非稳态漩涡运动及其产生机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非稳态漩涡是水工建筑物中普遍的水流现象。扩散流动如抽水蓄能电站上下水库出水口,若扩散角度较大,边壁处会产生流动分离并在分离区内产生非稳态漩涡运动,对水工建筑物造成不利影响比较突出。进水非稳态漩涡现象容易在各种水工建筑物如水电站、水泵站、通航船闸、调节流量水位的建筑物及核电站的中央应急冷却系统的集水井等建筑的进水口处产生。当漩涡转变为贯通性吸气漩涡时,对工程结构会产生危害。如减少进流量、降低流量系数;引起机组或结构物的振动;降低机组效率;卷吸漂浮物、堵塞或损坏拦污栅等。由于非稳态漩涡的不确定性,持续时间短,运动规律复杂,对模型试验以及数值模拟研究均造成较大困难。目前针对非稳态漩涡运动规律以及成因分析的研究极为有限。因此,本文通过理论分析、模型试验以及数值模拟对非稳态漩涡运动以及产生机理进行研究。
     (1)有压扩散段非稳态流动的数值模拟研究。用大涡模拟方法,系统研究了有压扩散段内整个流场的变化以及发展情况,结合谱分析的方法对有压扩散段内水流水力特性进行研究。结果表明,壁面流动分离区产生非稳态漩涡的横向振荡诱发扩散段内产生非稳态现象,即主流在扩散段内做非周期性摆动。
     (2)进水非稳态漩涡的试验研究。通过水槽试验,考虑来流边界的时均流速分布、紊动强度、水面波动强度以及进水口周边脉动压力等,对进水非稳态漩涡的特征和影响因素进行研究。结果表明:进水口附近水面非稳态吸气漩涡数量的历时过程具有和紊流相似的“拟序结构”特性。
     (3)进水非稳态漩涡数值模拟研究。采用大涡模拟方法,针对不同工况水槽流体进行计算,分析不同工况下进水口处流场特点,漩涡形态,运动规律,漩涡结构以及进水漩涡影响因素。结果表明,随来流紊动强度的增大,进水口附近漩涡运动活跃,进水口吸气漩涡数量增加。对称边界条件以及进水口胸墙向上游伸出一段距离均可减少吸气漩涡现象发生。
     (4)非稳态漩涡形成机理的理论分析。讨论了涡管的扭曲变形对涡量的影响,并对实际流体中侧部和底部孔口的漩涡的拉伸原因作了解释,依据紊流复合涡模型和能量级联结构,分析水面漩涡的能量平衡过程以及漩涡的形成演变过程。
Unsteady vortexes phenomena are universal in the flow of hydraulic structures.Seperation flow often generates from the wall with unsteady vortexes in the seperation region when the diffusion angle is larger than a certain value in the outlet of a pumped storage station which have harmful effects on hydraulic structures. The vortexes have been observed frequently at intakes of hydraulic structures such as hydroelectric power stations, navigation locks, flow and level regulation and withdrawal from sumps in Emergency Core Cooling Systems (ECCS) of nuclear power stations. The presence of air-core vortexes at an intake can cause discharge reduction, increase the fluctuation of hydraulic structure, reduce pumping efficiency, and in extreme cases, completely disable the intake. Due to its randomicity, short-time persistence and motion complexity which contribute great difficultness to vortex research, At present, few literature about vortex motion and formation mechanism is found. Therefore, an analytical, computational, and experimental study was conducted to describe unsteady vortices and its formation mechanisms. The principal contents and achievements of this dissertation are as follows:
     (1) The numerical simulation study on local unsteady-state flow in pressure divergent segment. The motion and development of the whole flow field in pressure divergent segment are given. The flow characteristics were studied by large eddy simulation (LES) combined with frequency spectrum analysis. It is indicated that the flow is composed of traverse swing with lower frequency and fluctuation with high frequency, and the swing is caused by the transverse oscillation of eddies in the separation region.
     (2) The physical model test of flume was made to study the average velocity distributin, turbulence indencity, surface fluctuation and turbulence pressure. The hydraulic characteristics and influencing factor of unsteady vortexes were researched. Model test results shown that the history of near-intake unsteady votexes has the approximate feature with turbulent coherent structures of the flow in the flume.
     (3) The numerical simulation of the flow with unsteady vortexes near intake in the flume under different conditions was achieved by large eddy simulation. The flow field characteristics, vortex configuration motion rule vortex structure and their influencing factor were researched. Results showed that vortex movement was active near the intake and the number of air-core vortexes increased with the increase of turbulence intensity. Symmetric boundary conditions and forward-tilting breast wall may reduce the generation of air-core vortexes.
     (4) The theoretical analysis of unsteady vortexes at intakes was completed. The reason for vortex stretching at the bottom and the side intakes was explained. According to Rankine’s combined vortex model and Cascade structure of energy, free surface vortex energy-balance process and the vortex forming, developing and varying were probed.
引文
[1]D.J.特里顿,物理流体力学[M].北京:科学出版社,1986.
    [2]周建军,王连祥,林秉南.明渠不恒定分离流数值模拟及实验验证[J],水动力学研究与进展,1993,8(1):28-34
    [3]王小华,樊洪明,何钟怡,后台阶流动的数值模拟,计算力学学报,2003,20(3):361-365
    [4]刘有军,平面突扩流动非稳定的大涡模拟.计算力学学报[J],1998,15(2):186-191
    [5]齐鄂荣,李炜等.二维后向台阶流的实验研究[C].中国环境水力学,2004:109-117
    [6]黄明海,齐鄂荣,李炜,PIV在二维后向台阶流实验研究中的应用,武汉大学学报(工学版),2005,38(2):35-38
    [7]齐鄂荣,黄明海,李炜等,应用PIV进行二维后向台阶流流动特性的研究(1)二维后向台阶流的旋涡结构的研究,水动力学研究与进展,2004,19(4):525-532
    [8]齐鄂荣,黄明海,李炜等,应用PIV进行二维后向台阶流流动特性的研究(2)二维后向台阶流的旋涡结构的研究,水动力学研究与进展,2004,19(4):533-539
    [9]王兵,张会强,王希麟等,不同亚格子模式在后台阶紊流流大涡模拟中的应用,工程热物理学报,2003,24(1):157-159
    [10]王兵,张会强,王希麟等,后台阶流动再附着过程的大涡模拟研究,应用力学学报,2004,21(3):17.20
    [11]刘应征,朴英守,成亨镇,后台阶分离再附紊流流动的实验研究,上海交通大学学报,2005,39(5):810-813
    [12]刘沛清,邓学蓥.明渠中跌坎后突扩分离流数值研究[J],力学学报,1998,30(1):9-19
    [13]刘沛清,工程中的一些复杂流动试验研究与数值模拟,清华大学,博士学位论文,1997,3
    [14]吕文堂,刘忠潮.用K-ε-A及用K-ε-E紊流模型对二维突扩分离流的数值模拟叨,西北水资源与水工程,1994,(2):1-9
    [15]华绍曾,杨学宁编.实用流体阻力手册[M],北京:国防工业出版社,1985
    [16]齐清兰,薛运田,张力霆.有压泄水洞淹没出流出121扩散的水流特征[J],西北水电,2004,(4):53-54
    [17]徐元利,徐元春,梁兴.Fluent软件在圆柱绕流模拟中的应用[J],水利电力机械,2005,27(1):39-41.
    [18]王治祥.陡槽水力扩散特性,西北水资源与水工程[J],1990(4):23-26
    [19]黄民,匡震邦.渐缩(扩)直圆管中的发展流动[J],水动力学研究与进展,1996,114(4):429-438
    [20]刘松,符松.串连双圆柱绕流问题的数值模拟[J],计算力学学报,2000,17(3):260-266
    [21]童兵,祝兵,周本宽.方柱绕流的数值模拟[J],力学季刊,2002,23(1):77-81
    [22]童兵,紊流的三维大涡模拟,西南交通大学,博士学位论文,2001,10
    [23]蒋绿林,高玉明,紊流模型在平板边界层分离流动中的应用,江苏石油化工学院学报,2001,13(3):1-4.
    [24]Simpson,ILL.Turbulent boundary-layer separation, Ann.Rev.Fluid Mech.1989,21:205-234
    [25]张柏山,吕志咏,祝立国.绕丁坝流动结构实验研究叨,北京航空航天大学学报,2002,28(5):585-588
    [26]王小华,何钟怡.二并列方柱绕流的大涡模拟[J],哈尔滨建筑大学学报,2002,35(2):49-53
    [27]叶春明,吴文权.数值模拟圆柱绕流旋涡生成、分离演化[J],华东工业大学学报,1995,17(4):25-30
    [28]张爱社,张陵.等边布置三圆柱绕流的数值模拟[J],应用力学学报,2003,20(1):31-36
    [29]Gerrard,J.H.,The machanics of the formation region of vortices behind bluff bodies,Fuild mech.1966,25:401-413
    [30]Sarpkaya,T.and Schoaff,R.L.,Inviscid model of two-dimensional vortex shedding by a circular cylinder,AIAA Journal 1979,17:1193-1201
    [31]魏英杰,朱蒙生,何钟怡.并列方柱绕流的大涡模拟及频谱分析,应用数学和力学[J],2004,25(8):824-830
    [32]苏铭德,康钦军.亚临界雷诺数下圆柱绕流的大涡模拟阴,力学学报,1999,31(1):100-105
    [33]王广超,施保昌,邓滨.非均匀格子Boltzmann方法模拟方柱绕流[J丁,应用基础与工程科学学报,2003,11(4):335-344
    [34]Xia,X.J.,and Bearman,PW.,An experimental investigation of the wake of an axisymmetric body with a slanted base,Aero.Quart.1983,34
    [35]Roshko,A.,On the drag and shedding frequency of two-dimensional bluffbodies,NACATN 3169
    [36]Atsushi Okajima, Flows around two tandem circular cylinders at very high Reynolds Numbers,Bulletin of the JSME.1979,22(166):504-511
    [37]Zdravkovich,M.M.,Review of flow interference between two circular cylinders in various arrangements,Transaction of the ASME Journal of Fluid Engineering,1977:618-633
    [38]陈文曲,任安禄,李广望.串列双圆柱绕流下游圆柱两自由度涡致振动研究[J],力学学报,2004,36(6):732-738
    [39]Bearman,PW,and Trueman,D.M.,An investigation of the flow around rectangular cylinders,Aero.Quart.1972,23:229-237
    [40]Achenbach,E.,Vortex shedding from spheres,Fuild mech.1974,62
    [41]刘月琴.弯道水流紊动特性阴,华南理工大学学报(自然科学版),2003,31 (12):89-93
    [42]刘焕芳.弯道水流的分离阴,武汉水利电力学院学报,1989,22(6):50.55
    [43]董志勇,须清华.鹅颈型管道三维水流结构研究[J],水动力学研究与进展,2002,17(1):25-31
    [44]王兵,张会强,虞建丰.后台阶分离流动中大涡结构演变的数值模拟叨,力学季刊,2003,24(2):166-173
    [45]王兴奎.明渠水流的紊动特性明,水力发电学报1993,(4):12-21
    [46]Anwar H O.Turbulent structure in a river bend[J].Journal of Hydraulic Engineering,1986,112(8):657-669.
    [47]Hecker G E.漩涡模拟的比尺效应[C].国际水工模拟缩尺影响专题讨论会译文选,长江水利水电科学研究院, 1985:219-237
    [48]Daggett L.L., Similitude in free surface vortex formation [J].Journal of hydraulic division, 1974,100(11):1565-1681
    [49]ANWAR H 0.Formation of a weak vortex[J].Journal of Hydraulic Research,1966,4(1):1-16。
    [50]Amphlett M B. Air-entraining vortices at a horizontal intake [R]. England: Hydraulic Research Station, 1976
    [51]Padmanabhan M, Hecker G E. Scale effects in pump sump models [J]. Journal of Hydraulic Engineering, ASCE, 1984, 110(11): 1540-1556.
    [52]何耘.水泵进水池漩涡研究的主要进展[J].水力发电学报,2004,23(5):92-96
    [53]杨正骏,林宗杂,谢佩珍.进水口前立轴漩涡区水流流速特性[J].水力发电学报,1987,6(2):11-20.
    [54]Quick M C.Scale relationship between geometrically similar spiral vortices[J].Civil Engineering and Public Works Reviews,1962,57(10):1423-1436.
    [55]何学民,汝树勋.水工建筑物进水口三维漩涡流场的实验研究[J].四川水力发电,1993,41(4):73-79.
    [56]徐宇,吴玉林,王琳.水泵进水池内紊流及涡流的数值模拟[J].工程热物理学报,2001,22(S1):33-36.
    [57]赵永志,顾兆林,郁永章等.自由水涡结构及运动特征的数值研究[J].西安交通大学学报,2003,37(1):85-88
    [58]陈云良,伍超,叶茂等.水电站进水口水流流态的研究[J].水动力学研究与进展,2005,20(3):340-345
    [59]陈云良,伍超,叶茂等.立轴旋涡多圈螺旋流场特性研究[J].四川大学学报:工程科学版,2007,39(1):13-17
    [60]叶茂,伍超,杨朝晖等.进水口前立轴旋涡的数值模拟及消涡措施分析[J].四川大学学报:工程科学版,2007,39(2):36-40
    [61]BROCARDDN,BEAUCHAIVIPCH,HECKER G E.Analytic predictions of circulation and vortices at intakes [R].Palo Alto,California:Electric Power Research Institute,1982.
    [62]CONSTANTUNESCU S G,PATE V C.Numerical model for simulation 0f pump-intake flow and vortices[J].Journal of Hydraulic Engineering,ASCE,1998,124(2):123-134.
    [63]EIAMSAARD S,PROMVONGE P.Numerical prediction of vortex flow and thermal separation in a subsonic vortex tube[J].Journal of Zhejiang University Science,2006,7(8):1406-1415.
    [64]Lugt H J. Vortex flow in nature and technology [M].New York: John Willy&Sons, 1983.
    [65]Saffman P G Baker G R.Vortex interactions [J].Fluid Mech, 1979: 95-112.
    [66]吴介之,马晖扬,周明德.涡动力学引论[M].北京:高等教育出版社,1991.
    [67]Lamb H. Hydrodynamic [M],Cambridge University Press,1932.(中译本:理论流体动力学.北京:科学出版社,1990.)
    [68]Vanyo J.Rotating fluids in engineering and science [M]. New York:Dover publications, 1993.
    [69]夏震寰.现代水力学(二)—分析流动的理论[M].北京:高等教育出版社,1990.
    [70]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998.
    [71]Bradshaw P. An introduction to turbulence and its measurement [M]. Pergamon Press,1971.
    [72]J.O. Hinze,Turbulence.McGraw-Hill Publishing Co.,New York, 1975.
    [73]P. Spalart and S. Allmaras.,A one-equation turbulence model for aerodynamic flows.,Technical Report AIAA-92-0439,American Institute of Aeronautics and Astronautics,1992.
    [74]W. P. Jones and J. H. Whitelaw,Calculation Methods for Reacting Turbulent Flows: A Review.Combust. Flame,48:1-26,1982
    [75]B. E. Launder and D. B. Spalding,Lectures in Mathematical Models of Turbulence,Academic Press,London,England,1972
    [76]B. E. Launder and D. B. Spalding,Lectures in Mathematical Models of Turbulence,Academic Press,London,England,1972
    [77]V. Yakhot and S. A. Orszag,Renormalization Group Analysis of Turbulence,I. Basic Thery. Journal of Scientific Computing,1(1): 1-51, 1986
    [78]D. Choudhury,Introduction to the Renormalization Group Method and Turbulence Modeling.,Fluent Inc. Technical Memorandum TM-107,1993
    [79]T.-H. Shih, W. W. Liou, A. Shabbir, and J. Zhu,A New k- Eddy-ViscosityModel for High Reynolds Number Turbulent Flows - Model Development and Validation,Computers Fluids, 24(3):227-238, 1995
    [80]M. M. Gibson and B. E. Launder,Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer,J. Fluid Mech.,86:491-511,1978
    [81]B. E. Launder,Second-Moment Closure: Presentand Future,Inter. J. Heat Fluid Flow,10(4):282-300,1989
    [82]B. E. Launder, G. J. Reece, and W. Rodi,Progress in the Development of a Reynolds-Stress Turbulence Closure,J. Fluid Mech.,68(3):537-566, April 1975
    [83]B. A. Galperin and S. A. Orszag,Large Eddy Simulation of Complex Engineering and Geophysical Flows,Cambridge University Press,1993
    [84]Hirt C W,Nichols B D. Volume of fluid(VOF)Method for the Dynamics of Free Boudaries[J],J. Comput. Phys. 1981,39(3): 201-225
    [85]V. Yakhot and S. A. Orszag,Renormalization Group Analysis of Turbulence: I. Basic Theory,Journal of Scientific Computing,1(1):1-51,1986
    [86]J. U. Brackbill,,D. B. Kothe and C. Zemach,A Continuum Method for Modeling Surface Tension,J. Comput. Phys,100:335-354,1992.
    [87]天津大学水力学教研室编,水力学[M].北京:人民教育出版社,1980
    [88]考夫曼,工程流体力学[M].北京:科学技术出版社,1957
    [89]华绍曾,杨学宁编.实用流体阻力手册[M],北京:国防工业出版社,1985
    [90]J. W. Deardorff. A numerical study of three-dimension turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics. 1970, 41 (2): 453-480.
    [91]J. Smagorinsky. General circulation experiments with the primitive equations[J]. Monthly Weather Review. 1963, 91 (3): 99-164.
    [92]刘导治.计算流体力学基础.北京:北京航空航天大学出版社,1989.
    [93]H.K.Versteeg, W. Malalasekera. An introduction to computational fluid dynamics[M]. New York: Longman Scientific & Technical Press. 1995.
    [94]I. Drianski. A simple boundary condition for unbounded hyperbolic flows[J]. Journal of Computational Physics. 1976, 21 (5): 251-269.
    [95]H. Wengle, A. Huppertz, G. Barwoff, et al. Numerical simulation (DNS and LES) of manipulated turbulent boundary layer flow over a surface-mounted fence[J]. European Journal of Mechanics B/Fluids, 2001, 20 (1): 25-46.
    [96]华绍曾,杨学宁等.实用流体阻力手册[M].北京:国防工业出版社,1985.
    [97]宋惠芳,有压扩散流局部非稳态现象研究,天津大学,博士学位论文,2007.5
    [98]阳欣先,李彦硕.水电站进水口设计[M].大连:大连理工大学出版社,1990.
    [99]水利部国际合作与科技司编著.当代水利科技前沿[M].北京:中国水利水电出版社,2005.
    [100]胡去劣.低水头进水口的布置及漩涡试验研究[R].南京:南京水利水电科学研究院,1985.
    [101]王水田.水工建筑物漏斗状吸气漩涡问题的研究和进展[R].南京水利水电科学研究院,1964.
    [102]Posey C.J, Hsu H. How the vortex affects orifice discharge[J].Engineering News Record,1950,114(9):30-32.
    [103]Jackson R G. Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows [J]. Journal of Fluid Mechanics,1976, 77(3):531-560.
    [104]卢永金.进水口前的水流运动[J].水动力学研究与进展, 1989, 4(1): 74-78.
    [105]杜敏.进水漩涡形成机理及缩尺效应,天津大学,博士学位论文,2008.5.
    [106]索丽生.抽水蓄能电站的水力学专门问题—94年抽水蓄能工程国际学术讨论会论文综述(二)[J].水力水电科技进展,1995,15(2):8-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700