根癌农杆菌介导转化鄂抗棉9号愈伤组织获得含Chitinase和β-(1,3)-glucanase基因的棉花再生植株
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花(Gossypium hirsutum)是世界性的重要经济作物,在我国栽培面积较大,年种植面积达400万公顷,为我国农村经济的发展做出了重要贡献。而棉花的生产受到多种病原真菌的危害,随着种植面积的增加,棉花真菌病害在我国主要棉区迅速蔓延,严重影响了棉花的生产,造成了巨大经济损失。由于难以找到棉花抗源,因而利用广谱性抗真菌基因被认为是一个被看好的研究策略。几丁质酶和β-(1,3)-葡聚糖是绝大多数病原真菌细胞壁的组成成分,几丁质酶和β-(1,3)-葡聚糖酶通过降解病原真菌细胞壁达到抑制病原真菌的目的。
     本试验利用根癌农杆菌介导的转基因方法,将双价抗真菌基因几丁质酶基因(Chitinase)和β-(1,3)葡聚糖酶基因(Glucanase)导入鄂抗棉9号胚性愈伤组织,结果表明:
     1.IBA和KT及无机盐对鄂抗棉9号下胚轴再生有重要影响。在1.0mg/l IBA和0.5mg/l KT时为最佳配比,在愈伤组织诱导和增殖期间,培养基中分别添加120mgl~(-1)的硫酸镁和42mgl~(-1)硫酸亚铁,使愈伤向胚分化方向发育。在诱导愈伤时NH_4NO_3是不可缺少的,否则体细胞难以分化再生,但向胚性愈伤转变时,NH_4~+必须撤去,同时补加1900mgl~(-1)的KNO_3,KNO_3能促使胚的分化;到胚分化生长成苗时,需附加谷氨酰胺和天门冬酰胺,分别为1000mgl~(-1)和500mgl~(-1),可以增加胚分化率和利于胚生长。
     2.优化了根癌农杆菌介导的棉花胚性愈伤组织转化体系。以鄂抗棉9号愈伤组织为外植体,对转化的几个重要参数,如预培养的有无,共培养温度,乙酰丁香酮的有无,卡那霉素的选择浓度进行了筛选。结果表明:预培养5-10天较没有预培养的愈伤表现出更强的转化效率;共培养温度以19℃为适宜温度;使用乙酰丁香酮和不使用乙酰丁香酮效果不明显;卡那霉素的选择浓度以100mg/l为宜。
     3.获得了60株抗性小苗,随机选取20株做PCR检测,有14株检测结果为阳性,取6株PCR阳性植株进行Southern检测,结果表明外源基因已经整合到棉花基因组中,拷贝数由1到3个不等。
     4.对海岛棉的再生进行了初步研究。实验表明:2,4-D 0.15mg/l/KT 0.5mg/l时为新海14心形胚的诱导的最佳组合。
Upland cotton (Gossypium hirsutum) is one of the most important world wide economical crops, playing a vital role in the economic, political, and social affair. It is widely planted in our country, about 400 million hectors per year, and made a significant contribution to the development of rural area .while cotton is highly susceptible to many biotic and abiotic stresses, with the enlargement of its planting area, the disease of epiphyte is become increasingly overwhelming, thus endangered the quantity and quality of cotton production, and caused great calamity to cotton industry of our country .for the difficulty of obtain resistance material. It is a better strategy of useing abroad antifungal genes for transformation. To the property of chitinase and (3-(l,3)-glucanase can degrade the wall of fungal cell, thus it can be used to suppress fungal disease .
    In this study chitinase and p-(l,3)-glucanase was transferred into Gossypium hirsutum E-kang-9 variety callus by Agrobacterium tumefaciens .The main results as follows:
    1. In this research the affect of IBA & KT and inorganic salts to the regeneration of hypocotyls was studied, the primary callus initiation on the medium containing the optimal combination of 1.0 mg/L IBA and 0.5 mg/L KT, When primary callus are induced and proliferated on the medium orderly supplemented with 120 mg/L MgSO4and 42 mg/L FeSO4, calli was prone to form embryogenic calli. 1000 mg/L KCl and 200 mg/l CaCl2, and the callus is quickly promoted to form embryogenic calli. During calli inducing NH4NO3 is inevitable otherwise somatic embryo will not formed ,but during the stage of somatic embryo transformed to calli, NIHUNO3 must deserted and supplied with 1900mg/lKNO3, for it can benefit to the form of calli; Asn and Gin should be added during embryos germinate to young plants.
    2. In this study efficient callus transformation system mediated by Agrobacterium was developed using E-R 9 embryogenic callus as explants, optimized the parameter about transformation such as pre-cultivation, co-cultivation temperature, AS and Km concentration .The result as follow: The efficiency of transformation for 5 to 10 days pre-cultivation is super to not pre-cultivation ; the best choice temperature of co-cultivation is 19℃; AS is not necessary to this experiment; The suitable concentration of Km is 100mg/l.
    3. In this study 60 resistant plantlets were obtained, random select 20 plantlets, PCR result verified 14 plantlets to be positive.
    4.Preliminary study of embryogenic regeneration on Gossypium barbadense was investigated .The results show us: The combination of 2,4-D 0.15 mg/1 and KT 0.5 mg/1 is
    
    
    
    the best one on calli inducing of Gossypium barbadens
引文
1.蔡新忠等.植物病程相关蛋白。植物生理学通讯,1995,31(2):129~136
    2.陈三凤,刘德虎,李季伦.植物几丁质酶的结构、基因及表达。生物工程进展,1998,18(2):33~36
    3.陈志贤,李淑君.棉花细胞悬浮培养胚胎发生和植株再生某些特性的研究。中国农业科学,1987,20(5):6~11
    4.陈志贤、李淑君等.棉花细胞悬浮培养胚殆发生和植袜再生某些特性的研究。中国农业科学,1987,20(5):6~11
    5.崔百明,祝建波等.转β-(1,3)-葡聚糖酶基因和几丁质酶基因棉花。生物技术,2002,12(4)1~2
    6.单力波等.几丁质酶及其在抗真菌基因工程中的应用。仲凯农业技术学院院报,199818(3):12~15
    7.傅荣超,孙勇如,贾士荣主编.植物遗传转化技术手册。北京,中国科技出版社,1194,4~8
    8.高必成等.转几丁质酶基因防治植物病害研究:进展、问题与展望。生物工程进展,1999,12(2):64~69
    9.韩放,李景鹏.植物几丁质酶的研究进展。生物技术,2001,11:25~28
    10.贺红等.枳壳外植体再生及农杆菌介导的遗传转化。云南植物学研究,1998,20(4):459~463
    11.黄骏麒,周光宇,等。外源抗枯萎病棉DNA导入感病棉的抗性转移.中国农业科学,1986(3):32-35
    12.黄玉杰,杨合同等.几丁质酶和葡聚糖酶生物学特性及其编码基因的克隆和转化。山东科学,2002,15(1):28~34
    13.李秀兰,文兰英.棉花体细胞培养再生植株的研究。中国棉花,1989,6:13~15
    14.李燕娥,朱祯,吴霞,孟晋红,范小平,吴家和,史高川,肖娟丽,张换祥.转基因再生棉花嫁接初报。中国棉花,2000,27(3):25-30
    15.刘春明,放敦义.陆地棉体细胞发生及细胞组织学研究。植初学报,1991,33(5):378—384
    16.欧阳石文等.几丁质酶的三级结构和催化机制。生命的化学,2001,21(2):25~27
    17.时香玉等.海岛棉突变系体细胞培养及植株再生研究。核农学报,1996,10(4):221~224
    18.王关林.方宏筠.植物基因工程原理和技术。北京,科学出版社
    19.王金生.分子植物病理学[M]。北京:中国农业出版社。1999,217~220
    20.魏良民.海岛棉悬浮培养体细胞胚胎发生。生物技术,1996,6(3):11~14
    21.吴乃虎.基因工程原理.科学出版社
    22.余建明等.陆地棉原生质体高频率分裂及植快再生。遗传学报,1993,144~153
    23.王景雪,孙毅.农杆菌介导的植物基因转化研究进展。生物技术通报,1999,1:7-13
    24.张大力等.陆地棉的组织培养和胚胎发生。植物学报,1989,31(2):164~163
    25.张家明等.陆地棉体细胞植株再生及移栽技术。作物学报,1994,20(2):209~216
    
    
    26.张献龙,孙济中.陆地棉体细胞胚胎发生与植株再生。遗传学报,1991,(5):461~46
    27.张献龙等.陆地棉品种“珂字201胚性与非胚性愈伤组织生化代谢产生的比较研究。作物学报,1992,18(3):176~181
    28.诸葛强,阙国宁.氮、磷、钾对若干种木本植物离体培养繁殖的影响。林业科学研究,1990,3(1):41~46
    29. Ammtrato PV. Embrybogenesis.In: Hand blood of plant cell culture techniques for propagation and breeding.Macmillam publishing Co. New York 1983
    30. Asley CA. In vitro culture of fetilized cotton ovules Bioscience, 1971,21: 906~90
    31. Atkinson RG, Richard CG. Regeneration of transgenic tamarillo plants. Plant Cell Report, 1993,12: 347~351
    32. Bayley C, Trolinder N, Ray C, Morgan M, Quinsenberry J E, Ow D W. (1992) Engineering 2,4-Dresistance into cotton plants. Biotechnology, 83: 645~662.
    33. Be Davis DG et,al In vitro culture of callus tissue and cell from akra(Hisbiscus esculentus)and cotton(Gossypium histulum L).In vitro 1974, 9: 396~39
    34. Birth R G Plant transformation: Problem and atrategies for practial appliation,annu Rev {J}Plant biol.1997.48:297~326
    35. Chun-Ta Wu et al Class Ⅰ β~1,3~Glucanase and Chitinase Are Expressed in the Micropylar Endosperm of Tomato Seeds Prior to Radicle Emergence Plant Physiol. 126(3): 1299~1313
    36. Cohen-Kupiec R,et al. Characterization of vacuolar and extracellular β-(1,3)-Glucanase of tobacco: Evidence for a strictly compartmentalized plant defense system.Proc.Natl. Acad. Sci .USA. 1989.86:2673~2677
    37. Davidonis GH, Hamilton RH (1983) Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Sci Lett 32:89~93
    38. De Block M Herren-Estrella L van Montagu M ,et al Expression of foreign gene in regenerated plant and their progeny [J] EMBO J 1984,(3): 1681~1689
    39. De Kathen A, Jacobsen H J. (1995) Cell competence for Agrobacterium-mediated DNA transfer in Pisum sativum L. Transgen Res. 4: 184~191.
    40. Dore.C,et al Transport of protein to the plant vacuole is not by bulk flow thro gh the secetory system ,and require positive sorting information.[J] Cell Biol 1989.108: 327~337
    41.F.奥斯伯.精编分子生物学实验指南,科学出版社。1999
    42. Finer J and McMullen M (1990) Transformation of cotton via particle bombardment. PlantCell Rep 8: 586~589.
    43. Finer J, McMullen M. (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep. 8: 586~589.
    44. Firoozabady E, DeBoer DL (1993) Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirsutum L.). In Vitro Cell Dev Bio 29P: 166~173
    45. Firoozabady E, DeBoer DL, Merlo D J, Halk EL, Amerson LN, Rashka KE, Murray EE (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10: 105~116
    46. Fuller K J Nester EW,et al,Temperature affects the T~DNA transfer machinery of
    
    Agrobacterium tumefaciens.J Bactero, 1996,1178: 1498~1504
    47. Goodwin,Todd G,et al The effects of acetosyringone and pH on Agrobacterium~mediated transformation vary according to plant species.Plant cell Rep,1991,9: 671~675
    48. Grision R et al,Field tolerance to fungal pathgens of Brassica napus contitutively expressing a chimeric chitinase gene.Nature Biotechnology, 1996,14:643~646
    49. Horach R B Fraly R T Ro grs SG,et al Inheritance of foreign genes in plants [J]Gience 1984 {233}: 496~498
    50. J. K. Hemphill·C. G. A. Maier·K. D. Chapman Rapid in~vitro plant regeneration of cotton (Gossypium hirsutum L.) Plant Cell Report (1998) 17: 273~278 1993)
    51. J. Nobre 7 D.J. Keith 7 J.M. Dunwell,Morphogenesis and regeneration from stomatal guard cell complexesof cotton (Gossypium hirsutum L.) Plant Cell Report (2001) 20: 8~15
    52.J.萨姆布鲁克,分子克隆实验指南。第二版 科学出版社。1992
    53. John ME (1997) Cotton crop improvement thro gh genetic engineering. Crit Rev Biotechnol 7:185~208
    54. Jongedijk E, Tigelaar H, van Roekel JSC, Bres~Vloemans SA, Dekker I, van den Elzen PJM, Cornelissen BJC, Melchers LS (1995) Synergistic activity of chitinases and b~1,3~glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85: 173~180
    55. Keen N T Youshikawa M.,β~1,3~endo glucanase from soybean release elicitor-active carbothyhydrates from fungus cell walls [J].Plant Physiol 1983 71. 460~465.
    56. Knappe JE, Kausch AP, et al. Transformation of three genera of orchid using the bar gene as a select marker. Plant cell Rep, 2000,19(9): 983~989
    57. Lawrence CB, Joosten MHAJ, Tuzun S (1996) Differentialinduetion of pathogenesis~related proteins in tomato by Alternaria solani and the association of a basic chitinase isozyme with resistance. Physiol Mol Plant Pathol 48: 361~377
    58. Leah R, Tommerup H, Svendsen I, Mundy J (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266: 1564~1573
    59. Leo SM,Marion AG ,et al .A new glass of tobacco chitinase homologous to bacterial exo~chitinase displays antifungal activity. Plant Journal, 1994,5(4): 469~480
    60. Leubner~Metzger G, Fru" ndt C, Vo"geli~Lange R, Meins F Jr (1995) Class Ⅰ b~1,3~glucanases in the endosperm of tobacco during germination. Plant Physiol 109: 751~759
    61. IIy transformed cotton (Gossypium hirsutum L.) plants. Biotechnology Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J8: 97~109
    62. M. Bliffeld et al Genetic engineering of wheat for increased resistance to powdery mildew disease TAG Theoretical and Applied Genetics 98, 1999 1079~1086
    63. Majeed A, Husmain T, Riazuddin S. (2000) Transformation of virus resistant genetype of Gossypium hirsutum L. with pesticidal gene. Plant Biotechnol. 17: 105~110.
    64. McCabe DE, Martinell BJ (1993) Transformation of elite cotton cultivars via particle
    
    bombardment of meristems. Biotechnology 11: 596~598
    65. Moore G A ,Jacono C C,et al, Agrobacterium~mediated transformation of Citrus stem segment and regeneration of transgenic plants.Plant Cell Rep, 1992,11: 238~242
    66. Murashige T, Skoog, F. (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant 15: 473~497.
    67. Passskowaki J,Shillito RD Saul et al Direct gene transfer to plants {J}EMBO, 1984(3): 2717~2722
    68. Paul A. Passarinho et al Expression pattern of the Arabidopsis thaliana AtEP3/AtchitⅣ endochitinase gene Planta 212,1998: 556~567
    69. Payne G,et al.Evdience for a third structural class of β~(1,3)glucanase in tobacco.Plant Molecular Biology. 1990.15: 797~808
    70. Peeg G F Glucanoaohydrolase of higher plants "a possible deffence mechanism aginst parasitic fungi.in cell wall biochemistry related to specificity in host~pathogen relationship [M]. eds Solheim B Raa R. 1997 305~345
    71. Peeters M, Willems K, and Swennen R (1994) Protoplast to plant regeneration in cottonGossypium hirsutum L. cv Coker 312 using feeder layers. Plant Cell Rep 13: 208~211.
    72. Perlak F J, Deaton R, Armstrong T, Fuchs R, Sims S, Greenplate J, Fischoff D. Insect resistant cotton plants. Biotechnology, 1990, 8: 939~943
    73. Potrykus I.Genetransfer to plants: assessment of published approaches and results.Annu Rev Plant Mol Biol,1991,42:205~22
    74. Price HJ, Smith RH. somatic embryogenesis in suspension culture of G.klozschianum Anddress. Planta, 1979,145;305~307
    75. Pudir N (1972) Experimental embryology of Gossypium arboreum L and G. hirsutum and their reciorocal crosses. Bot Gaz 133: 7~26.
    76. Rajasekaran K, Hudspeth R L, Cary J W, Anderson D M, Cleveland T E. (2000) High~frequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embrygenic cell suspension cultures. Plant Cell Rep. 19: 539~545.
    77. Sawahel W (1997a) Plant genetic transformation technology. India: Daya publishing house.ISBN 81~7035~175~8.
    78. Sela~buurlage MB et al Only specific tobacco chitinases andβ~(1,3) glucanase exhibit antifungal activity Plant Physiol. 1993.101: 857~863
    79. Shinsh H, et al Evidence forN~and C~terminal processing of plant defense~related enzyme: primary structure of tobacco preproβ~(1,3) glucanase.Proc Natl.Acad.Sci USA 1988.85: 5541~5545
    80. Shinshi H,et al.Structure of a tobacco endochitinase gene: evidence that different chitinase gene can arise by transposition of sequences encoding a cysteine~rich domain.Plant Mol Biol ,1990,14:357~368
    81. Stéphane Helleboid,et al, Extracellular g~1,3~glucanases are induced during early somatic embryogenesis in Cichorium Planta 1998 205: 56~63
    82. T. Yamamoto et al,Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens Plant Cell Reports 2000 19 639~646
    83. Thomas J C, Adams D G, Keppenne V D, Wasmann C C, Brown J K, Kanost M Bohnert H J. (1995) Protease inhibitors of Maduca sexta expressed in transgenic cotton. Plant Cell Rep. 14: 758~762.
    
    
    84. Trolinder NL, Goodin JR (1988) Somatic embryogenesis in cotton(Gossypium) effects of source of explant and hormone regime. Plant Cell Tissue Organ Cult 12: 31~42
    85. Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Biotechnology 5:263~266
    86. Van Den Bulcke M, ea al,Characterization of vacuolar and extracellular (1,3)~glucanase of tobaocco evidence for a strictly compartmentalized plant defence system Proc Natl.Acad.Sci USA.1989.86:2673~2677
    87. Van-der-Hoeven C. Dietz. landsmannj,varability of organ~specific gene expression in trans genic tobacco plant [J]. Transgenic Res. 1994(3): 159~166
    88. Veluthambi K,Krishnan M,et al.Opines stimulate induction of the vir genens of the Agrobacterium tuinefaciens Ti plasmid.J Bacteriol, 989,171(7): 3696~3703
    89. Vierhelig H M,Alt J M,Neuhaus T, et al. Colonization oftransgenic Nicottians sylvestris plant express5q different forms ofNicotiana tobacum chitinase by the root pathogen Rchizoctoina solani and by the mycorrhizal symbionl comus mosseae.Mol Plant Microbe~Internet, 1993,6(2): 261~264
    90. Villemont E, Dubois F, Sangwan R S, Vasseur G, Bourgeois Y, Sangwan~Norreel B S. Role of the host cell cycle in the Agrobacterium~mediated genetic transformation of Petunia: evidence of an S~phase control mechanism for T~DNA transfer. Planta. 201: 160~172.
    91. Y.Tabel, et al Transgenic cucumber plants habouring a rice chitinase gene exhibit enhanced resistance to gray mold.Plant Cell Rep 1998,17:159~164
    92. Z.Tabaeizadeh Z. Agharbaoui et al,Transgenic tomato plants expressing a Lycopersicon chilense chitinasegene demonstrate improved resistance to Verticillium dahliae race 2 Plant Cell Reports (1999) 19:197~202
    93. Zhou G Y,Weng J ,Zeng Y,et al Introduction of exogenous DNA into cotton embryos.Meth Enzymol, 101: 433~481

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700