尼罗罗非鱼翻译延伸因子eEF1A家族的分子克隆和表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
翻译延伸因子1A(eukaryotic translation elongation factor 1 A, eEFIA)是广泛存在于所有生物许多类型细胞的一类含量丰富且高度保守的蛋白质家族。它属于G蛋白家族,在肽链延伸过程中作为翻译延伸复合物的一部分,促使GTP依赖的氨酰tRNA转移至核糖体。42Sp50是eEFIA家族的特殊成员,目前仅在鱼类和两栖类卵黄发生前期卵母细胞中发现。大量研究表明eEFIA家族通常含有多个成员;在不同物种的不同发育过程中,eEFIA存在许多组织和时期特异表达的亚型,如鸟类、哺乳类等有两个eEFIA:eEFIA1禾(?)eEF1A2,两栖类则有三个:eEF1A1、eEF1A2和42Sp50,但关于真骨鱼类有几个eEF1A家族成员、eEF1A家族的系统进化分析及其在性腺中的表达、作用等鲜有报道。为解决上述问题,本研究从尼罗罗非鱼中克隆了42Sp50基因,从3月龄罗非鱼雌、雄性腺转录组序列中分离得到另外三个不同基因编码的eEF1As,分析了eEFIA家族的系统进化,并通过RT-PCR、Realtime-PCR和原位杂交等方法重点研究了42Sp50和eEF1Ab的表达模式,其结果如下:
     42Sp50 cDNA全长为1718bp,其开放性阅读框(ORF)长1371bp,编码456个氨基酸;三个eEF1As的ORF长均为1389bp,编码462个氨基酸。通过比对从GenBank下载到的各代表物种的eEF1As序列,我们构建了系统进化树,发现斑马鱼中有五个eEF1As (eEF1A1、eEFA2、eEF1A3、eEF1A4和42Sp50),罗非鱼中也有五个eEF1As (eEFlAla、eEF1Alb、eEF1A3、eEF1A4和42Sp50),而其他真骨鱼类中只找到四个eEF1As (eEF1A1、eEFA3、eEF1A4和42Sp50)。进化树表明来自不同脊椎动物的eEF1As序列聚为明显的两枝:42Sp50和其他eEF1As,其他eEF1As又分别聚为四类:eEF1A1、eEF1A2、eEF1A3禾PeEF1A4。其中,eEF1A1禾PeEF1A2存在于脊椎动物中,而eEF1A3和eEF1A4只在真骨鱼类中发现。42Sp50目前仅在两栖类和真骨鱼类中找到,它与其他eEF1As分开,单独聚为一枝且位于系统进化树的基部。这表明42Sp50可能在进化早期即已与其他eEF1As分离,摒弃了导致eEF1A和42Sp50分离的基因复制发生时间相对较近,随后编码42Sp50的基因快速进化的观点。
     通过RT-PCR发现eEF1A1b在卵巢和精巢中均有表达,且在精巢中的表达明显高于卵巢,42Sp50则特异地表达于卵巢中。同时,我们发现42Sp50在雌激素诱导的雄鱼卵巢中高表达,而在芳香化酶抑制剂处理后的雌鱼精巢中完全被抑制。eEF1A1b则在雌鱼精巢中表达高于雄鱼卵巢。表明42Sp50和eEF1A1b的表达与基因型无关,只与表型(雌性卵巢或雄性精巢)相关。进而,通过Real-time PCR研究了42Sp50和eEF1A1b基因在罗非鱼个体发生过程中雌、雄性腺的表达模式,结果表明42Sp50从孵化后10天开始在卵巢表达,随发育进程逐渐升高,至孵化后60天表达量达到最高,此后逐渐降低。相反,在雄性性腺发育过程中其表达始终保持在本底水平。罗非鱼雌、雄性腺中,孵化后10天至70天,eEF1A1b仅有微量表达。从孵化后90天开始,eEF1Alb在精巢中的表达剧增,并于孵化后120天达到最高,随后逐渐降低,在孵化后240天又一次增高,但这期间它在卵巢中始终保持较低水平的表达。用原位杂交的方法检测了42Sp50, eEF1A1b以及eEF1A4在罗非鱼性腺表达的细胞类型,结果显示在卵黄发生前期卵母细胞细胞质中,42Sp50均一地表达,而eEF1A4则呈单一小球状集中表达,eEF1A1b没有表达。eEF1A1b和eEF1A4在精巢的初级和次级精母细胞中表达,且eEF1A4的表达量明显高于eEF1A1b, eEF1A1b在次级精母细胞中的表达量高于初级精母细胞,42Sp50则没有表达。本研究进一步采用荧光素酶报告基因研究了HEK293和CHO细胞中雌激素受体(ERα、ERβ1和ERβ2)对42Sp50启动子的影响。结果发现,两种细胞系中,三种雌激素受体都抑制了42Sp50的启动子活性。此外,本研究用pCold I载体在大肠杆菌中表达、纯化了N端带有His标签的42Sp50重组蛋白,并免疫小鼠制备了多克隆抗体,Western blot检测证实抗体工作良好。
     综上所述,本研究发现罗非鱼中共有五个eEFIA家族基因:42Sp50、eEF1A1a、eEF1A1b、eEF1A3和(eEF1A4已报道);对eEF1A家族的系统进化分析表明eEF1A1b是eEF1A基因家族的一个新成员;42Sp50和eEF1A1b在性腺中的表达存在明显的性别二态性,42Sp50在卵黄发生前期卵母细胞中特异表达,而eEF1A1b主要在初级和次级精母细胞中表达;荧光素酶分析发现三种雌激素受体对罗非鱼42Sp50启动子活性都有抑制作用。本研究为初次发现雌雄性腺可能分别通过不同的蛋白质翻译延伸因子进行性别特异的蛋白质合成。
Eukaryotic translation elongation factor 1A (eEFIA) is a ubiquitous protein family present in abundance in many types of cells, promoting guanosine triphosphate (GTP)-dependent binding of aminoacyl-transfer ribonucleic acid (tRNA) to ribosomes during peptide chain elongation as part of the translational elongation complex.42Sp50 is a special member of eEFIA family which has been found only in the previtellogenic oocytes of teleosts and amphibians so far. Many studies of eEFIA revealed that it has several isoforms that are expressed in a tissue- and stage-specific manner during development. For example, two eEFIA isoforms exist in birds and mammals, designated as eEF1A1 and eEF1A2, while three were found in amphibians, i.e. eEFIA1, eEF1A2 and 42Sp50. There are few reports on phylogenetic analysis of eEFIA family, and there is no report on their expressions and roles in gonads. In order to investigate eEF1As expression patterns and functions in gonads,42Sp50 was cloned from the Nile tilapia using RT-PCR and RACE technology, and other three eEF1As were identified using sequences from the 3-month Nile tilapia gonads transcriptomes. Moreover, a complete phylogenetic analysis was performed, and the expression patterns of 42Sp50 and eEF1A1b were investigated by RT-PCR, Realtime-PCR and ISH. The results are as follows,
     The full-length cDNA of 42Sp50 was 1718 bp, with an open reading frame (ORF) of 1371 bp, encoding a protein of 456 amino acids; and all the ORFs of three eEF1As had 1389bp, encoding proteins of 462 amino acids. Based on the alignment of eEF1A sequences isolated from GenBank, a phylogenetic analysis was performed. The phylogenetic tree showed that eEF1A sequences from various vertebrates are clustered into five separate clades:eEF1A1, eEFlA2, eEF1A3, eEF1A4 and 42Sp50. eEF1A1 and eEF1A2 existed in vertebrates, while eEF1A3 and eEF1A4 existed only in teleosts. 42Sp50 which was found in teleosts and amphibians clustered into one clade different from the other eEF1 As clades.
     By RT-PCR, eEF1A1b was found to be expressed in both testis and ovary with higher expression in the testis, whereas 42Sp50 was only detected in the ovary. Moreover,42Sp50 was found to be strongly expressed in 17(3-estradiol induced XY ovaries, but completely inhibited in Fadrozole induced XX testes. The expression of eEF1Alb was higher in XX testes than that in XY ovaries. By Real-time PCR, ontogenic expression of 42Sp50 was detected from 10 dah (days after hatching) in the ovary, peaked at 60 dah, and then decreased onwards, while only faint signals were detected in all stages of testicular development. As for eEF1Alb only faint expression was detected from 10 to 70 dah in the testis, increased sharply from 90 dah onwards, peaked at 120 dah, and decreased gradually, then peaked again at 240 dah, while in the ovary, it remained low during the whole period. ISH (in situ hybridization) was performed to determine the cell types which express 42Sp50. eEF1Alb and eEF1A4. In previtellogenic oocytes,42Sp50 signal was found to be uniformly distributed, while eEF1A4 appeared to be concentrated in the small area. Both eEF1Alb and eEF1A4 were expressed in primary and secondary spermatocytes. Moreover, promoter analysis of 42Sp50 was performed using three estrogen receptors (ERa, ERβ1 and ERβ2) in HEK293 and CHO cells. The results showed that all three ERs suppressed the promoter activity of 42Sp50 in both cell lines. Recombinant protein with His-Tag at the N-terminal (expressed using pCold I vector in E. coli) of 42Sp50 was obtained and purified, and then its polyclonal antibody was produced in mouse. Western blot analysis was performed to check the quality of the antibody. Our antibody could recognize the same recombinant protein as recognized by His-Tag antibody.
     In summary, five eEF1As named as 42Sp50, eEF1A1a. eEF1A1b, eEF1A3 and eEF1A4 were identified and cloned in tilapia by transcriptome analysis and gene cloning (eEF1A4 had been reported before). A thorough phylogenetic analysis of eEFlAs from animal kingdom revealed that eEF1A1b is a new member of eEF1A family. Sexual dimorphic expression of 42Sp50 and eEF1A1b were detected in gonads. 42Sp50 is specifically expressed in the previtellogenic oocytes while eEF1A1b mainly in primary and secondary spermatocytes. Moreover,42Sp50 promoter activity was found to be suppressed by all three ERs in the luciferase assay. Our findings suggest for the first time that sex specific protein synthesis in male and female gonad might be undertaken by different translation elongation factors,
引文
戈贤平,刘柱军,淡水优质鱼类养殖大全[M],中国农业出版社,2005:415-436.
    Abdallah B., Hourdry J., Krieg P.A., Denis H., Mazabraud A.1991. Germ cellspecific expression of a gene encoding eukaryotic translation elongation factor 1 alpha (eEF-1 alpha) and generation of eEF-1 alpha retropseudogenes in Xenopus laevis. Proc Natl Acad Sci USA.88:9277-9281.
    Abdallah B, Hourdry J, Deschamps S, Denis H, Mazabraud A.1991. The genes encoding the major 42S storage particle proteins are expressed in male and female germ cells of Xenopus laevis. Development.113:851-856.
    Abel K., Yoder M.D., Hilgenfeld R., Jurnak F.1996. An alpha to beta conformational switch in EF-Tu. Structure.4:1153-1159.
    Aguilar F., Montandon P.E., Stutz E.1991. Two genes encoding the soybean translation elongation factor eef-1 alpha are transcribed in seedling leaves. Plant Mol Biol.17:351-360.
    Anand N., Murthy S., Amann G., Wernick M., Porter L.A., Cukier I.H., Collins C, Gray J.W., Diebold J., Demetrick D.J., Lee J.M.2002. Protein elongation factor eEFlA2 is a putative oncogene in ovarian cancer. Nat Genet 31:301-305.
    Andersen G.R., Nissen P., Nyborg J.2003. Elongation factors in protein biosynthesis. Trends Biochem Sci.28:434-441.
    Ann D.K., Lin H.H., Lee S., Tu Z.J., Wang E.1992. Characterization of the statin-like S1 and rat elongation factor 1 alpha as two distinctly expressed messages in rat. J Biol Chem. 267:699-702.
    Ann D.K., Moutsatsos I.K., Nakamura T., Lin H.H., Mao P.L., Lee M.J., Chin S., Liem R.K., Wang E.1991. Isolation and characterization of the rat chromosomal gene for a polypeptide (pSl) antigenically related to statin. J Biol Chem.266:10429-10437.
    Axelos M., Bardet C., Liboz T., Le Van Thai A., Curie C, Lescure B.1989. The gene family encoding the Arabidopsis thaliana translation elongation factor ef-1 alpha:molecular cloning, characterization and expression. Mol Gen Genet.219:106-112.
    Baron D., Houlgatte R., Fostier A., Guiguen Y.,2008. Expression profiling of candidate genes during ovary-to-testis trans-differentiation in rainbow trout masculinized by androgens. Gen. Comp. Endocrinol.156:369-378.
    Berchtold H., Reshtnikova L., Reiser C.O.A., Schirmer N.K., Sprinzl M., Hilgenfeld R.1993. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature. 365:126-132.
    Bhandari R.K., Nakamura M., Kobayashi T., Nagahama Y.2006. Suppression of steroidogenic enzyme expression during androgen-induced sex reversal in Nile tilapia (Oreochromis niloticus). Gen. Comp. Endocrinol.145:20-24.
    Brands J.H., Maassen J.A., van Hemert F.J., Amons R., Moller W.1986. The primary structure of the alpha subunit of human elongation factor 1. Structural aspects of guanine-nucleotide-binding sites. Eur J Biochem.155:167-171.
    Brown D.D., Dawid l.B.1968. Specific gene amplification in oocytes. Science.160:272-280.
    Bourne H.R., Sanders D.A., McCormick F.1991. The GTPase superfamily:Conserved structure and molecular mechanism. Nature.6305:117-127.
    Bourne H.R.1995. GTPases:A family of molecular switches and clocks. Philos Trans R Soc Lond BBiolSci.1329:283-289.
    Brown D.D., Dawid, I.B.1968. Specific gene amplification in oocytes. Oocyte nuclei contain extrachromosomal replicas of the genes for ribosomal RNA. Science.160:272-280.
    Browne G.J., Proud C.G.2002. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem.269:5360-5368.
    Caldon C.E., Yoong P., Marc P.E.2001. Evolution of a molecular switch:Universal bacterial GTPases regulate ribosome function. Mol Microbiol.41:289-297.
    Carneiro N.P., Hughes P.A., Larkins B.A.1999. The eEFIA gene family is differentially expressed in maize endosperm. Plant Mol Biol.41:801-813.
    Carvalho M.D., Carvalho J.F., Merrick W.C.1984. Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes. Arch Biochem Biophys.234:603-611.
    Cavallius J., Merrick W.C.1992. Nucleotide sequence of rabbit elongation factor 1 alpha cDNA. Nucleic Acids Res.20:1422.
    Chang Y.W., Traugh J.A.1998. Insulin stimulation of phosphorylation of elongation factor 1 (eef-1) enhances elongation activity. Eur J Biochem.251:201-207.
    Condeelis J.1995. Elongation factor 1 alpha, translation and the cytoskeleton. Trends Biochem Sci. 20:169-170.
    Coppard N.J., Poulsen K., Madsen H.O., Frydenberg J., Clark B.F.1991.42Sp48 in previtellogenic Xenopus oocytes is structurally homologous to EF-1 alpha and may be a stage-specific elongation factor. J Cell Biol.112:237-243.
    Cottrelle P., Thiele D., Price V.L., Memet S., Micouin J.Y., Marck C, Buhler J.M., Sentenac A., Fromageot P..1985. Cloning, nucleotide sequence and expression of one of two genes coding for yeast elongation factor la. J Biol Chem.260:3090-3096.
    De Wit N.J., Burtscher H.J., Weidle U.H., Ruiter D.J., van Muijen G.N.2002. Differentially expressed genes identified in human melanoma cell lines with different metastatic behaviour using high density oligonucleotide arrays. Melanoma Res.12:57-69.
    Denis, H., Le Maire, M.1983. Thesaurisomes, a novel kind of nucleoprotein particles. Subcell. Biochem.9:263-297.
    Denis, H., Maire, M.1972. Recherches biochimiques surl'oogenese 1. Distribution intracellulaire du RNA dans les petits oocytes is Xenopus laevis. Eur. J. Biochem.25:524-534.
    Denis, H., Le Maire, M.1985. Biochemical research on oogenesis. Aminoacyl tRNA turns over in the 42-S particles of Xenopus laevis oocytes, but its ester bond is protected against hydrolysis. Eur. J. Biothem.149:549-556.
    Denis, H., Picard, B., le Maire, M., Clerot, J. C.1980. Biochemical research on oogenesis. The storage particles of the teleost fish Tinea tinea. Deu. Biol.77:218-223.
    Dharmawardhane S., Derama M., Yang F., Condeelis J.1991. Compartmentalization and actin binding properties of ABP-50:the elongation factor-1 alpha of Dictyostelium. Cell Motil Cytoskeleton.20:279-288.
    Dixon L.K., Ford P.J.1982. Regulation of protein synthesis and accumulation during oogenesis in Xenopus laevis. Dev. Biol.93:478-497.
    Dje M.K., Mazabraud A., Viel A., le Maire M., Denis H., Crawford E., Brown D.D.1990. Three genes under different developmental control encode elongation factor 1-alpha in Xenopus laevis. Nucleic Acids Res.18:3489-3493.
    Edmonds B.T., Wyckoff J., Yeung Y.G., Wang Y., Stanley E.R., Jones J., Segall J., Condeelis J. 1996. Elongation factor-1 alpha is an overexpressed actin binding protein in metastatic rat mammary adenocarcinoma. J Cell Sci.109:2705-2714.
    Ejiri S.2002. Moonlighting functions of polypeptide elongation factor 1:from actin bundling to zinc finger protein rl-associated nuclear localization. Biosci Biotechnol Biochem.66:1-21.
    Evans D., Bimstiel M.L.1968. Localization of amplified ribosomal DNA in the oocyte of Xenopus laevis. Biochim Biophys Acta.166:274-276.
    Ford P.J.1971. Non-coordinated accumulation and synthesis of 5S ribonucleic acid by ovaries of Xenopus laevis. Nature.233:561-564.
    Gall J.G.1968. Differential synthesis of the genes for ribosomal RNA during amphibian oogenesis. Proc natn Acad Sci.60:553-560.
    Gangwani L., Mikrut M., Galcheva-Gargova Z., Davis R.J.1998. Interaction of zprl with translation elongation factor-lalpha in proliferating cells. J Cell Biol.143:1471-1484.
    Gao D., Li Z., Murphy T., Sauerbier W.1997. Structure and transcription of the gene for translation elongation factor 1 subunit alpha of zebrafish (Danio rerio). Biochim Biophys Acta.1350:1-5.
    Gonen H., Smith C.E., Siesel N.R., Kahana C. Merrick W.C., Chakraburttv K., Schwartz A.L. Ciechanover A.1994. Protein synthesis elongation factor ef-1 alpha is essential for ubiquitin-dependent degradation of certain alpha-acetylated proteins and may be substituted for by the bacterial elongation factor ef-tu. Proc Natl Acad Sci.91:7648-7652.
    Gonen H., Dickman D., Schwartz A.L., Ciechanover A.1996. Protein synthesis elongation factor EF-1 alpha is an isopeptidase essential for ubiquitin-dependent degradation of certain proteolytic substrates. Adv Exp Med Biol.389:209-219.
    Grant A.G., Flomen R.M., Tizard ML., Grant D.A.1992. Differential screening of a human pancreatic adenocarcinoma lambda gtll expression library has identified increased transcription of elongation factor EF-1 alpha in tumour cells. Int J Cancer.50:740-745.
    Andersen G.R., Nissen P., Nyborg J.,2003. Elongation factors in protein Biosynthesis. Trends Biochem Sci.28:434-441.
    Hovemann B., Richter S., Walldorf U., Cziepluch C.1988. Two genes encode related cytoplasmic elongation factors 1 alpha (EF-1 alpha) in Drosophila melanogaster with continuous and stage specific expression. Nucleic Acids Res.16:3175-3194.
    Schneider H., Dabauvalle M.C., Wilken N., Scheer U.2010. Visualizing protein interactions involved in the formation of the 42S RNP storage particle of Xenopus oocytes. Biol Cell.102: 469-478.
    Ijiri S., Kaneko H., Kobayashi T., Wang D.S., Sakai F., Paul-Prasanth B., Nakamura M., IMagahama Y.2008. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod.78:333-341.
    Infante C, Asensio E., Canavate J.P., Manchado M.2008. Molecular characterization and expression analysis of five different elongation factor 1 alpha genes in the flatfish Senegalese sole (Solea senegalensis Kaup):differential gene expression and thyroid hormones dependence during metamorphosis. BMC Mol Biol.9:19.
    Johnsson A., Zeelenberg I., Min Y., Hilinski J., Berry C, Howell S.B., Los G.2000. Identification of genes differentially expressed in association with acquired cisplatin resistance. Br J Cancer. 83:1047-1054.
    Jurnak F.1985. Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science.230:32-36.
    Kahns S., Lund A., Kristensen P., Knudsen C.R., Clark B.F., Cavallius J., Merrick W.C.1998. The elongation factor 1 A-2 isoform from rabbit:cloning of the cDNA and characterization of the protein. Nucleic Acids Res.26:1884-1890.
    Kaur K.J., Ruben L.1994. Protein translation elongation factor-1 alpha from Trypanosoma brucei binds calmodulin. J Biol Chem.269:23045-23050.
    Kawahara R., Sunabori S., Fukuda H., Komamine A.1992. A gene expressed preferentially in the globular stage of somatic embryogenesis encodes elongation-factor la in carrot. Eur J Biochem. 209:157-162.
    Khalyfa A., Bourbeau D., Chen E., Petroulakis E., Pan J., Xu S., Wang E.2001. Characterization of elongation factor-1A (eEF1A-1) and eEF1A-2/S1 protein expression in normal and wasted mice. J Biol Chem.276:22915-22922.
    Kidou S., Ejiri S.1998. Isolation, characterization and mRNA expression of four cDNAs encoding translation elongation factor la from rice (Oiyza sativa 1.). Plant Mol Biol.36:137-148.
    Kim C.G., Fujiyama A., Saitou N.2003. Construction of a gorilla fosmid library and its PCR screening system. Genomics.82:571-574.
    Kim M.J., Si F., Kim S.J., Hong S.B., Hwang J.I., Lee H.J., Lee S.J., Chang J.S., Lee Y.H., Ryu S.H., Suh P.G.1999. The SH2-SH2-SH3 domain of phospholipase C-gammal directly binds to translational elongation factor-lalpha. Mol Cells.9:631-637.
    Kinoshita M., Nakata T., Adachi K., Yabe T., Yokoyama Y., Toyohara H., Hirata T., Takayama E., Mikawa S., Kioka N., Sakaguchi M.1999. cDNA cloning of polypeptide chain elongation factor la from medaka Oryzias latipes. Fish Sci.65:133-137.
    Kitano T., Takamune K., Kobayashi T., Nagahama Y., Abe S.I.1999. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). J Mol Endocrinol.23:167-176.
    Kjeldgaard M., Nissen P., Thirup S., Nyborg J.1993. The crystal structure of elongation factor EF-Tu from Thermits aquaticus in the GTP conformation. Structure.1:35-50.
    Kjeldgaard, M., Nyborg, J., Clark, B.F.1996. The GTP binding motif:variations on a theme. FASEB J.10:1347-1368.
    Knudsen S.M., Frydenberg J., Clark B.F., Leffers H.1993. Tissue-dependent variation in the expression of elongation factor-1 alpha isoforms:isolation and characterisation of a cDNA encoding a novel variant of human elongation-factor 1 alpha. Eur J Biochem.215:549-554.
    Kobayashi, T., Kobayashi, H.K., Nagahama, Y.,2000. Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mech Dev.99:139-142.
    Kobayashi T., Kajiura-Kobayashi H., Nagahama Y.,2003. Induction of XY sex reversal by estrogen involves altered gene expression in a teleost, tilapia. Cytogenet Genome Res.101:289-294.
    Lee M.H., Surh Y J.2009. eEF1A2 as a Putative Oncogene. Ann N Y Acad Sci.1171:87-93.
    Lee S.. Ann D.K., Wans E.1994. Clonina of human and mouse brain cDNAs coding for SI. the second member of the mammalian elongation factor-1 alpha gene family:analysis of a possible evolutionary pathway. Biochem Biophys Res Commun.203:1371-1377.
    Lee S., Francoeur A.M., Liu S., Wang E.1992. Tissue-specific expression in mammalian brain, heart, and muscle of SI, a member of the elongation factor-1 alpha gene family. J Biol Chem. 267:24064-24068.
    Lee S., Wolfraim L.A., Wang E.1993. Differential expression of S1 and elongation factor-1 alpha during rat development. J Biol Chem.268:24453-24459.
    Le Maire, M., Denis, H.1987. Biochemical research on oogenesis. Binding of tRNA to the nucleoprotein particles of Xenopus laevis previtellogenic oocytes. J Biol Chem.262:654-659.
    Li R.2006. Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene.25:2628-2635.
    Linz J.E., Katayama C., Sypherd P.S.1986. Three genes for the elongation factor EF-1 alpha in Mucor racemosus. Mol Cell Biol.6:593-600.
    Liu G., Tang J., Edmonds B.T., Murray J., Levin S., Condeelis J.1996. F-actin sequesters elongation factor lalpha from interaction with aminoacyl-tRNA in a pH-dependent reaction. J Cell Biol. 135:953-963.
    Lu X.A., Werner D.1989. The complete cDNA sequence of mouse elongation factor 1 alpha (EF 1 alpha) mRNA. Nucleic Acids Res.17:442.
    Luckenbach J.A., Early L.W., Rowe A.H., Borski R.J., Daniels H.V., Godwin J.2005. Aromatase cytochrome P450:cloning, intron variation, and ontogeny of gene expression in southern flounder (Paralichthys lethostigma). J Exp Zoolog.303:643-656.
    Lund A., Knudsen S.M., Vissing H., Clark B., Tommerup N.1996. Assignment of human elongation factor lalpha genes:EEF1A maps to chromosome 6q14 and EEF1A2 to 20q13.3. Genomics. 36:359-361.
    Madsen H.O., Poulsen K., Dahl O., Clark B.F., Hjorth J.P.1990. Retropseudogenes constitute the major part of the human elongation factor 1 alpha gene family. Nucleic Acids Res. 18:1513-1516.
    Marchand O., Duffraisse M., Triqueneaux G., Safi R., Laudet V.2004. Molecular cloning and developmental expression patterns of thyroid hormone receptors and T3 target genes in the turbot(Scophtalmus maximus) during post-embryonic development. Gen Comp Endocrinol. 135:345-357.
    Mattaj I.W., Lienhard S., Zeller R., DeRobertis E.M.1983. Nuclear exclusion of transcription factor IHA and the 42s particle transfer RNA-binding protein in Xenopus oocytes:a possible mechanism for gene control? J Cell Biol.97:1261-1265.
    Mattaj I.W., Coppard N.J., Brown R.S., Clark B.F.C., DeRobertis E.M.1987.42Sp48-the most abundant protein in previtellogenic Xenopus oocytes--resembles elongation factor 1 alpha structurally and functionally. EMBO J.6:2409-2413.
    Mochida K., Matsubara T.2002. Molecular cloning of an elongaton factor 1α and its mRNA localization in the testis of the Nile tilapia, Oreochromis niloticus. Fish Sci.68:830-837.
    Mohler J.L., Morris T.L., Ford O.H., Alvey R.F., Sakamoto C., Gregory C.W.2002. Identification of differentially expressed genes associated with androgen-independent growth of prostate cancer. Prostate.51:247-255.
    Murray J.W., Edmonds B.T., Liu G., Condeelis J.1996. Bundling of actin filaments by elongation factor 1 alpha inhibits polymerization at filament ends. J Cell Biol.135:1309-1321.
    Nagashima K., Kasai M., Nagata S., Kaziro Y.1986. Structure of the two genes coding for polypeptide chain elongation factor 1 alpha (EF-1 alpha) from Saccharomyces cerevisiae. Gene. 45:265-273.
    Nagata S., Nagashima K., Tsunetsugu-Yokota Y., Fujimura K., Miyazaki M., Kaziro Y.1984. Polypeptide chain elongation factor 1 alpha (EF-1 alpha) from yeast:nucleotide sequence of one of the two genes for EF-1 alpha from Saccharomyces cerevisiae. EMBO J.3:1825-1830.
    Negrutskii B.S., El'skaya A.V.1998. Eukaryotic translation elongation factor 1 alpha:structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog Nucleic Acid Res Mol Biol.60:47-78.
    Nissen, P., Kjeldgaard, M., Thirup, S., Polekhina, G., Reshetnikova, L., Clark, B.F.C., Nyborg, J. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science.270:1464-1472.
    Nowell M.A., Power D.M., Guerreiro P.M., Llewellyn L., Ramsurn V.V., Wigham T., Sweeney G.E. 2000. Cloning and Expression of an Elongation Factor-1 alpha in Sea Bream (Sparus aurata) Larvae and Adult Tissue. Mar Biotechnol.2:173-179.
    Ohta K., Toriyama M., Miyazaki M., Murofushi H., Hosoda S., Endo S., Sakai H.1990. The mitotic apparatus-associated 51-kDa protein from sea urchin eggs is a GTP-binding protein and is immunologically related to yeast polypeptide elongation factor 1 alpha. J Biol Chem. 265:3240-3247.
    Phillips S.M., Bendall A.J., Ramshaw I.A.1990. Isolation of gene associated with high metastatic potential in rat mammary adenocarcinomas. J Natl Cancer Inst.82:199-203.
    Pokalsky A.R., Hiatt W.R., Ridge N., Rasmussen R., Houck C.M., Shewmaker C.K.1989. Structure and expression of elongation factor 1 alpha in tomato. Nucleic Acids Res.17:4661-4673.
    Polekhina G., Thirup S., Kjeldgaard M., Nissen P., Lippmann C., Nyborg J.1996. Helix unwinding in the effector region of elongation factor EF-Tu-GDP. Structure.4:141-151.
    Rao D., Momcilovic I., Kobayashi S., Callegari E., Ristic Z.2004. Chaperone activity of recombinant maize chloroplast protein synthesis elongation factor, ef-tu. Eur J Biochem. 271:3684-692.
    Roobol K., Moller W.1978. The role of guanine nucleotides in the interaction between aminoacyl-tRNA and elongation factor 1 of'Artemia salina. Eur J Biochem.90:71-477.
    Shirasawa T., Sakamoto K., Akashi T., Takahashi H., Kawashima A.1992. Nucleotide sequence of rat elongation factor-1 alpha cDNA. Nucleic Acids Res.20:909.
    Slobin L.I.1980. The role of eucaryotic factor Tu in protein synthesis. The measurement of the elongation factor Tu content of rabbit reticulocytes and other mammalian cells by a sensitive radioimmunoassay. Eur J Biochem.110:555-563.
    Sprang S.R.1997. G proteins, effectors and GAPs:Structure and mechanism. Curr Opin Struct Biol. 7:849-856.
    Thompson J.D., Gibsonl T.J., Plewniak F.1997. The CLUSTALX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research.25:4876-4882.
    Thornton S., Anand N., Purcell D., Lee J.2003. Not just for housekeeping:protein initiation and elongation factors in cell growth and tumorigenesis. J Mol Med.81:536-548.
    Tomlinson V.A.2005. Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumors. BMC Cancer.5:113.
    Toueille M., Saint-Jean B., Castroviejo M., Benedetto J.P.2007. The elongation factor la:a novel regulator in the DNA replication/repair protein network in wheat cells? Plant Physiol Biochem. 45:113-118.
    Uetsuki T., Naito A., Nagata S., Kaziro Y.1989. Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-1 alpha. J Biol Chem. 264:5791-5798.
    Umikawa M, Tanaka K., Kamei T., Shimizu K., Imamura H., Sasaki T., Takai Y.1998. Interaction of rholp target bnilp with f-actinbinding elongation factor lalpha:implication in rho 1 p-regulated reorganization of the actin cytoskeleton in Saccharomyces cerevisiae. Oncogene.16:2011-2016.
    Van Den Eynde H., Mazabraud A., Denis H.1989. Biochemical research on oogenesis. RNA accumulation in the oocytes of the newt Pleurodeles waltl. Development.105:11-16.
    Vetter I.R., Wittinghofer A.2001. The guanine nucleotidebinding switch in three dimensions. Science.294:1299-1304.
    Viel A., le Maire M., Philippe H., Morales J., Mazabraud A., Denis H.1991. Structural and functional properties of thesaurin a (42Sp50), the major protein of the 42 S particles present in Xenopus laevis previtellogenic oocytes. J Biol Chem.266:10392-10399.
    Viel A., Armand M.J., Callen J.C., Gomez de Gracia A., Denis H., le Maire M.1990. Elongation factor 1 alpha (EF-1 alpha) is concentrated in the Balbiani body and accumulates coordinately with the ribosomes during oogenesis of Xenopus laevis. Deu Biol.141:270-278.
    Vitagliano L., Masullo M., Sica F., Zagari A., Bocchini V.2001. The crystal structure of Sulfolobus solfataricus elongation factor la in complex with GDP reveals novel features in nucleotide binding and exchange. The EMBO J.20:5305-5311.
    Wang D.S., Kobayashi T., Zhou L.Y., Paul-Prasanth B., Ijiri S., Sakai F., Okubo K., Morohashi K., Nagahama Y.2007. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with Ad4 binding protein/steroidogenic factor 1. Mol Endocrinol.21:712-725.
    Warner J.R.1999. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 24:437-440.
    Wegnez M., Denis H.1973. Biochemical research on cogenesis.6. Properties of 5S RNA present in the different cellular compartments of Xenopus laevis oocytes. Biochimie.55:1129-1135.
    Wegnez M., Denis H.1979. Biochemical research on oogenesis. Transfer RNA is fully charged in the 42-S storage particles of Xenopus laevis oocytes. Eur J Biochem.98:67-75.
    Ransom-Hodgkins Wendy Danielle.2009. The application of expression analysis in elucidating the eukaryotic elongation factor one alpha gene family in Arabidopsis thaliana. Mol Genet Genomics.281:391-405.
    Merrick W.C.1992. Mechanism and Regulation of Eukaryotic Protein Synthesis. Microbiol Rev. 56:291-315.
    Xie D., Jauch A., Miller C.W., Bartram C.R., Koeffler H.P.2002. Discovery of over-expressed genes and genetic alterations in breast cancer cells using a combination of suppression subtractive hybridization, multiplex FISH and comparative genomic hybridization. Int J Oncol. 21:499-507.
    Xu W.L., Wang X.L., Wang H., Li X.B.2007. Molecular characterization and expression analysis of nine cotton GhEFIA genes encoding translation elongation factor 1A. Gene.389:27-35.
    Yang F., Demma M., Warren V., Dharmawardhane S., Condeelis J.1990. Identification of an actin-binding protein from Dictyostelium as elongation factor la. Nature.347:494-496.
    Yang W., Burkhart W., Cavallius J., Merrick W.C, Boss W.F.1993. Purification and characterization of a phosphatidylinositol 4-kinase activator in carrot cells. J Biol Chem. 268:392-398.
    Yang W., Boss W.F.1994. Regulation of phosphatidylinositol 4-kinase by the protein activator pik-a49. Activation requires phosphorylation of pik-a49. J Biol Chem.269:3852-3857.
    Zhang L., Zhou W., Velculescu V.E., Kern S.E., Hruban R.H., Hamilton S.R., Vogelstein B., Kinzler K.W.1997. Gene expression profiles in normal and cancer cells. Science. 276:1268-1272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700