藕淀粉与超微全藕粉的制备技术及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莲藕(Nelumbo nucifera Gaertn),含有丰富的淀粉、蛋白质、维生素、铁、钙、生物碱等多种对人体健康有益的物质,具有较高的食用和药用价值,是一种用途十分广泛的水生经济作物。但莲藕采收后易出现褐变,本研究希望找出比较有效的无硫抑制剂控制莲藕的酶促褐变过程,并结合干燥脱水技术和超微粉碎技术,将莲藕加工成超微全藕粉,既有利于莲藕的贮藏和运输,又最大限度的保存了莲藕的各种营养成分。不同粒度的超微全藕粉功能特性的研究,有利于理解超微全藕粉在加工、储存以及使用过程中的质构特征,为解决全藕粉深加工产品的糊化和老化等问题提供理论基础,并为全藕粉产品的品质控制和加工工艺提供参考,指导其在食品工业中的应用。实验研究结果如下:
     (1)鲜切藕片护色技术研究
     鲜切藕片的最佳护色剂组合为:柠檬酸0.15%,抗坏血酸0.15%,d1-苹果酸0.25%,L-半胱氨酸0.15%,在加工过程中结合热烫(60℃)可共同抑制酶促褐变的发生。
     (2)鲜切藕片干燥脱水技术研究
     应用热风干燥、微波干燥、先微波后热风、以及真空冷冻干燥四种常用的干燥方法对鲜切藕片进行脱水干燥试验,采用干燥速率、碘蓝值、白度和复水性四个指标综合评定干燥后的产品质量,最终确定了热风干燥法是鲜切藕片的最佳干燥方法,并通过正交试验确定了薄层热风干燥的最佳条件为:热风温度70℃、风速0.3m/s、装样量40g。在此条件下,薄层热风干燥数学模型符合单项扩散模型:MR=0.857412114exp(-0.050102613t)(R~2=0.96537):通过该模型得到的预测值和真实测定值的比较,表明该方程能够较好的模拟该条件下鲜切藕片的干燥过程。
     (3)藕淀粉与超微全藕粉的制备技术
     通过试验研究,确定了藕淀粉采用传统水提法制备,超微全藕粉首先由热风干燥的藕片经粗粉碎后,再通过翻转式振动碾磨混炼机,进行超微粉碎,再用不同目筛筛分而制得。1号样品藕淀粉与超微全藕粉1-淀粉,1-100、1-200、1-300的得率分别为3.23%、34.3%、47.0%、15.3%;2号样品藕淀粉与超微全藕粉2—淀粉、2—100、2—200、2—300的得率分别为3.71%、30.2%、47.6%、19.4%;3号样品藕淀粉与超微全藕粉3—淀粉、3—100、3—200、3—300的得率分别为2.64%、35.3%、38.7%、和22.1%。
     (4)藕淀粉与超微全藕粉颗粒结构特性的研究
     藕淀粉颗粒表面光滑,无裂纹,少量破损;大多数颗粒呈棒状,颗粒大小在40μm左右,少部分淀粉颗粒呈椭圆形或圆形,颗粒大小在10—25μm左右,极少数为多角形,有偏心环纹;藕淀粉颗粒偏光十字明显,颗粒较大的棒状淀粉,脐点位于淀粉颗粒的一端,其十字不规则,大部分呈“X”形;颗粒较小的椭圆形或圆形淀粉,脐点位于淀粉颗粒中央,呈垂直十字形或斜十字形,部分呈“X”形;全藕粉经过超微粉碎后,藕淀粉原有的颗粒结构大多被破坏,只能观察到极少完整的淀粉颗粒,且破损的淀粉颗粒与其他的颗粒黏附在一起,形成小的粒子团;超微全藕粉,只能看到部分未被破坏的藕淀粉颗粒的偏光十字;藕淀粉颗粒的结晶结构为B型;超微粉碎后全藕粉呈现A型结晶结构;超微全藕粉随着粒度的减小,衍射峰强度降低,半峰宽增加,结晶区域减小,而非结晶区域增大;1号样品1-淀粉、1-100、1-200、1-300的结晶度分别为:35.77%、25.61%、23.77%、21.81%;2号样品2-淀粉、2-100、2-200、2-300的结晶度分别为:32.30%、28.72%、24.28%、22.49%;3号样品3-淀粉、3-100、3-200、3-300的结晶度分别为:32.96%、28.94%、26.48%、25.76%。1号样品1-淀粉、1-100、1-200、1-300的粒度80%分别分布在19.652μm-73.045μm、8.473μm-135.541μm、8.7μm-88.907μm和7.395μm-56.966μm之间;2号样品2-淀粉、2-100、2-200、2-300的粒度80%分别分布在18.74μm-66.371μ、14.07μm-213.55、7.895μm-63.463μ和7.433μm-53.244之间;3号样品3-淀粉、3-100、3-200、3-300的粒度80%分别分布在17.616μm-76.813、9.979μm-202.63、7.196μm-56.888μm和7.444μm-53.697μm之间。2号淀粉颗粒相对较小,1号淀粉和3号淀粉粒径相近。超微全藕粉100目样品粒径远大于淀粉粒径,200目和300目的样品粒径小于淀粉颗粒。
     (5)藕淀粉与超微全藕粉糊化特性的研究
     不同粒度的超微全藕粉,在不同条件下黏度变化趋势与相同品种的藕淀粉相似。但是由于全藕粉中复杂成分之间的相互作用,超微全藕粉的糊化温度高于藕淀粉,另外由于超微粉碎过程已经破坏了淀粉的颗粒结构,所以超微全藕粉糊化所需要的能量低于颗粒完整的藕淀粉;超微全藕粉的溶解度远远高于相应的藕淀粉;不同粒度超微全藕粉的溶解度顺序为为300目>200目>100目;超微全藕粉的膨胀度高于淀粉,不同粒度超微全藕粉的膨胀度顺序为100目>200目>300目;淀粉的冻融稳定性远远高于超微全藕粉,不同粒度的超微全藕粉的冻融稳定性顺序为100目>200目>300目。超微全藕粉的粘度低于藕淀粉,但其稳定性好于藕淀粉;不同粒度的全藕粉中粘度的热稳定性和冷稳定性都表现为100目<200目和300目,200目和300目之间的稳定性差异不明显。藕淀粉在较低浓度6%时即可形成较好的凝胶,超微全藕粉则要在较高浓度11%时才能形成凝胶,且凝胶强度低,但超微全藕粉形成的凝胶弹性较好。
     (6)藕淀粉与超微全藕粉糊老化特性的研究
     超微全藕粉与藕淀粉糊在放置过程中透光率降低,超微全藕粉糊透光率低于藕淀粉;与藕淀粉糊相比超微全藕粉糊更容易沉降,不同粒度超微全藕粉糊的沉降速度大小为300目>200目>100目;超微全藕粉与藕淀粉糊或凝胶在存放过程中,碘蓝值和α-淀粉酶酶解率都降低,说明在糊或凝胶中游离淀粉含量降低,淀粉老化在缓慢的进行,同时在存放过程中,超微全藕粉与藕淀粉凝胶的凝胶强度增加,凝胶弹性降低。
     本论文的创新之处在于:
     (1)对鲜切藕片进行了四种脱水干燥工艺的研究,优化了热风薄层干燥工艺参数,建立了干燥数学模型,并研究了超微全藕粉的生产工艺,获得了不同品种、不同粒度的超微全藕粉产品。
     (2)在国内首次系统的研究了不同品种藕淀粉与超微全藕粉的理化性质、颗粒结构和功能性质,为其在食品工业中的应用提供理论依据。
     本论文鲜切藕片护色部分、热风薄层干燥部分以及藕淀粉与超微全藕粉颗粒结构特性研究部分已分别在《食品工业科技》和《食品科学》上发表。
Nelumbo nucifera Gaertn is a kind of hydrophilous economy-crop which can provide ample nutrition such as starch,vitamin,Fe,Ca and alkaloid et al.But after harvested lotus root tends to get browning. Many inhibitors and drying methods were studied to protect fresh-cut lotus root from browning during experiments.The production of super-fine whole-lotus-root powder can keep much of the nutrition and be benefit to the store and conveyance of the lotus root.The study of super-fine whole-lotus-root powder's functional characteristic provided the theoretic base for structure,pasting and retrogradation characteristics, and the results can be the guidance for application of super-fine whole-lotus powder in food industry.The results as following:
     (1) The study of protecting fresh-cut lotus root from browning
     The best inhibitor combination is:citric acid 0.15%,vc 0.15%,dl-malicacid 0.25%and L-cysteine 0.15%,combined with 60℃water dipping during the production to control browning.
     (2) The study of drying methods on fresh-cut lotus root
     The fresh-cut lotus root are drying with hot-air drying,microwave drying,microwave+hot-air drying and vacuum freezing drying.The qualities of products are evaluated comprehensively by drying rate, starch-iodine-blue,TW and the ability of water retention.The results show that hot-air drying is the best method to preserve the quality of lotus root.And the best technological drying condition is 70℃,the speed of wind is 0.3m/s and the quantity is 40g.Under this condition,the mathematical drying model equation MR=0.857412114exp(-0.050102613t)(R~2=0.96537) has been established.The results show that there is little difference between the speculated results and the calculated outcomes,so the mathematical model equation established on these date can be applied to describe the process of hot-air thin layer drying for fresh-cut lotus roots.
     (3) The preparation of lotus root starch and super-fine whole-lotus root powder
     We get the lotus root starch with the method of extracting with water.The drying slices of lotus root are crushed to get the meal and then transferred to the super micron-milling equipment to gain the finer powder.And the powder is separated to three grades according to their size.The output of each sample is that the percent of 1-starch,1-100,1-200,1-300 is 3.23%,34.3%,47.0%,15.3%each;the percent of 2-starch, 2-100,2-200,2-300 is 3.71%,30.2%,47.6%,19.4%each;the percent of 3-starch,3-100,3-200,3-300 is 2.64%,35.3%,38.7%,and 22.1%each.
     (4)The study on the structure of lotus root starch and super-fine whole-lotus root powder
     The shape and the structure of lotus starch and different sizes of super-fine whole-lotus powder are studied with optical microscope,scanning electron microscope,polarizing microscope and X-ray diffraction.The results show that most of the lotus starch particles are club-shaped and the size are about 40μm and a few of them are elliptic or circular and the size are about 10-25μm,and all of them present apparent ring and their center is on the end of particle.The intrinsic structure of lotus root starch is almost destroyed during super-fine smashing.Little intact starch can be observed,the damaged starch attached to other fragments to form small groups.Otherwise the size of whole-lotus root powder is getting smaller after super-fine smashing,even smaller then starch.The polarization cross is clear and the club-shaped starch shapes“X”,but elliptic and circular starch shape vertical or declining cross and some of them are in the shape of“X”,Most lotus starch structure of super-fine whole-lotus powder is destroyed,only a few“X”or fragmentary“X”and cross can be seen.Lotus starch exhibits a B-type in X-ray diffraction pattern,but after super-fine smashing which exhibits an A-type in X-ray diffraction.With the sizes of the super-fine whole-lotus powder getting smaller,the intention of diffraction apex falls and the extent of crystal minishes and the extent of non-crystal spreads.The crystal degree of each sample is that the percent of 1-starch,1-100,1-200,1-300 is 35.77%,25.61%,23.77%,21.81%each,the percent of 2-starch, 2-100,2-200,2-300 is 32.30%,28.72%,24.28%,22.49%each,the percent of 3-starch,3-100,3-200,3-300 is 32.96%,28.94%,26.48%,25.76%each.The 80%of the size distribution of each sample is that 1-starch, 1-100,1-200,1-300,2-starch,2-100,2-200,2-300,3-starch,3-100,3-200,3-300 is among 19.652μm-73.045μm,8.473μm-135.541μm,8.7μm-88.907μm,7.395μm-56.966μm,18.74μm-66.371μm, 14.07μm-213.55μm,7.895μm- 63.463μm,7.433μm-53.244μm,17.616μm-76.813μm,9.979μm-202.63μm, 7.196μm-56.888μm,7.444μm-53.697μm each.
     (5) The study of paste characteristic of lotus root starch and super-fine whole-lotus root powder
     The results show that the changing direction of viscosity of different size of whole-lotus root powder is similar to the same sort of lotus root starch under varied conditions.The gelatinization temperature of super-fine whole-lotus powder is higher than the lotus root starch due to the complicated component and the reciprocity of each other.The energy needed to gelatinize of super-fine whole-lotus powder is fewer than the lotus root starch because that the structure of starch in whole-lotus powder has been destroyed during super-fine smashing.The super-fine powder is more soluble than the starch.The solubility of different size of super-fine powder is that 300 mesh>200 mesh>100 mesh.The swelling power of super-fine powder is better than starch.The swelling power of different size of super-fine whole-lotus powder is that 100 mesh>200 mesh>300 mesh.The freezing-thawed stability of lotus starch is much better than super-fine powder.The freezing-thawed stability of different size of super-fine whole-lotus powder is that 100 mesh>200 mesh>300 mesh.The viscosity of super-fine whole-lotus root powder is lower than lotus root starch while its stability is better than the starch.The viscosity stability of different size super-fine whole-lotus root powder under high temperature and low temperature are both 100mesh<200mesh and 300mesh,there is little difference between 200 mesh and 300 mesh.Lotus root starch can gel when the concentration is above 6%while the super-fine whole-lotus root powder can gel only when the concentration is above 11%.The intensity of starch gel is higher than super-fine whole-lotus root powder while the springness is on the contrary.
     (6) The study of retrogradation of lotus root starch and super-fine whole-lotus root powder
     The results show that the paste's euphotic ratio of lotus root starch and super-fine whole-lotus root powder fall during placement.And the paste's euphotic ratio of super-fine whole-lotus root powder is lower than that' of lotus root starch.Comparing with lotus root starch,the super-fine whole-lotus root powder paste more easily incline to delaminate,and the sedimentation rate is getting faster with the size getting smaller.Both the starch-iodine-blue and the decomposeing percent of paste and gel of lotus root starch and the super-fine whole-lotus root powder decline during the placement.The explanation is that the content of dissociated starch are getting fewer during the placement in the paste and gel and the retrogradation is processing slowly.The gel's intensity is getting stronger and it's springiness gets lower during placement.
     The innovations of this paper as following:
     (1) Four drying methords have been applied for fresh-cut lotus root,and the parameters of hot-air drying are optimized.We work over the producing technics about super-fine whole-lotus root powder and gain the production.
     (2) The physical and chemical characteristics,granule structure and functional characteristics of lotus root starch and super-fine whole-lotus root powder are studied systemicly for the first time at home.And the research affords the academic foundation for their application in the food insustry.
引文
[1]瞿桢,魏英辉,李大威等.莲品种资源的SRAP遗传多样性分析.氨基酸和生物资源,2008(3):21-25
    [2]Les DH,Garvin DK,Wimpee CEMolecular evolutionary history of ancient aquatic angiosperms[J].Proceedings of the National Academy of Sciences,1991(88):10119-10123
    [3]Borsch T,BarthlottW.Classification and distribution of the genus Nelumbo Adans,(Nelumbonaceae)[J].Beitr(?)ge zur Biologic der Pflanzen,1994(68):421-450
    [4]Diao Y,Liu JY,Yang GX,Hu ZL,Zhou MQ,Song YC.Karyotype analysis of the Nelumbo nucifera and Nelumbo lutea by chromosome banding and fluorescence in situ hybridization[J].Korean journal of genetics,2005(27):187-194
    [5]Lee K,Choi Y M,Noh D O,et al.Antioxidant effect of Korean traditional lotus liquor (YunYuPju)[J].International Journal of Food Science and Technology,2005(40):709-715
    [6]夏文水,姜启兴,张家骊.莲藕方便食品加工技术的研究.食品与机械,2007(1):141-142
    [7]章焱广,孟锦绣,张春艳.出口速冻藕片的加工工艺[J].广州食品工业科技,2000(2):19-21,74
    [8]唐明霞,袁春新,夏焰东等.藕丁(片)保鲜加工工艺[J].当代蔬菜,2006(6):46
    [9]张家骊,夏文水.莲藕汁饮料[J].冷饮与速冻食品工业,2000(4):21-23
    [10]刘建学.全藕粉喷雾干燥工艺试验研究[J].农业工程学报,2006,22(9):229-231
    [11]刘成梅,刘伟,涂宗财.高膳食纤维速溶藕粉的加工工艺[J].食品科技,2004(3):31-38
    [12]Lamikara O..Enzymatic effects on flavor and texture of freshcut fruits and vegetables[J].In lamikanra,O.Freshcut fruits and vegetables:Science,Technology andMarket,CRC Press,LLC,2002:125-186
    [13]陈艳乐等.薯蓣多酚氧化酶特性及褐变控制.食品科学,2003(10):59-62
    [14]王佳宏等.鲜切芋艿褐变特性研究.食品科学,2005(9):80-83
    [15]阚建全主编.食品化学,北京:中国农业大学出版社,2002
    [16]Oktay Arslan,et al..Purification of mulberry(Morus alba L.) polyphenol oxidase by affinity chromatography and investigation of its kineticand electrophoretic properties,Food Chemistry,2004(88):479-484
    [17]N.F._IIyido_gan,et al..Effect of L-cysteine,kojic acid and 4-hexylresorcinol combination on inhibition of enzymatic browning in Amasya apple juice,Journal of Food Engineering,2004(62):299-304
    [18]Catherine Billaud,et al..Inhibitory effect of unheated and heated d-glucose,d-fructose andL-cysteine solutions and Maillard reaction product model systems on polyphenoloxidase from apple,Food Chemistry,2003(81):35-50
    [19]Lene Kaaber,et al..Browning Inhibition and Textural Changes of Pre-Peeled Potatoes Caused by Anaerobic Conditions,Lebensm.-Wiss.u.-Technol.,2002(35):526-531
    [20]G.A.Gonzalez-Aguilar et al..Inhibition of Browning and Decay of Fresh-cut Radishes by Natural Compounds and their Derivatives,Lebensm.-Wiss.u.-Technol.,2001(34):324-328
    [21]Robert C.Soliva et al..Evaluation of browning effect on avocado pur'ee preserved by combined methods,Innovative Food Science & Emerging Technologies,2001(1):261-268
    [22]Yueming Jiang,et al..Advances in understanding of enzymatic browning in harvested litchi fruit.Food Chemistry,2004(88):443-446
    [23]莫开菊等.姜酚氧化酶特性研究.食品科学,2004(8):47-49
    [24]张勇等.香蕉酶促褐变的研究.食品科学,2004(3):45-48
    [25]张勇等.香蕉多酚氧化酶褐变性质的研究.食品与发酵工业,2004(5):53-57
    [26]郁志芳等.鲜切山药酶促褐变机理的研究.食品科学,2003(5):44-47
    [27]杜传来等.鲜切慈菇褐变底物的分析确定.食品与发酵工业,2006(2):46-49
    [28]邱龙新,黄浩,陈清西.半胱氨酸对马铃薯多酚氧化酶的抑制作用.食品科学,2006(4):37-39
    [29]徐芹,乔勇进,方强等.砀山酥梨多酚氧化酶酶学特性及抑制效应的研究.食品科学,2008(4):74-76
    [30]赵喜亭,王会珍,李明军等.无硫护色剂对鲜切铁棍山药片酶促褐变的影响及其PPO 特性研究.食品工业科技,2008(2):125-128
    [31]郁志芳等.鲜切莲藕酶促褐变底物的分析确定,食品科学,2002(4):41-44
    [32]王清章等.莲藕中酚类物质的提取分析及酶促褐变底物的研究,分析科学学报,2004(2):38-40
    [33]胡晓丹.莲藕酶促褐变的研究,江苏食品与发酵,1999(2):1-4
    [34]杨昌鹏,黄华梅.果蔬多酚氧化酶酶促褐变的控制.食品研究与开发,2008(10):135-138
    [35]Macdonald L,Schaschke C L.Combined effect of high pressure temperature and holding time on polyphenoloxidase and peroxidase activity in banana[J].journal of Food Science and agricultural,2000(80):719-724
    [36]Boynton B B.Quality and stability of precut mangos and caram bolas subjected to high-pressure processing[J.Food Science,2002(67):409-415
    [37]Weemaes C.High pressure inactivation of polyphenol oxidases[J].Food Science,1998(63):878-881
    [38]Gallali Y.M.,Abujnah Y.S.,Bannani F.K..Preservation of fruits and vegetables using solar drier:a comparative study of natural and solar drying,Ⅲ;chemical analysis and sensory evaluation data of the dried samples(grapes,figs,tomatoes and onions).Renewable Energy.2000(19)1-2:203-212
    [39]Nijhuis H.H.,Torringa H.M.,Muresan S..Approaches to improving the guality of dried fruit and vegetables.Trends in Food Science and technology.1998,(9)1:13-20
    [40]Esper A.,Muhlbauer W..Solar drying-An Effective Means of Food Preservation.Renewable Energy.1998,15(1-4):95-100
    [41]张璧光.太阳能与热泵节能干燥技术.通用机械,2006(7):18-20
    [42]谢英柏等.热泵干燥技术的应用及其发展趋势.农机化研究,2006(4):12-15
    [43]张绪坤等.热泵干燥技术在食业中的应用[J].食品科技,2004(11):10-13
    [44]侯红运等.低温吸附干燥技术.通用机械,2006(2):50-52
    [45]程盛华等.超临界流体技术发展与应用概况.热带农业工程学报,2005(2):24-27
    [46]张憨等.国内外果蔬联合干燥技术的研究进展.无锡轻工业大学学报,2003,22(6):103-106
    [47]潘永康.中国现代干燥技术发展概况.通用机械,2005(8):42-43
    [48]Mujumdar A S.Handbook of industrial drying.New York:Marcel Dekker,USA,1966.
    [49]潘永康主编.现代干燥技术.北京:化学工业出版社,1998.
    [50]徐小东等.农产品和食品干燥技术及设备的现状和发展.农业机械学报,2005(12):171-174
    [51]周蓉芬等.脱水卷心菜的加工.食品工业科技,1996,1:36-38
    [52]王敏等.南瓜丝热风干燥工艺参数的试验研究.农业工程学报,1996,4:199-03
    [53]陈锦飞等.生姜和小葱干燥工艺特性的试验研究.中国农机化,1997,1:250-257
    [54]张文华等.风尾厥热风干燥的特性.贵州农业科学.1999,27(1):29-31
    [55]张文华等.渗后胡萝卜丝热风干燥的研究.粮油加工与食品机械,1998,3:9-10
    [56]朱志伟等.气调与热风干燥对萝卜丝中维生素C质量分数的影响。福建农业大学学报,2000,29(4):522-525
    [57]黄卫萍.番木瓜干的试制.广西农学报,2001,2:37-39
    [58]赵玉生等.山楂热风干燥工艺研究.食品科学,2000,21(1):41-43
    [59]顾青等.脱水马兰加工特性的研究.食品科技.2002(2):24-26
    [60]车刚等.蕨菜人工脱水工艺对比试验研究.黑龙江八一农垦人学学报,2002,14(4):35-37
    [61]陈红等.涂蜡柑橘果实热风干燥过程的观察.华中农业大学学报.2002,4:392-394
    [62]王则金等.气调与热风干制对双孢蘑菇片干燥速度与制品质量的影响.中国农学通报,2004,20(6):39-42
    [63]王明空等.枸杞菜热风干燥工艺研究.食品科技.2005(2):20-23
    [64]罗树灿等.热风和微波结合干燥荔枝加工工艺研究.现代食品科技,2006,22(3):10-13
    [65]张可喜等.槟榔热风干燥工艺的研究.热带农业工程,2006(1):20-23
    [66]夏杏洲等.霸王花(火龙果花)干制工艺的研究,食品研究与开发,2006,27(6):80-82
    [67]胡国庆等.不同干燥方式对颗粒状果蔬品质变化的影响.食品与生物技术学报,2006,25(2):28-32
    [68]kerkhofs NS,lister CE,savage GP.change in colour an antioxicidant content of tomato cultivars following forced-air drying[J].Plant foods for human nutrition.2005,60(3):117-121
    [69]keyuncu T,serdar U,tosun I.drying characteristics and energy requirement for dehydration of chestnuts[J],journal of food engineering.2004,62(2):165-168
    [70]rossello C,simal S,sanjuan N,mullet A.nonisotropic mass transfer model fo green bean drying[J],journal of agriculture &food chemistry.1997,45(2):337-342
    [71]杨金英等.春笋微波干燥动力学模型及工艺试验研究.干燥技术与设备,2004(1):28-31
    [72]郑亿梅等.发芽糙米微波干燥工艺研究.粮食与饲料工业,2005(11):1-2
    [73]陈燕等.荔枝微波干燥的试验研究.中国农机化.2003,5:28-31
    [74]冉旭等.片装食品微波干燥热质传递模型及其干燥特性.2004,20(3):145-148
    [75]王双金等.土豆片的微波干燥规律研究.浙江农业学报.2002,14(1):42-45
    [76]王俊等.微波干燥香菇试验研究.科技通报.1996,12(1):48-53
    [77]朱德文等.微波干燥稻谷的试验研究.包装与食品机械.2003,21(5):8-11
    [78]王俊等.稻谷的微波干燥特性及品质[J].农机与食品机械,1998(5):30-32
    [79]Dong Tieyou,Toshinori Kimura,Shigeru Yoshizaki,Tomoteru Kawakami.Energy Efficiency in Microwave Drying of Rough and Brown Rice.Transactions of the CSAE.2002,18(5):43-47
    [80]陈燕等.微波干燥龙眼的特性及工艺研究.农机化研究.2007(4):141-142,147
    [81]张洪等.微波干燥茉莉花的研究.山西食品工业.2003(2):15-17
    [82]胡浩等.微波干燥生产线干燥黄姜的工艺研究.昆明理工大学学报,2005,30(5):35-37
    [83]Berteli M N,Marsaioli JrA,et al.Evaluation of a Continuous Rotary Air Dryer Assisted by Microwave in Comparison with the Conventional Air Dryer in the Short Cut Pasta Prodcutionm [R].International Drying Symposium,2002
    [84]Wang Jun,Zhang Jinping,Wang Jianping.Modeling simultaneous heat and mass transfer for microwave drying on apple[J].Drying Technology,1999,19(9):1241-1245.
    [85]Prothon F.Combined dehydration methods from fresh fruit to hish-quality ingredients [J].Swedish Institute for Food and Bioteehnology,2002,704(3):58.
    [86]张建军,王海霞,马永昌等.辣椒热风干燥特性的研究.农业工程学报,2008(3):298-301
    [87]许韩山、张憨、孙东风等,真空冷冻干燥在食品中的应用,干燥技术与设备.2008,6(2):102-106
    [88]Genin N.,Rene F?Influence of freezing rate and the ripeness state of fresh courgette on the quality of freeze-dried products and freeze-drying time.Journal of food engineering.1996,29:201-209.
    [89]Genin N.,Rene F.,Corrieu G.A method for on-line determination of residual water content and sublimation end-point during freeze-drying.Chemical Engineering and Processing.1996,35(4):255-263.
    [90]Hammami C.,Rene F?Determination of Freeze-drying Process Variables for Strawberries.Journal of Food Engineering 1997,32(2):133-154
    [91]Tein M.L.,Timothy D.D.,Christine H.S.Charactefization of vacuum microwave,air and freeze dried carrot slices.Food research international.1998,31(2):111-117
    [92]Krokida M.K.,Karathanos V.T.,Maroulis Z.B.Effect of Freeze-drying Conditions on Shrinkage and Porosity of Dehydrated Agricultural Products.Journal of Food Engineering.1998,35(4):369-380.
    [93]SUGARA Y.Structural models related to transport properties for the dried layer of food materials undergoing freeze-drying[J].Drying Technology,2001,19(2):281-296.
    [94]SUN Q,WENECAL A.Effect of water activity on lipid oxidation and Protein solubility in freeze-dried beef during storage[J].Journal of FoodScience,2002(7):2512-2515.
    [95]George J.P.,Datta A.K..Development and validation of heat and mass transfer models for freeze-drying of vegetable slices.Journal of Food Engineering.2002,52(1):89-93.
    [96]George J.P.,Datta A.K..Development and validation of heat and mass transfer models for freeze-drying of vegetable slices.Journal of Food Engineering.2002,52:89-93.
    [97]Edinara A.B.,Rubens M.F.,Eduardo C.V..Freeze drying process:real time model and optimization.Chemical Engineering and Processing.2004(43):1475-1485.
    [98]姜延舟,孙宏波,林崇实.香菇真空冷冻干燥工艺的研究.中国食用菌.1998,1:39-40.
    [99]李蔚,陈民.番茄真空冷冻干燥工艺的研究.真空.2000(6):32-34.
    [100]王丽艳,郭树国,邓子龙.苹果真空冷冻干燥工艺参数对生产率影响地研究.农机化研就,2007(5):167-169
    [101]石小琼,邓金星,张映斌.子芋冷冻升华干燥最佳工艺研究.农业工程学报.2001,17(5):112-117.
    [102]洪伯铿,陈文亮,张春梅.油豆角真空冷冻干燥的研究.哈尔滨商业大学学报(自然科学版).2002(6):664-666.
    [103]汪喜波,毛志怀.生姜真空冷冻干燥过程影响因素的试验研究.中国农业大学学报,2002,7(6):39-43.
    [104]李远志,罗树灿,薛子光.真空冷冻干燥荔枝果肉工艺研究.食品与机械.2003(2): 17-18.
    [105]包建强,杨永明.青蒜真空冷冻升华干燥技术的研究.2003,4(22):6-9
    [106]殷锦捷.绿叶蔬菜真空冷冻干燥实验研究.吉林大学学报(工学版).2003,33(3):110-112.
    [107]钱骅,赵伯涛,黄晓德.辛香蔬菜冻干工艺研究。中国野生植物资源.2003,22(5):40-43.
    [108]魏好程,仇厚援.真空冻干大蒜片最佳工艺参数研究.华南热带农业大学学报.2004,10(1):10-16.
    [109]刘达玉,吕开斌.芫姜真空冷冻干燥的研究.食品科学.2004.25(1):182-185.
    [110]曹有福.不同果形和冻结温度对冻干枣品质影响的研究.食品科技.2004(11):81-83.
    [111]李忠宏,杨公明.称猴桃果浆真空冷冻干燥工艺优化研究.食品科学.2004(8):94-97.
    [112]蔡福带,付娟妮,岳田利.冻干草莓的工业化生产工艺研究.西北农业学报.2004(1):93-97.
    [113]孙小红,关志强,覃惠芳等.贝肉真空冷冻干燥过程的数值计算.制冷.2008,27(1):21-26
    [114]李崇高,黄建初.红葱真空冷冻干燥工艺技术的初步研究.食品科学.2008,29(3):220-224
    [115]刘玉环.胡萝卜片的真空冷冻干燥加工工艺及研究.食品科技.2006(3):52-54
    [116]车刚,万霖,李成华等.蕨菜真空冷冻干燥工艺参数的优化试验.农业机械学报.2008,39(2):98-102
    [117]陈仪男.龙眼真空冷冻干燥工艺优化.农业工程学报.2008.24(9):244-248
    [118]徐莲,吴稼乐.真空冷冻干燥金枪鱼的吸湿特性研究.江西食品工业.2006(9):36-37
    [119]武治昌,杨安瑞,刘志芳等.真空冷冻干燥马铃薯片加工工艺.食品科技.2006(1):37-38
    [120]张憨等.国内外果蔬联合干燥技术的研究进展.无锡轻工业大学学报,2003,22(6):103-106
    [121]None Y J.Development of a combined process of dehydration impregnation soaking and drying of bananas[J].Journal of Food Engineering.2002,55(3):231-236.
    [122]Sharma G P.Drying of garlic(Allium sativum)cloves by microwave-hot air combination [J].Journal of food engineering.2001,50:99-105.
    [123]Phanindra Kumar H S.Effect of combination drying on the physico-chemical characteristics of carrot and pumpkin[J].Journal of Food Processing an d Preservation.2001, 25(6):447-460.
    [124]Litvin S..Dehydration of carrots by a combination of freeze drying,microwave heating and air or vacuum drying.Journal of food engineering.1998,36(1):103-111
    [125]王枚.微波干燥桃脯、苹果脯的影响因素和节能效果的研究[J].农业工程学报,1998(3):253-255
    [126]王俊.远红外与热风混合干燥香菇的质热特性研究[J].农业工程学报,1998(4):257-258
    [127]徐贵力.远红外常压、负压联合干燥香菇的试验研究[J].农业工程学报,2001(3):133-136
    [128]肖旭霖.洋葱真空远红外博层干燥模型.食品科学,2002(5):40-43
    [129]王俊等.蘑菇热风干燥的水分扩散模型.浙江农业大学学报.1998,24(4):339-343
    [130]刘正怀等.切片土豆干燥中传质过程模拟与分析.科技通报.2001(4):6-10
    [131]夏璐等.龙眼热风干燥特性的研究.食品工业.2004(1):40-41
    [132]薛文等.新疆番茄热风干燥工艺试验研究.食品工业科技.2004(10):88-92
    [133]杨大伟等.温度对薄层黄花菜干燥的影响.湖南农业大学学报(自然科学版),2004,30(1):62-64
    [134]karathanos VT.belessiotis VG.application of a thin-layer equation to drying data of fresh and semi-dried fruits[J]journal of agricultural engineering research.1999,74(4):355-361
    [135]doymaz I.pala M.the thin-layer drying characteristics of corn[J].journal of food engineering.2003,60(2):125-130
    [136]doymaz I.convective air drying characteristics of thin layer carrots[J].journal of food engineering.2004,61(3):359-364
    [137]jannot Y.talla A.nganhou J.puiggali JR.modeling of banana convective drying by the drying characteristics curve(DCC)method[J].drying technology.2004,22(8):1949-1968
    [138]Morimoto H.Shakouche T.Classification of ultra fine powder by a new pneumatic type classifier.Powder Technology.2003.131(1):71-79
    [139]蓝海军等.大豆膳食纤维的湿法超微粉碎与干法超微粉碎比较研究.食品科学.2007,28(6):171-174
    [140]张俊等.食品微胶囊、超微粉碎加工技术.北京:化学工业出版社 2005
    [141]潘思轶等.不同粒度超微粉碎米粉理化特性研究.食品科学.2004,25(5):59-62
    [142]Bernhardt C.Reinsch E.Husemann K.The influence of suspension properties on ultra-fine grinding in stirred ball mills.Powder Technology,1999,105:357-361
    [143]Knight P C.Structuring agglomerated products for improved performance.Powder Technology,2001,119:14-25
    [144]Maaroufi C.Melcion J F.et al.Fractionation of pea flour with pilot scale sieving.Physical and chemical characteristics of pea seed fractions.Animal Feed Science and Technology,2000,85(5):61-78
    [145]孟宏昌.复合蔬菜咀嚼片的研制.食品工程.2006,1:41-43
    [146]郭平等.黑木耳多糖功效与提取方法.中国林副特产.2006(6):72-74
    [147]王红新等.酶解鸡骨肉粉在鸡精中的应用.中国调味品.2005,1:40-42
    [148]刘达玉等.酶碱法提取薯渣膳食纤维及其改性研究.食品研究与开发.2005,26(5):61-64
    [149]高岩等.超微粉碎畜骨粉.肉类加工.2001,7:17-20
    [150]唐勇等.乳酸菌发酵对超微猪骨粉营养及理化特性的影响.农业工程学报.2002,18(2):118-121
    [151]盛勇等.超微粉碎面粉的蛋白质变化探讨.2002,23(9):37-40
    [152]姚怀芝等.籼米淀粉超微粉体的制备.食品科技.2003,7:17-18,27
    [153]姚怀芝等.籼米淀粉超微粉体的理化性质.2003,5:9-10
    [154]黄威等.长白山山野菜超微粉在肠制品中的应用.肉类工业.2003,6:8-10
    [155]张彩菊等.茶树菇超微粉体性质.无锡轻工大学学报.2004,23(3):92-94
    [156]陈存社等.超微粉碎对小麦胚芽膳食纤维物化性质的影响.食品科技.2004,9:88-90.94
    [157]Grover SS.chauhan CS.Masoodi FA.Effect of particle size on surface properties of apple pomace.International journal of food properties.2003,6(1):1-7
    [158]王娟等.超微芦荟粉面包的加工与研究.食品研究与开发.2004,25(3):63-65
    [159]杨春瑜等.黑木耳超微粉氨基酸和维生素含量变化及原因.中国食用菌.2004,23(6):33-35
    [160]程永强等.超微处理豆渣制品添加对豆腐质地的影响.食品科学.2004,25(增刊):47-49
    [161]李支霞等.超微茶粉酸奶的工艺优化.茶业通报.2005,27(1):27-29
    [162]曹龙奎等.胡萝卜超微粉制备技术的研究.农产品加工.2005,4:12-14
    [163]方政等.超微粉碎-酶解锦橙皮渣制取天然饮料混浊剂的研究.食品工业科技.2005,10:78-81
    [164]贾磊.超微酶化玉米粉的开发.粮食加工.2005,6:19-21
    [165]张正竹.超微绿茶粉加工技术.茶业通报.2006,28(1):19
    [166]齐风元等.超微茶粉绿豆糕的开发.中国食物与营养.2006,2:46-47
    [167]郑晓杰.即食红薯复合糊.食品工业科技.2006,27(7):117-118
    [168]濯文俊.冻干柿子超微粉的加工工艺.食品科技.2006,5:74-76
    [169]郑慧等.超微处理对苦荞麦理化及功能特性影响的研究.食品与发酵工业.2006,32(8):5-8
    [170]纵伟等.湿法超微粉碎对红枣浆理化性质的影响.江苏农业科学.2006,6:374-376
    [171]纵伟等.湿法超微粉碎对茶叶理化性质的影响.食品工程.2006,4:35-37
    [172]Cadden A.Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers[J].Journal of Food Sci,1987,52(6):1595-1599
    [173]张蕾等.超微粉碎对荷叶黄铜类物质醇提工艺的影响.食品与发酵工业.2006,32(11):142-144
    [174]许春英等.天然南瓜粉生产工艺及关键技术的研究.食品科学.2007,28(1):377-380
    [175]刘建成等.超微粉碎对鱼腥草中金丝桃苷和槲皮苷溶出的影响.福建农林大学学报.2007,36(2):167-170
    [176]李华等.超微粉碎技术在葡萄籽加工中的应用.华南理工大学学报.2007,35(4):123-126
    [177]邓丹雯,黄赣辉.粉碎造粒新技术及其在食品工业中的应用.江西食品工业,2007(5):25-26
    [178]高嘉安.淀粉与淀粉制品工艺学[M].北京:中国农业出版社,2001
    [179]Perez-Sira E.Characterization of starch isolated from Plantain(Musa paradisiaca normalis)[J].Starch,1997,49(2):132-138
    [180]Whistler R.L.,Beniller J.N.and Paschll E.L..Starch Chemistry and technology.New York,Academic press,1984
    [181]刘亚伟.淀粉基食品添加剂.北京:化学工业出版社,2007
    [182]M.J.Ridout,A.P.Gunning,M.L.Parker,et al.Using AFM to image the internal structure of starch granules[J].Carbohydrate Polymers,2002,50:123-32.
    [183]庄海宁,张燕凭.原子力显微镜在淀粉颗粒结构研究中的应用.中国食品添加剂,2006(3):157-161
    [184]吴雪辉,张加明.板栗淀粉糊特性的研究.食品与发酵工业.2001,28(6):46-48
    [185]谢涛,谢碧霞.小红栲淀粉糊特性研究.食品工业科技.2002(11):40-41
    [186]邱树毅,王广莉.芭蕉芋淀粉糊特性及该性研究.贵州化工.200l(1):16-18
    [187]赵增煜.高直链玉米淀粉糊化特性及其在可生物降解塑料中应用的探讨.淀粉与糖.2006(1):28-30
    [188]于天峰.马铃薯淀粉的糊化特性、用途及品质改良.中国马铃薯.2005(4):223-225
    [189]吉宏武,丁霄霖,檀亦兵.百合淀粉糊化特性的研究.食品工业科技.2002(11):9-11
    [190]郭晓娜,朱永义.发芽糙米糊化特性研究.粮食与油脂.2004(2):10-12
    [191]樊黎生.甘薯淀粉基本特性的研究.粮食与饲料工业.2001(2):49-51
    [192]孟祥艳,赵国华.山药淀粉的特性及应用研究.食品工业科技.2008(1):292-294
    [193]谭薇,李珂,卢晓黎.大米糊化特性及回生机理研究.食品科学.2008.29(3):167-171
    [194]杜双奎,于修烛,马静等.薏米淀粉特性研究.中国粮油学报.2008.23(1):61-64
    [195]邹弈星,潘志芬,邓光兵.等.青藏高原青稞的淀粉特性.麦类作物学报.2008,28(1):74-79
    [196]孙链,孙辉.糯小麦粉特性研究进展.粮油食品科技.2008.16(1):1-4
    [197]刘政,郭玉蓉,牛黎莉等.燕麦淀粉性质研究.甘肃农业大学学报.2007(3):110-113
    [198]李洁,田翠华,王清章.莲藕淀粉的晶体特性研究.食品科学.2007.28(2):50-52
    [199]David A.Betancur,Luis A.Chel Ancona,Rosa.Guerrero.Physicochemical and functional characterization of baby lima bean(phaseolas lunatus)starch[J].Starch/Starke.2001.53:291-296
    [200]Fredriksson H,Silverio J,Andersson R,et al.The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches[J].Carbohydrate Polymers.1998.35:119-134.
    [201]Miles M.J,Morris V.J,Orford P.D,et al.The roles of amylose and amylopectin in the gelation and retrogradation of starch[J].Carbohydrate research.1985,135:271-278.
    [202]Ring S.G,Clonna P,I' Anson K.J,Kalichevsky M.T,Mifes M.J,Morris V.J,Orford P.D.The gelation and crystallization of amylopectin[J].Carbohydrate research.1987,162:277-293.
    [203]Zhang W.and Jackson D.S.Retrogradation Behavior of Wheat Starch Gels with Differing Molecular profiles[J].Journal of Food Science.1992,57(6):1428-1432.
    [204]Fearn T.and Russell P.L.A Kinetic Study of Bread Staling by Differential Scanning Calorimetry[J].Journal of the Science of Food and Agriculture.1982.33:537-548.
    [205]Fan J,Marks B.P.Retrogradation Kinetics of Rice Flours as Influenced by Cullivar[J].Cereal Chem.1998.57(1):153-155.
    [206]赵思明,熊善柏,俞兰苓.稻米淀粉糊老化动力学研究.农业工程学报.2003.19(1):37-39
    [207]李慧娟,柴松敏.淀粉的老化机理及抗老化研究.粮食加工.2006(3):42-45
    [208]熊善柏,赵思明,张声华.方便米饭老化特性研究.食品科学.2001.22(10):18-21
    [209]章焰,叶敏,赵思明.方便湿米粉的老化特性研究.粮食与饲料工业.2006(8):17-19
    [210]曹清明,钟海雁,李忠海等.蕨根淀粉糊的老化特性及影响因素.食品工业科技.2007(12):114-117
    [211]吴卫国,谭兴和,熊兴耀等.不同工艺和马铃薯品种对马铃薯颗粒全粉品质的影响.中国粮油学报.2006.21(6):98-102
    [212]沈晓萍,卢晓黎,闫志农.工艺方法对马铃薯全粉品质的影响.食品科学.2004.25(10):108-112
    [213]赵文红,白卫东,王琴等.葛根全粉糊流变特性初探.食品与机械.2008.24(4):41-45
    [214]任广跃,毛志怀,李栋.微细化木薯淀粉糊特性研究.中国农业大学学报.2006,11(2):88-92
    [215]荣建华,史俊丽,张正茂.超微细化大米淀粉流变特性的研究.中国粮油学报.2007.22(3):73-76
    [216]马莹,顾瑞霞.马铃薯深加工技术[M].北京:中国轻工业出版社,2003
    [1]刘楠,乔旭光,赵艳艳等.微山湖野生白莲子淀粉的性质研究.食品科学,2008(2):151-154
    [2]吴卫国,谭兴和,熊兴耀.不同工艺和马铃薯品种对马铃薯颗粒全粉品质的影响.中国粮油学报,2006(6):98-102
    [3]孙向东,王乐凯,任红波等.色彩色差计在面粉色泽测定上的应用[J].粮油食品科技,2002(2):31-33
    [4]沈晓萍,卢晓黎,闫志农.工艺方法对马铃薯全粉品质的影响[J].食品科学,2004,25(10):108-111
    [5]冷明新,郑淑芳,王涛.马铃薯全粉蓝值的测定[J].山西食品工业,2001(4):39-40
    [6]胡国庆.毛豆热风与真空微波联合干燥过程研究.2006
    [7]刘魁英.食品研究与数据处理[M].北京:中国轻工业出版社,1998
    [8]王颉.试验设计与SPSS应用[M].北京:化学工业出版社,2007
    [9]Ruiz-Diaz G,Martinez-Monzo J,Chiralt A.Modelling of dehydration-rehydration of orange slices in combined microwave/air drying[J].Innovative Food Science &Emerging Technologies,2003,4(2):203-209
    [10]赵玉生,王云霞.山楂热风干燥工艺研究[J].食品科学,2000,(2):41-43
    [11]肖旭霖.洋葱真空远红外博层干燥模型.食品科学,2002(5):40-43
    [1]Narpinder Singh,Jaspreet Singh,Lovedeep Kaur,et al.Morphological,thermal and rheological properties of starches from different botantical sources[J].Food Chemistry,2003,81:219-231
    [2]胡飞,陈玲,李琳等.微细化马铃薯淀粉的颗粒结构显微结构分析和粒度变化研究.化学工程,2001(4):22-25
    [3]张慜,王亮.超微粉碎在食品加工中的研究进展[J].无锡轻工大学学报,2003,22(4):106-110.
    [4]梁勇,张本山,杨连山等.非晶颗粒态马铃薯淀粉的结构特征及酶降解活性研究.食品科学,2005(2):82-84
    [5]高嘉安.淀粉与淀粉制品工艺学[M].北京:中国农业出版社,2001
    [6]李志西,张莉,李巨秀.板栗淀粉特性研究[J].西北农业大学学报,2000,28(4):21-27
    [7]李浪,周平,杜平定.淀粉科学与技术[M].郑州:河南科学技术出版社,1994:356-370
    [8]张本山,张友全,杨连生等.淀粉多晶体系结晶度测定方法研究.华南理工大学学报(自然科学版),2001(5):14-17
    [9]李树棠.晶体x射线衍射学基础.北京:冶金工业出版,1990
    [10]korimoto,Kagoshima.Molecular Structures of some Wheat Starches.Carbohydrate Polymers,1994,25(2):111-116
    [11]钟耕.野生淀粉理化性质及血糖指数体外测定的研究[D].重庆:西南农业大学博士论文,2003
    [12]Jayakody L,Hoover Liu Q,Weber E.Studies on tuber and root starches.I.Structure and physicochemical properties of innala(Solenostem on rotund if olius) starches grown in SfiLanka[J].Food Research International,2005,38:615-629.
    [13]秦志荣,许荣年,汪庆旗等.藕淀粉颗粒性质的研究及藕粉产品的鉴定[J].食品与发酵工业,2005,31(1):136-138
    [14]闵燕萍,陈宗道,钟耕等.藕淀粉的加工性能研究[J].农业工程学报,2007,23(1):259-263
    [15]杨景峰,罗志刚,罗发兴等.非晶化淀粉研究进展[J].粮食与饲料工业,2007,4:24-26.
    [1]Zoe Mousia,Sarah Edhefly,Severino S.Pandiella,Colin Webb.Effect of wheat pearling on our quality[J].Food Research Internationa1,2004(37):449-459
    [2]段笑敏.麦加工方法对面粉品质的影响[J].粮食与饲料工业,2002(1):1-3
    [3]魏益民主编.谷物品质与食品品质[M].陕西:陕西人民出版社,2002,9
    [4]阎俊.小麦品种糊化特性研究[J].中国农业科学,2001,34(1):1-4
    [5]马冬云,郭天财等.不同筋力小麦品种在不同生态环境下籽粒淀粉糊化特性分析[J].西北植物学报2004,24(5):798-802
    [6]姚大年,刘广田等.小麦品种面粉粘度性状及其与面条品质的相关性研究[J].中国农业大学学报,1997,2(3):52-68
    [7]SidiHuang,Suk-Hun Yun,KenQuail and RayMoss.Establishment of flour quality guidelines for Northern Style Chinese Steamed Bread[J].Journal of Cereal science.1996(24):179-185
    [8]胡飞,陈玲,李琳等.微细化马铃薯淀粉流变学特性的研究.中国粮油学报,2003,18(2):61-63
    [9]胡飞,陈玲,李琳.马铃薯淀粉颗粒在微细化过程中结晶结构的变化.精细化工,2002,19(2):114-117
    [10]任广跃,毛志怀,李栋等.微细化木薯淀粉糊特性研究.中国农业大学学报,2006,11(2):88-92
    [11]Jane J,Shen L,WangL,et al.Preparation and properties of small-particle corn starch.Cereal Chemistry,1992,69(3):280-283
    [12]吴俊,李斌,苏喜生等.玉米淀粉的粒度效应与其微观形貌和性能光学研究.中国粮油学报,2004.19(5):23-26
    [13]陈玲,庞艳生,李冰,等.利用球磨改变绿豆淀粉颗粒形貌及糊表观黏度研究.食品工业科技,2004(12):49-52
    [14]荣建华,史俊丽,张正茂等.超微细化大米淀粉流变特性的研究.中国粮油学报,2007(3):73-76
    [15]黄立新,周俊侠,张力田.用差示扫描量热法研究酸变性淀粉的糊化特性[J].华南理工大学学报,1998,25(3):17-21
    [16]徐明生,上官新晨.葛粉与其他淀粉物理特性比较研究[J].中国粮油学报,2003,18(3),62-64
    [17]黄立新,姜欣,高群玉等.糯米及其淀粉性质的研究(一)—粘度曲线及抗剪切性[J].郑州粮食学院学报,1998,19(3):35-39
    [18]江美都,顾振宇,王强林等.板栗淀粉加工特性的研究[J].中国粮油学报,2001,16(6):55-58
    [19]黄立新,高群玉,周俊伙等.酯化交联淀粉反应及性质的研究(Ⅲ)——糊性质和应用[J].食品与发酵工业,2001,27(6):1-5
    [20]李志达,王锦莺,张蓉真等.凝胶性质的理化性质研究[J].食品与发酵工业,1995,(2):1-8
    [21]刘惠君.热处理对直链淀粉扩增、蜡性及正常玉米淀粉物理性质和酶解率的影响.中国粮油学报,1998,13(4):25-29
    [22]惠斯特勒R L,贝密勒J N,帕斯卡尔E F.淀粉的化学与工艺学.北京:中国食品出版社,1987.351-358
    [23]Mazurs E.G.Graphical analysis of the Brabender viscosity curve of various starches[J].Cereal Chemistry,1964,5:240
    [24]黄立新,高群玉,黄农荣等.非糯性大米粉糊粘度性质的研究[J].粮油食品科技,2002,10(3):7-8
    [25]李志西,张莉,毛加银等.板栗淀粉糊粘度特性研究[J].中国粮油学报,2001,16(1):28-31
    [26]扬新亭,王林风,王香东.黄原胶与魔芋的协效凝胶性研究[J].食品科学,2001,22(3):25-28
    [27]徐明生,上官新晨.葛粉与其他淀粉物理特性比较研究[J].中国粮油学报,2003,18(3),62-64
    [28]Sherman P.Food texture and rheology[M].Londofi:Academic Press,1979
    [29]Ring S G.Some studies on starch gelation[J].Starch,1993(3):80-83
    [30]宁正祥,赵谋明.食品生物化学[M].广州:华南理工大学出版社,1999
    [31]Roach R.R.Effect of certain surfactants on the swilling solubility and amylograph consistenty of starch[J].Cereal Chem.1995(72):515.
    [32]刘亚伟.淀粉基食品添加剂.北京:化学工业出版社,2007
    [33]Fredriksson H,Silverio J,Andersson R,et al.The Influence of Amylose and Amylopectin Charact2eristics on Gelatinization and Retrogradation Properties of Different Starches[J].CarbohydratePolymers,1998,35:119-134
    [1]Baik M.Y,Kim KJ,Cheon KC,et al.Recrystallization kinetics and glass transition of rice starch gel system.[J].J.Agric.Food Chem.1997,45(11):4242-4248
    [2]Lai V.M,Lu S,Lii C.Y.Molecular characteristics influencing retrogradation kinetics of rice amylopectins.[J].Cereal Chem.2000,77(3):272-278
    [3]刘惠君L.Ramsden H.Corke.醋酸直链扩增,蜡性和正常玉米淀粉功能性质就研究[J].食品科学[J].1998,19(3):3-8
    [4]黄立新,高群玉,周俊侠等.酯化交联淀粉反应及性质的研究(Ⅲ)——糊性质和应用[J].食品与发酵工业,2001,27(6):1-5
    [5]沈晓萍,卢晓黎,闫志农.工艺方法对马铃薯全粉品质的影响[J].食品科学,2004,25(10):108-111
    [6]刘惠君.热处理对直链淀粉扩增、蜡性及正常玉米淀粉物理性质和酶解率的影响.中国粮油学报,1998,13(4):25-29
    [7]扬新亭,王林风,王香东.黄原胶与魔芋的协效凝胶性研究[J].食品科学,2001,22(3):25-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700