverse mechanisms employed by Toxoplasma gondii to inhibit IFN-gamma-induced major histocompatibility complex class Ⅱ gene expression[J]. Microbes Infect,2006,8:1994-2005.
    [34]Luder C G, Lang T, Beuerle B, Gross U. Down-regulation of MHC class Ⅱ molecules and inability to up-regulate class I molecules in murine macrophages after infection with Toxoplasma gondii[J]. Clin Exp Immunol,1998,112,308-316.
    [35]Luder C G, Walter W, Beuerle B, Maeurer M J, Gross U. Toxoplasma gondii down-regulates MHC class Ⅱ gene expression and antigen presentation by murine macrophages via interference with nuclear translocation of STAT1 alpha[J]. Eur J Immunol,2001,31:1475-1484.
    [36]Luder C G, Lang C, Giraldo-Velasquez M, Algner M, Gerdes J, Gross U. Toxoplasma gondii inhibits MHC class Ⅱ expression in neural antigen-presenting cells by down-regulating the class II transactivator CIITA[J]. J Neuroimmunol,2003,134:12-24.
    [37]Miller C M, Boulter N R, Ikin R J, Smith N C. The immunobiology of the innate response to Toxoplasma gondii[J]. Int J Parasitol,2009,39:23-39.
    [38]Kelly M N, Kolls J K, Happel K, Schwartzman J D, Schwarzenberger P, Combe C, Moretto M, Khan I A. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection[J]. Infect Immun, 2005,73:617-621.
    [39]Dogruman-A1 F, Fidan I, Celebi B, Yesilyurt E, Erdal B, Babur C, Kustimur S. Cytokine profile in murine toxoplasmosis[J]. Asian Pac J Trop Med,2011,4:16-19.
    [40]Suzuki Y, Sher A, Yap G, Park D, Neyer L E, Liesenfeld O, Fort M, Kang H, Gufwoli E. IL-10 is required for prevention of necrosis in the small intestine and mortality in both genetically resistant BALB/c and susceptible C57BL/6 mice following peroral infection with Toxoplasma gondii[J]. J Immunol,2000,164:5375-5382.
    [41]Coleman J W. Nitric oxide in immunity and inflammation[J]. Int Immunopharmacol 2001, 1:1397-1406.
    [42]Brunet L R. Nitric oxide in parasitic infections[J]. Int Immunopharmacol,2001,1:1457-1467.
    [43]Dimier I H, Bout D T. Interferon-gamma-activated primary enterocytes inhibit Toxoplasma gondii replication:a role for intracellular iron[J]. Immunology,1998,94:488-495.
    [44]Bout D, Moretto M, Dimier-Poisson I, Gatel D B. Interaction between Toxoplasma gondii and enterocyte[J]. Immunobiology,1999,201:225-228.
    [45]Gazzinelli R T, Wysocka M, Hayashi S, Denkers E Y, Hieny S, Caspar P, Trinchieri G, Sher A. Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii [J]. J Immunol,1994,153:2533-2543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700