当前黄淮冬麦区小麦品质性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以黄淮冬麦区小麦品种区域试验设在陕西西农、宝鸡、泾阳三个试点的1998/1999、1999/2000两年度参试品种(品系)为材料,测定了籽粒品质、蛋白质品质、磨粉品质和流变学特性等品质性状,分析了当前该区小麦品种品质状况、遗传改良潜力及环境对品质性状的影响。同时针对西农点的参试品种产量、产量性状、农艺性状及冠层温度等性状与品质性状进行了相关性研究,结果表明:
     1.与二十世纪八十年代全国区试和黄淮冬麦区参试品种的品质状况相比,当前黄淮冬麦区小麦品种各品质性状均有不同程度的提高。其中蛋白质含量、湿面筋含量、沉淀值等性状有较明显的改良。当前黄淮冬麦区小麦品种的干粒重、容重、硬度、蛋白质含量和湿面筋含量总体水平较高,沉淀值多处于中、中低水平;面团流变学特性中,形成时间、稳定时间和评价值多处于中、中低水平,软化度过高。在测试的全部品质性状中,面团稳定时间的品种间变异系数最高,其它依次为软化度、形成时间、灰分、沉淀值、评价值、出粉率、湿面筋、硬度;容重、吸水率、蛋白质含量变异系数较低。从变异系数可以看出,参试品种沉淀值及形成时间、稳定时间、软化度等具有较大的改良潜力,蛋白质含量在当前该区范围内较稳定。
     2.方差分析表明,除了形成时间以外,品质性状的地点效应和品种效应均达到极显著或显著水平,其中容重、蛋白质含量、沉淀值、软化度和评价值等性状的地点效应大于品种效应,而硬度、湿面筋含量、出粉率、灰分、吸水率、稳定时间的品种效应大于地点效应。容重、出粉率、蛋白质含量、沉淀值、软化度等性状年份间的差异达到极显著水平,而硬度、湿面筋含量、吸水率、形成时间、稳定时间、评价值等性状年份间的差异不显著。
     3.对两年三点区域试验参试品种品质性状基因型值进行相关性分析表明,沉淀值与容重呈显著负相关,与蛋白质含量和湿面筋含量呈极显著和显著正相关;硬度与蛋白质含量和出粉率呈显著和极显著正相关,与灰分含量呈极显著负相关;吸水率与硬度、出粉率、蛋白质含量和湿面筋含量呈极显著或显著正相关,与灰分呈极显著负相关;形成时间与蛋白质含量和湿面筋含量呈显著正相关;稳定时间与沉淀值呈显著正相关;软化度与出粉率呈极显著正相关,与灰分呈显著负相关;评价值与蛋白质含量和沉淀值呈显著和极显著正相关。由此认为,在小麦品质改良过程中,以硬度、蛋白质含量和沉淀值作为选择指标,有利于筛选出高蛋白质和高面筋含量,蛋白质品质优良且磨粉品质好的基因型,同时对提高吸水率、形成时间、稳定时间和评价值等面团流变学特性即面粉加工品质改良是有利的。吸水率与其它粉质参数均无显著相关性;形成时间、稳定时间和评价值相互之间均呈极显著正相关;软化度与稳定时间和评价值之间均呈极显著负相关。粉质参数中各项指标的选择方向是一致的,即形成时间、稳定时间和评价值中任何一个
    
    指标较高,其它两个指标一般都较高,而软化度一般都较低。
     4.产量与容重、硬度、出粉率和面团流变学特性等品质性状无显著矛盾性,
    有些还表现出一定的正相关性,因此,高产与上述品质性状可以较容易得到同步
    改良。另一方面,产量与蛋白质含量、湿面筋含量和沉淀值存在着一定的矛盾性,
    提高产量可能会导致这些品质性状变劣,但在一定地点、一定品种中,它们有可
    能在一定程度上得以统一。可以通过育种手段、栽培措施及品种的合理区划达到
    高产、优质的目标。
     5.干粒重、穗粒数和穗粒重等产量性状与多数品质性状呈负相关,单株产量
    和亩穗数与多数品质性状呈正相关或极微弱的负相关。因此,初步认为在高产、
    优质育种中,侧重于单株产量和亩穗数的选择,有可能会协调高产与优质间的矛
    盾。面团流变学特性和产量性状间无矛盾性,较易同步改良。
     6.多数形态性状与品质性状间无显著相关性。因此认为,在高产、优质育种
    中,主要从高产的角度来考虑形态指标的选择,不必过多的考虑形态性状对品质
    性状的影响。但株高与蛋白质含量、沉淀值呈显著正相关,因此在育种中过分强
    调矮化,可能会影响蛋白质含量、沉淀值的水平。剑叶长、宽、面积、株高及小
    穗数与容重有显著或极显著负相关,因此在育种后代选择中,选择剑叶窄、短、
    面积小、小穗数较少的类型对容重的提高有益。穗下颈节长和脖子长与形成时间
    呈显著负相关,在后代选择中,应注意选择穗下颈节和脖子较短的类型。
     7.冠层温度低的品种表现较高的产量,冠层温度与各品质性状无显著相关性,
    由此认为,在后代选择中,如果以冠层温度作为高产育种的一个选择指标,对品
    质性状没有显著的影响,尤其对蛋白质含量、沉淀值、形成时间、评价值等重要
    品质性状没有负向影响。
     8.抽穗期与千粒重、容重、蛋白质含量、湿面筋含量、沉淀值和稳定时间等
    重要品质性状呈负相关,除千粒重外,均未达显著水平。即抽穗期早,千粒重。
    容重、蛋白质含量、湿面筋含量、沉淀值和稳定时间有增高趋势。成熟期与千粒
    重、容重、蛋白质含量、湿面筋含量、沉淀值和稳定时间等重要品质性状呈负相
     一,
The study was mainly to analysis wheat quality and genetic potentiality of improving, to characteristics genetic and environmental factors that contribute to variation in wheat quality. Samples from 3 locations of regional trials in huang-huai winter wheat area grown in 1998/1999,1999/2000 were evaluated for grain quality, protein quality, milling quality and farinogram. At the same time, the relationships between quality and yield, field trial, the canopy temperature were studied. The results indicated:
    1. Compared with 20'80s, All quality characteristics of trial varieties, especially for Protein content, Wet gluten content and Sedimentation value, have been improved. Thousand grain Weight (TGW), Test Weight, Hardness, Protein content and Wet gluten content were higher in general; Most varieties were among the lower or middle Sedimentation Value class; Development time, Stability and Valormeter were lower or middle; Degrees of softening were too high. Development time, Sedimentation value and Valormeter among wheat varieties had large coefficient variance. Therefore, these characteristics could be improved in a great extent. Coefficient of variance of Test weight, Water absorption, and Protein content were lower. They were stable hi this area.
    2. Variance analysis illustrated: except for Development time, genotype and location influenced significantly in all quality characters. Effects of location were larger on Test weight, Protein content, Sedimentation value, Softening and valormeter. Effects of variety were large in Hardness, Wet gluten, Milling extraction, Ash content, Water absorption and Stability. Effects of year were large on Test weight, Milling extraction, Protein content, Sedimentation value and Degrees of softening.
    3. Correlation analysis of genotypes testified: Sedimentation value were significantly negatively correlated with Test weight, were significantly or extremely significantly positively correlated with Protein content and Wet gluten content; Hardness were significantly or extremely significantly positively correlated with Milling extraction and Protein content; Water absorption were significantly or extremely significantly positively correlated with Protein content, Wet gluten content, Hardness and Milling extraction; Development time were significantly positively correlated with Protein content and Wet gluten content; Stability were significantly positively correlated with Sedimentation value; Degrees of softening were significantly positively correlated with Milling extraction, were significantly negatively correlated with Ash; Valormeter were significantly or extremely significantly positively correlated with Protein content and Sedimentation value. Provided the 3 traits (Hardness, Protein content, Sedimentation value) were used as selection criterions in early generations of breeding, it may be possible to acquire excellent varieties with high quality. There were significantly or extremely significantly positive correlation among the Development time, Stability and Valormeter; Degrees of softening were significantly negatively correlated with Stability
    
    
    
    and Valormeter. This indicated that it was easy to improve these Farinogram characters simultaneously.
    4. There were no significant contradiction between yield and Test weight, Hardness, and Milling extraction. Therefore, these quality characters could be improved simultaneously with high yield. On the other hand, there usually were significant contradictions between yield and Protein content, Wet gluten and Sedimentation value. Enhancing grain yield often associated with these quality characters becoming poor. But they could be coordinated in some varieties or locations.
    5. Thousand grain weight, Grain number per spike and Grain weight per spike were negatively correlated with the most quality characters. Yield of individual plant and Spikes per mu usually were positively or no correlated with the most quality characters. Thus, if Yield of individual plant and Spikes per mu were used
引文
1.王光瑞等.我国小麦主要优良品种的面包烘烤品质研究.1985-1987年总结报告.庄巧生论文集,中国农业出版社,1999,433~460
    2.林作楫等.冬小麦烘烤品质与其它一些品质性状及产量性状间的相互关系.作物学报,1989.15(2):151~158
    3.张泽等.小麦子粒蛋白质、氨基酸含量和农艺性状的典型相关分析.中国农业科学,1989.22(1):22~27
    4.冬小麦种质资源品质及其它农艺性状的相关性分析和综合评价.河北农业大学种质研究中心 河北农业大学学报 1988.11(3):82~89
    5.李宗智.冬小麦若于品质性状遗传及相关的研究.作物学报,1990.16(1):8~18
    6.王建设等.小麦子粒品质性状的遗传及早代选择效应.Ⅰ.子粒品质性状间及其与产量性状间的相关性.北京农业大学学报,1994.20(3):239~245
    7.刘广田等.普通小麦子粒品质性状研究.Ⅱ.子粒品质性状与农艺性状的相关.1990.16(3):255~260
    8.康志钰.春小麦产量和品质性状的杂种优势和配合力分析.甘肃农业大学学报,1997.32(3):276~280
    9.李宗智等.不同小麦品种品质特性及其相关性的初步研究.中国农业科学,1990.23(6):35~41
    10.马传喜等.同一面包小麦品种烘烤品质变化规律的研究.作物学报,1998.24(6):751~755
    11.王哓燕等.全国小麦品种品质检测报告.河北农业大学学报,1995.18(1):1~9
    12.王哓燕等.对48个小麦品种营养品质的研究.河北农业大学学报,1996.19(2):14~18
    13.李洪恩等.我国小麦种质资源主要品质特性鉴定结果及评价.中国农业科学,1995.28(5):29~37
    14.李宗智等.小麦遗传资源子粒硬度和面粉沉淀值的研究.中国农业科学,1993.26(4):15~20
    15.万富世等.我国小麦品质现状及其改良目标初探.中国农业科学,1989.22(3):14~21
    16.李宗智等.小麦品质的遗传改良.麦类作物,1984.2 6~9
    17.李宗智等.小麦品质的遗传改良(续).麦类作物,1984.3 4~6
    18.林作楫等.我国小麦品质育种现状与问题.作物杂志,1996.1
    19.董洪平等.小麦品质及产量性状的稳定性分析.河北农业大学学报,1988,11(4):1~9
    20.刘广田等.小麦品质性状的遗传及其遗传改良.农业生物技术学报,2000.8(4):307~314
    21.赵和等.小麦高分子量麦谷蛋白亚基遗传变异及其与品质和其它农艺性状关系的研究.作物学报,1994.20(1):67~75
    22.李硕碧等.小麦品种出粉率与其它品质性状关系的研究.西北植物学报,1996.16(6):392~398
    
    
    23.马传喜等.小麦胚乳蛋白质组分及高分子量麦谷蛋白亚基与烘烤品质的关系.作物学报,1993.19(6):562~567
    24.C.J.Peterson 等.基因型和环境对硬质红粒冬小麦品质性状的影响.国外农学—麦类作物,1992.4 10~13
    25.J.H.Louw.基因型与环境互作的选择指数在小麦育种上的应用.国外农学—麦类作物,1992.1 26~29
    26.J.Hou等.小麦基因型与环境对馒头品质的影响.国外农学—麦类作物,1992.4 21-22
    27.杨建设等.论小麦品质及其改良途径.国外农学—麦类作物,1992.5 41~45
    28.王瑞.小麦胚乳储藏蛋白的组成、遗传特点及其与面包品质的关系.国外农学—麦类作物,1995.4 34~37
    29.李保云等.小麦高分子量谷蛋白亚基与小麦品质性状关系的研究.作物学报,2000.26(3):322~326
    30.陕西省企业标准,小麦试验记载标准(试行),陕QB2225—80,1980,10
    31.魏益民等.关中小麦品种加工品质性状的研究.西北农业学报,1992.1(2):19~24
    32.王岳光等.普通小麦子粒品质性状的相关及遗传力研究.莱阳农学院学报,1997.14(1):7~10
    33.魏益民等.小麦品种子粒蛋白质品质的研究.西北农业大学学报,1992.20(4):18~23
    34.张彩英等.小麦品种资源品质性状聚类分析.河北农业大学学报,1996.2
    35.王宪泽等.山东省推广小麦品种面团品质性状及聚类分析.山东农业大学学报,2000.31(2):183~186
    36.王宪泽等.山东省推广小麦品种蛋白质和淀粉及其组分的聚类分析.山东农业大学学报,2000.1 19~23
    37.朱金宝等.基因型和环境对小麦烘烤品质的影响.作物学报,1995.21(6):679~684
    38.魏益民等.陕西省小麦品种品质性状研究.西北植物学报,1994.14(4) 286~294
    39.魏益民 陕西关中地区几个小麦品种(品系)部分品质性状的研究.西北植物学报,1992.12(4):316~321
    40.张国权等.陕西关中小麦新品种(品系)品质性状的研究.西北植物学报,1996.5(增)53~57
    41.田纪春等.小麦的子粒产量与蛋白质含量.山东农业大学学报,1994.25(4):483~486
    42.张彩英等.不同类别冬小麦品种品质性状的研究.河北农业大学学报,1998.21(4):12~16
    43.王法洪等.小麦不同类型品种的子粒产量及品质在不同生态区的表现.1997.14(2):100~104
    44.王勇.小麦子粒蛋白质及其组分的遗传研究进展.山东农业大学学报,1998.29(2):243~247
    45.王宪泽等.小麦加工品质的影响因素及改良途径.山东农业大学学报,1995.26(3):394~398
    46.王立宏等.小麦子粒胚乳微观结构与品质关系的研究.西北植物学报,1993.13(2):150~163
    
    
    47.刘大群等.品种稳定性评价方法的比较和分析.作物学报,1988.14(4):290~295
    48.李硕碧等.小麦品种面包烘烤品质与其它品质性状之研究.西北农业学报,1996.5(4):25~30
    49.金正勋等.小麦高蛋白育种的亲本选配及后代选择原则和效果.东北农业大学学报,1997.28(4):313~319
    50.王岳光等.不同组合方式对小麦遗传变异表现的影响.Ⅱ.子粒品质性状的亲子相关及分离.中国农业大学学报,1997.2(3):1~4
    51.唐朝晖等.普通小麦品质性状早代选择的效果.华北农学报,1998.13(1):40~45
    52.张彩英.小麦品种资源加工品质性状配合力研究.河北农业大学学报.1996.19(1):7~11
    53.魏益民等.关中小麦品种面粉流变学特性的改进研究.西北农业学报,1993.2(1) 41~44
    54.王金水等.小麦深加工理想品质指标的确立.中国农业科学,2000.33(3):73~78
    55.Peter R Shewry等.小麦品质的生物技术.麦类文摘,1998.2 1~5
    56.杨崇力等.小麦重要品质性状与选择.作物杂志,1993.3 6~8
    57.B.A.Stewart,制粉小麦的品质要求.1986.6 1~2
    58.魏益民等.小麦面粉的微形态观察与分析.西北农业大学学报,1997.25(3):21~23
    59.陈光斗等.优质小麦产量与品质性状的灰色关联分析与综评.西北农业学报,1995.2 93~94
    60.V.A.Johnson等.单保山,李宗智译,小麦生产力及营养品质遗传改良研究结果的终结报告,农业科技译丛,1985(1):1~9
    61.V.A.Johnson等.单保山,李宗智译,小麦生产力及营养品质遗传改良研究结果的终结报告(续)1985(2):1~9
    62.吴兆苏等.我国主要两麦区小麦品质性状的变异及相关.南京农业农业大学学报,1991.14(1):1~5
    63.专用小麦品种品质 中华人民共和国 GB/ 17320—1998
    64.王罡等.等位基因变异对小麦品质的影响.遗传,1995,17(2):39~41
    65.王罡等.小麦种子储藏蛋白的遗传学研究进展.遗传,1995,17(1):45~48
    66.王宪泽.小麦种子储藏蛋白研究进展.种子,1999,(1):23~25
    67.刘广田等.普通小麦胚乳蛋白谷蛋白亚基的遗传研究.高分子量谷蛋白亚基变异的多样性及其在F_1的遗传行为.中国农业科学,1988.21(1):56~60
    68.赵友梅等.高分子谷蛋白亚基的SAS—PAGE图谱在小麦品种育种研究中的应用.作物学报,1990.16(3):208~217
    69.阎旭东等.普通小麦醇溶蛋白组分的分布及其与HMW—麦谷蛋白亚基对品质的组合效应.作物学报, 1997,23(1):70~75
    70.韩彬.低分子量谷蛋白亚基与醇溶蛋白的关系及其对小麦烘烤品质的影响.中国农业科学,1991,24(4):19~25
    
    
    71.魏良民等.普通小麦高分子谷蛋白亚基与沉淀值的关系.河北农业大学学报,1999,33(1):25~28
    72.赵和等.普通小麦高分子谷蛋白亚基遗传变异及其与其它性状的关系.河北农业大学学报,1993.16(1):8~12
    73.朱金宝等.小麦子粒高、低分子量谷蛋白亚基及其与品质关系的研究.中国农业科学,1996,29(1):34~39
    74.潘幸来等.黄淮麦区16个小麦品种(系)的Glu-1,Glu-3和Gli-1位点上的基因多样性分析.遗传学报,1998,25(3):252~258
    75.孙致良等.长江中下游地区小麦品种品质性状的遗传变异及预期遗传进度.谷类物品质性状遗传研究进展,江苏科学技术出版社,1990,123~125
    76.刘广田等.普通小麦品质性状的杂交优势及配合力.谷类物品质性状遗传研究进展,江苏科学技术出版社,1990,131~135
    77.刘广田等.普通小麦品质性状与产量性状的相关性分析.类物品质性状遗传研究进展,江苏科学技术出版社,1990,136~139
    78.刘广田等.普通小麦F_2群体中单株子粒蛋白质含量和沉淀值的分离和分布.谷类物品质性状遗传研究进展,江苏科学技术出版社,1990,140~143
    79.马传喜等.小麦高分子谷蛋白亚基的品种间变异及其杂种表现.谷类物品质性状遗传研究进展,江苏科学技术出版社,1990,158~161
    80.许明辉等.普通小麦胚乳高分子谷蛋白亚基与烘烤品质的关系.谷类物品质性状遗传研究进展,江苏科学技术出版社,1990,162~165
    81.马传喜等.SDS沉淀值试验在面包小麦品质评价中的应用研究.中国小麦育种研究进展,中国农业出版社,1995,191~196
    82.王建设等.小麦子粒蛋白质含量的早代选择效应.中国小麦育种研究进展,中国农业出版社,1995,197~201
    83.翟风林等编著.作物品质育种,农业出版社,1991
    84.茜大彬等.肥水条件对小麦加工品质效应的研究.华北农学报,1989.1
    85.小麦品质的评价及品质改良.陕西农业科学,1989.4
    86.Finney P.L Wheat Quality.Celeral Food World,1987.4
    87.李宗智.小麦品质改良 河北农业大学学报,1981.2
    88.徐兆飞等.小麦品质及其改良 气象出版社,1999
    89.朱睦元等.小麦子粒蛋白质含量及其品质的遗传分析.遗传分析,1983,5:352~361
    90.单保山.小麦蛋白质及产量性状的配合力分析.河北农业大学学报,1987,4:45~52
    91.毛盛贤.冬小麦子粒蛋白质和赖氨酸含量的遗传分析.遗传,1988,3:15~16
    92.王增裕等.小麦品质及产量性状的遗传分析. 河北农业大学学报,1991.1:1~5
    93.董洪平.小麦子粒蛋白质和氨基酸含量的遗传模型.华北农学报,1993,8(增):11~15
    
    
    94.吕德彬等.小麦子粒蛋白质及其组分含量的遗传分析 杂种优势和配合力分析.河北农业大学学报,1993.2:109~114
    95.吕德彬等.小麦子粒蛋白质及其组分含量的遗传分析 遗传模型和性状相关.河北农业大学学报,1993.4:305~311
    96.金正勋等.小麦杂种后代子粒蛋白质含量的配合力研究.作物学报,1996,4:490~494
    97.霍清涛等.小麦主要品质性状的遗传模型研究.华北农学报,1996,3:8~14
    98.李宗智.小麦品质的遗传 全国小麦品质改良研讨班资料选编,1986:53~70
    99.周赓坚等.冬小麦子粒蛋白质和赖氨酸含量的遗传分析.莱阳农学院学报,1990.2:92~97
    100.郑元明等.小麦子粒蛋白质和氨基酸的遗传及其与硝酸还原酶活性的关系.西南农业大学学报,1989,4:360~364
    101.Levy,AA Euphytica.1989,41(1/2):113~122
    102.朱金宝等.小麦品质性状遗传及性状相关的研究.莱阳农学院学报,1988.2:1-6
    103.董进英等.小麦蛋白质含量和沉淀值的遗传研究.作物学报,1995,2:330~333
    104.赵彬等.小麦几种品质性状与产量性状早代选择效果的研究.华北农学报,1990.4:29~34
    105.刘广田等.小麦品质育种目标、途径和方法.全国小麦品质改良研讨班资料选编,1986 1~52
    106.杨赞林等.小麦品质育种.安徽农业科学,1985.2:19~26
    107.王宪泽等.小麦品质育种的进展.中国农学通报,1992,1 18~20
    108.张衍文.小麦子粒蛋白质和赖氨酸含量的遗传.陕西农业科学,1987.5 10~11
    109.马长德等.中国北部冬麦区与美国太平洋西北部冬麦区小麦品种加工品质的分析比较.作物学报,1987.13(2):103~134
    110.李洪恩等.中国小麦种质资源主要品质鉴定. 陕西科学技术出版社,1992
    111.王化俊等.两个优质春小麦品种(系)的三个主要品质性状的遗传研究.甘肃农业大学学报,1996.2
    112.张彩英等.小麦若干加工品质性状遗传变异及相关性研究.河北农业大学学报,1989.3 8~15
    113.张国权.陕西关中小麦品种(品系)品质鉴评研究.硕士论文
    114.贾继增等.小麦高蛋白、高赖氨酸与高产结合的可能性分析.作物品种资源,1986.1 30~33
    115.Orth RA, et al. Afacter analysis of bread wheat quality test. Aust J Agric Res, 1976, 27: 575~582
    116.Kramer T.H. 1979, Environmental and genetic variation for protein in winter wheat, Euphtica,28:209~218
    117.Mcneal R.H., et al.1972, Grain and plant nitrogen relationship in eight sprint wheat crosses.Crop Sci. 12:599~601
    
    
    118.L. O'Bren ,et al. 1986, The effect on yield distribution of early generation selection for quality,Aust. J. Agile. Res.,37:211~218
    119.Gallaghe E. J., 1984, Cereal production, section three, 113~119
    120.Heha E R., 1965, Breeding wheat for quality ,Advance in Agronomy, 17:85~114
    121.Finney P L., Wheat quality, Cereal Food World ,1987,32 (4): 313~319
    122.Payne P., Hole L.,Jarvis M., et al.,Two dimensional fractionation of the endosperm protein of bread wheat, Biochemical and genetic studies, Cereal Chem. 1985, 62(5):319~326
    123.赵振东.冬小麦沉淀值基因效应的分析.山东农业科学,1990.6 7~11
    124.贾继增等.小麦高蛋白质、高赖氨酸与高产结合的可能性分析.中国农科院品种资源所麦作室,科研报告与论文集,1984 36~44
    125.田纪春等.山东近期推广小麦品种分析与分类.山东农业科学,1990.2 1~5
    126.秦武发等.氮素供应对小麦品质的影响.河北农业大学学报,1989,3 1~7
    127.康立宁.小麦品种(品系)品质稳定性研究.硕士论文
    128.阎旭东等.华北农学报,1995.4 54~58
    129.张嵩午等.小麦温型现象研究.应用生态学报,1997,89(5):471~474
    130.张嵩午等.冷型小麦及其生物学特征.作物学报,1999,25(5):608~615
    131.Anderson, W.K., Production practices for high protein, hard wheat in Western Australia. Aust.J. Exp. Agric. 1995, 35:589~595
    132.Autran, J. C, et al., Associations between electrophoretic composition of proteins, quality charecteristics and agronomic attributes of durum wheat. Protein-quality associations. J. Cereal Sci. ,1989, 9:195~215
    133.Branlard G, et al. Diversity of grain protein and bread wheat quality Correlation between high molecular weight subunits of glutenin and flour quality charateristics. Y J. Cereal Sci., 1985, 3:345~354
    134.Baenziger, P. S., et al., Effect of cultivar, environment, and their interaction and stability analyses on milling and baking quality of soft red winter wheat. Crop Sci. 1985, 25:5~8
    135.Busch. R.H., Rsponse of hard red spring wheat to environment in relation to six quality characteristics. Crop Sci. 1969, 9:813~817
    136.C. E. Lang, et al, 1998 CROP QUALITY &UTILIZATION, Relationship between baking and noodle quality in hard white spring wheat, Crop Sci., 38:823~827
    137.Cox T. S., et al. Genetic improvement in milling and baking quality of hard red winter when eultivars, 1919 to 1988, Crop Sci.,1989,29(3) :626~631
    138.C.J. Peterson, et al. Baking quality of hard winter wheat: Response of cultivars to environment in the Greate Plains. Euphyfica. 1998, 100 (1-3) :157~162
    139.Carrillo, J. M., et al., Relationship betweem gluten strength and gluten in proteins in durum envelope glycoprotein E_1 of hog cholera virus protects swine against both pseudorabies and hog cholera [J].J Virol, 1991,65(5):2761~2765
    
    wheat cultivaris. Plant Breeding, 1990, 104: 325-333
    140. Clarke, J. M., et al., Selection for gluten stength in three durum wheat cross. Crop Sci. 1993, 33: 956-958
    141. Dexter, J. E., et al., Influence of protein content on some durum wheat quality parameters. Can. J. Plant Sci., 1977, 57: 717-727
    142. Dexter, J. E. , et al. , The suitability of the SDS-sedimentation test for assessing gluten strength in durum . Can. J. Plant Sci., 1980, 60: 25-29
    143. E. Espitia-Rangel, et al., 1999, End-use quality performance and stability of 1A vs. 1AL. 1Rsgeneotype derived from winter wheat 'Nekota', Crop Sci.,39:649-654
    144. E. Porceddu, et al. Variation in endosperm protein composition and techological quality properties in drurum wheat. Euphytica.1998, 100 (1-3) : 197-205
    145. Finney, K. F., et al., Loaf volume and protien content of hard winter and spring wheat. Cereal Chem 25:291-312
    146. Graybosch, R. A. , et al. , Genotypic and environmental modification of wheat flour protein content composition in relation to end-use quality. Crop Sci. 1996, 36: 296-300
    147. G.B.Crosbie, et al. Wheat quality requirments of Asian foods . Euphytica.1998,100 (1-3) : 155-156
    148. Johnson V V. Genetic advances in wheat protein quality and composition, proc. 4th Intern. Wheat Genet. Symp. Columbia, 1973: 547
    149. Johannes H B. et al. Use of the SDS-sedimentation Test and SDS-polyacrylamidegel electrophoresis for screenion breeder's samples of wheat for bread-making quality . Euphytica.1982,31 :677-690
    150. Kosmolak, F. G. , et al. , A relationship between durum wheat quality and gliadin electrophorograms. Can. J. Plant Sci., 1980, 60: 427-432
    151. L. O'Bren , et al. Heritalibilities of small-scale and Standard measures of wheat quality for early generation sesection, Aust. J. Agrie. Res. 1987, 38 : 801-808
    152. Lorenzo, A. , et al. , Relationship between high molecular weight glutenin subunits and loaf volume in wheat as measured by the sodium dodecyl sulfate sedimentation test. Crop Sci. 1987, 27:253-257
    153. M. Corbellini, et al. Effect of heat shock during grain filling on protein composition and technological quality of wheats . Euphytica.1998,100 (1-3) :147-154
    154. McGuire, C.F. , Quality response of 10 hard red spring wheat cultivars to 25 environment. Crop Sci. 1974, 14:175-180
    155. McCaig, T. N. , et al. , Breeding durum wheat in western Canada: Historical trends in yield and related variables. Can. J. Plant Sci. 1995, 75: 55-60
    
    
    156. Orth R. A. Et al. Studies of glutenin. Relation of variety .location of growth, and baking quality to molecular weight distribution subunits. Cereal chem. 1973, 50:191-197
    157. Orth R. A. Et al. Studies of glutenin. Identification of subunits coded by D genome and their relation to bread-making quality. Cereal chem. 1973, 50: 680-687
    158. Olson R A. Nutritional quality cereal grains-Genetic and Improvement, 1987: 11-37, 133-176
    159. Payne, RI. , et al. , The relationship between HMW glutrnin subunit composition and the breadmaking quality of British-grown wheat varieties. J Sci Food Agrie 40: 51-65
    160. Peterson, C.J. , et al. , Genotype and environment effects on quality characteristics of hard red winter wheat. Crop Sci, 32:98-103
    161. Peter I. Paynae, et al., 1987, The relationship between HMW Glutenin subunit composition and the bread-making quality of British-grown wheat varieties, J. Sci. Food Agrie. 40:51-65
    162. Payhe P L, et al. Relationship between HMW Glutenin subunit composition and measures of he bread-making quality of wheat varieties grown in Spain, Cereal Sci. 1988,7:229-236
    163. Pumphrey, F. V. et al. Lodging effects on yield and quality of soft white wheat Ceal chem. 1983,60(44) : 268-270
    164. Rogers W J, et al. The HMW glutenin subunit and gliandin composition of German-grown vaieties and their relationship with bread-making quality. Plant Breeding ,1989: 89-100
    165. Weegels, P.1. ,et al., Functional properties of wheat glutenin. J Cereal Sci 23:1-18
    166. W. Bushuk, wheat breading for end-product use. Euphytica.1998,100 (1-3) :137-145
    167. W. K. Anderson, et al. Grain yield and quality: does there have to be trade-off ? Euphytica. 1998,100 (1-3) : 183-188
    168. Z. Bedo, et al. Breeding for breadmaking quality using old Hungarian wheat varieties Euphytica.1998, 100 (1-3) : 179-182

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700