界面接触非线性振动机理与能量耗散研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械界面的接触振动特性与能量耗散机理的解明与否,不仅直接影响机械装备的动态服役性能,而且影响监控机器特征振动信号的幅度、频率和相位等信息,是导致设备状态监控的准确性和可靠性低的主要原因。
     由于机械接触界面的复杂性和多样性,目前,一些重要的现象和机理尚未解明,尤其是界面的接触刚度和界面阻尼特性、复杂界面特性的界面模型表征、界面的非线性动力学过程、多界面的接触振动现象及其对系统的影响等核心问题一直未得到很好解决。目前,机械界面行为已经成为机械领域中的关键共性的基础科学问题。因此,开展界面接触动力学行为的探索性研究,具有重要的理论意义和实际工程价值。
     本论文重点围绕几类基础的接触界面,包括考虑重力作用的球面接触界面、粗糙接触界面、滑移接触界面和层叠多传递界面,通过建立界面接触的动力学模型,研究两类典型界面的接触刚度和阻尼特性,揭示三种典型界面的接触振动与能量耗散特性,以及激励载荷在层叠多界面的振动与能量传递行为,并通过相关实验验证关键模型和计算结果的有效性和准确性。论文的主要工作有以下几个方面:
     ①针对目前基于Hertz球-刚性平面接触模型,因受接触界面属性、阻尼属性及其他因素的影响,线性粘性阻尼模型难以真实描述界面接触力-变形关系的问题,在考虑真实系统的重力影响因素的基础上,采用任意正指数的非线性粘性阻尼函数,建立了基于静平衡位置的球体-刚性平面接触振动模型,分析了不同的界面非线性阻尼对系统自由振动响应的影响;同时,针对系统响应特征基本相同,通过响应值辨识接触阻尼模型困难的问题,基于接触阻尼回复力-速度关系,提出了一种基于回复力的接触阻尼模型辨识方法,且通过实验方法验证了其有效性,并获得了多种材料属性的球-平面模型的阻尼模型。
     ②建立了“单层金属板-刚性平面”粗糙界面模型和“多层粗糙金属板-刚性平面”多界面模型,耦合了粗糙表面的分形模型、塑性材料的连续性硬化准则和加载与卸载力-变形曲线形成迟滞环面积等于塑性变形能量耗散量的关系,可较好地解决弹性和塑形的转变过程存在不连续的问题。同时,研究了界面形貌、材料塑性变形行为和界面摩擦对粗糙界面的接触力-变形关系的影响,计算了由塑性变形及硬化引起的能量耗散和多层粗糙界面的能量传递耗散率,揭示了粗糙界面塑性接触变形机理和能量耗散规律。
     ③采用具有自相似和尺度独立的粗糙表面分形模型,通过计算不同界面形貌接触模型的力-变形关系,构造了粗糙接触界面和表面粗糙体的刚度表达式,建立了基于静平衡位置的弹性粗糙体-刚性平面的粗糙界面接触振动模型,可克服目前粗糙界面的接触刚度、动力学行为和能量耗散基于粗糙表面的统计学模型描述而具有尺度依赖性的缺点。同时,研究了界面形貌对法向接触刚度的影响,计算了不同形貌界面接触振动系统的固有频率和振动能量耗散率,分析了粗糙界面法向接触振动的响应特征与能量耗散特性,并对界面法向微动能量耗散的实验结果进行了解释。
     ④推导了无滑动、微滑动和整体滑动的不同界面运动状态时滑动界面端部的力-位移关系表达式,建立了滑动界面系统沿滑动方向的动力学模型,解决了目前的滑动界面系统模型局限于界面具有均匀压力分布的假设条件,且仅考虑界面微滑动对系统振动响应特性影响的问题,并在考虑真实界面的非均匀压力分布的基础上,计算了不同滑动界面运动状态滑动界面系统的固有频率、简谐载荷作用下的响应幅值以及每周期的能量损耗量,研究了动态载荷作用下滑动界面系统的动力学响应与能量耗散特性。
     ⑤考虑实际传递界面法向和切向运动耦合,扩展单一滑动界面模型,建立了“球-螺栓固结多层叠加板”的叠加多传递界面模型(SJAMP),计算了不同冲击激励下多层叠加金属板多传递界面的加速度响应,构造了振动加速度幅值与冲击激励的关系表达式,引入振动传递率与能量传递率的概念并计算了各传递界面的振动与能量传递率,分析了输入界面对冲击能量的传递率与冲击能量的关系,以及冲击激励沿非连续多界面传递时的振动与能量传递特性,并通过实验测试验证了计算结果的可靠性。
The vibration characteristics and energy dissipation mechanism at contactinterfaces not only significantly affect the dynamic performance of mechanical system,but also greatly affect the amplitude, frequency and phase responses of measuredcharacteristic signal, and thus further influence the accuracy and reliability of machinerycondition mointering. Due to the complexity and diversity of contact interfacesassociated with mechanical system, the mechanism of some very importantphenomenons are unclear, especially the critical problems as stiffness and dampingcharacteristics at contact interfaces, model characterization for interface with complexattribution, nonlinear dynamic process, contact vibration at multiple interfaces and itseffect on system. The interface properties have become the basic key problem inmechanical area. Therefore, it is of great significance to explore the contact dynamics atinterfaces.
     This thesis foucuses on the nonlinear vibration characteristics and energydissipation mechanism of several basic contact interfaces, including sphere contactinterface considered the effect of gravity, rough contact interface, sliding contactinterface and layered multiple transmitting interfaces. The dynamic models areestablished and the contact stiffness and damping characteristics of two type interfaces,i.e., the sphere and the rough contact interface are studied. The contact vibration andenergy dissipation characteristics at these interfaces and the transmission performance atmultiple interfaces are presented. The accuracy of the established critical models andthe results are validated through experiments. The main works done in this paper are asfollows:
     ①The model of an elastic sphere in contact with a rigid flat surface is establishedon the static equilibrium position considering the effect of gravity. The Hertziansphere-plane contact model exhibited liner viscous damping is difficult to accuratelydescribe the contact force-displacement relationship due to the interface properties,damping capacity and other effects. The effect of nonlinear damping on the freevibration responses are studied by employing a general viscous damping functionrelated to the displacement raised to an arbitrary rational positive power law. It is shownthat the feature response parameters are almost identical for different damping modelsand it is thus difficult to identify the damping model. A damping model identification method is therefore proposed based on the restoring force and is validated usingexperimental results. The damping models for spheres with different materials as steeland Low Density Polyethylene (LDPE) are obtained.
     ②The “single metal block-rigid plane” rough interface model and the “multiplerough surface metal blocks-rigid plane” multiple interfaces model are established tostudy the plastic deformation and energy dissipation for contact interaction normal tothe rough interface. The fractal geometry of rough surface, the continuity hardeningcriterion for plastic material and the amount of plastic energy dissipation equaling to thearea of the loading and unloading curves are coupled to avoid the discontinuity of theelastic-plastic transition. Effects of surface topography, plastic hardening behavior ofmaterial and interface friction on the force-deformation relationship are presented. Theenergy dissipation characteristics due to plasticity hardening and the energy dissipationratio at different interfaces are studied. The plastic contact deformation and the energydissipation meachnism are presented.
     ③The dynamic model for an elastic block with rough surface in contact with arigid flat surface is established. The rough surface is characterized by self-affine andscale-indenpent fractal geometry and the force-deformation relationship for roughsurface with different topographies are calculated to overcome the scale-denpent defectof current models based on statistical rough surface description. The contact stiffnessexpressions for the rough elastic body and the asperities are further established. Effectof surface topography on the contact stiffness is presented. The natural frequency andthe free vibration energy dissipation for rough solid with different surface topographiesare evaluated. The experimental results on energy dissipation observed for verticalcontact vibration are supported.
     ④The force-displacement expressions at the connecting end of the slip interfaceare derived for different interface slipping states, including no slip, micro-slip andmacro-slip and the dynamic model for the slipping interface system are furtherestablished. The current models are on the assumption of uniform pressure distributionalong the interface and limit to only studying the effect of micro-slip on the systemvibratiory responses. The established model considered the ununiform pressuredistribution along the interface, and the natural frequency, the amplitude responsesunder harmonic excitation and the energy dissipation per cycle are further calculated fordifferent interface slipping states. The dynamic responses and energy dissipationcharacteristics of the slipping interface system are presented.
     ⑤The single slipping interface model is extended and the multiple transmittinginterfaces model “Sphere-Joint Assembled Multi-layered Plates”(SJAMP) isestablished to consider the coupling between the frictional interfacial motion alonginterfaces and the normal contact motion. The dynamic responses at the multipleinterfaces under shock excitation are calculated. Expression relates the accelerationamplitude at different interfaces and the shock amplitude is established. Thetransmission of vibration and energy through the multiple interfaces are characterizedby the defined vibration transmission ratio and energy transmission ratio. The inputenergy transmission ratio of the impact energy at the input interface is studied and thevibration and energy transmission characteristics at the multiple interfaces of layeredand jointed plates associated with friction are presented. Experimental validation isperformed and shows good agreement with numerical results.
引文
[1] Smith J D. Transmission of Smith Shocks through Rolling Bearings [J]. Journal of Sound andVibration,1995,181(1):1-6.
    [2]温诗铸,黄平等.界面科学与技术[M].北京:清华大学出版社,2011.
    [3] Johnson K L. Contact mechanics [M]. Cambridge: Cambridge University Press,1985.
    [4] Liew H-V, Lim T C. Analysis of time-varying rolling element bearing characteristics [J].Journal of Sound and Vibration,2005,283:1163-1179.
    [5] Ma Q L. A study of the dynamic behaviour of piecewise nonlinear oscillators withtime-varying stiffness [D]. PhD Thesis, The Ohio State University, USA,2005.
    [6] Wu T X, Thompson D J. On the rolling noise generation due to wheel/track parametricexcitation [J]. Journal of Sound and Vibration,2006,293:566-574.
    [7]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002.
    [8] Al-Kindi G, Shirinzadeh B. An evaluation of surface roughness parameters measurementusing vision-based data [J]. International Journal of Machine Tools and Manufacture,2007,47:697-708.
    [9] Cemal C M, Ensarioglu C, Demirayak I. Mathematical modeling of surface roughness forevaluating the effects of cutting parameters and coating material[J]. Journal of MaterialsProcessing Technology,2009,209:102-109.
    [10] Woo K L, Thomas T R. Contact of rough surfaces: a review of experimental work [J]. Wear,1980,58:331-340.
    [11] Mandelbrot B B. The Fractal Geometry of Nature [M]. New York: Freeman,1983.
    [12] Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contactmechanics of surfaces [J]. ASME Journal of Tribology,1990,112:205-16.
    [13] Yan W, Komvopoulos K. Contact analysis of elastic–plastic fractal surfaces [J]. Journal ofApplied Physics,1998,84:3617-3624.
    [14] Ciavarella M, Demelio G, Barber J R, et al. Linear elastic contact of the Weierstrass profile [J].Proceedings of the Royal Society of London, Series A,2000,456:387-405.
    [15] Persson B N J. Elastoplastic contact between randomly rough surfaces [J]. Physical ReviewLetter,2001,87:116101-1-4.
    [16] Zavarise G, Borri-Brunetto M, Paggi M. On the reliability of microscopical contact models [J].Wear,2004,257:229-245.
    [17] Zavarise G, Borri-Brunetto M, Paggi M. On the resolution dependence of micromechanicalcontact models [J]. Wear,2007,262:42-54.
    [18] Greenwood J A, Williamson J B P. Contact of nominally flat surfaces [J]. Proceedings of theRoyal Society of London, Series A,1966,295:300-319.
    [19] Greenwood J A, Tripp J H. The elastic contact of rough spheres [J]. ASME Journal of AppliedMechanics,1967,34:153-159.
    [20] Lo C C. Elastic contact of rough cylinders [J]. International Journal of Mechanical Sciences,1969,11:105-115.
    [21] Whitehouse D J, Archard J F. The properties of random surface of significance in their contact[J]. Proceedings of the Royal Society of London, Series A,1970,316:97-121.
    [22] Tsukizoe T, Hisakado T. On the mechanism of contact between metal surfaces: part2—thereal area and the number of contact points [J]. ASME Journal of Lubrication and Tribology,1968, F90:81-90.
    [23] Bush A W, Gibson R D, Thomas T R. The elastic contact of rough surfaces [J]. Wear,1975,35:87-111.
    [24] Hyun S, Pei L, Molinari J F, et al. Finite-element analysis of contact between elasticself-affine surfaces [J]. Physical Review E,2004,70:026117.
    [25] Dwyer-Joyce R S, Drinkwater B W, Quinn A M. The use of ultrasound in the investigation ofrough surface interface [J]. ASME Journal of Tribology,2001,123:8-16.
    [26] Zhao Y W. An asperity microcontact model incorporating the transition from elasticdeformation to full plastic flow [J]. ASME Journal of Tribology,2000,122:86-93.
    [27] Liu Z Q, Neville A, Reuben R L. An analytical solution for elastic and elastic-plastic contactmodels [J]. Tribology Transactions,2000,43(4):627-634.
    [28] Chang W R. An elastic–plastic contact model for a rough surface with an ion-plated softmetallic coating [J]. Wear,1997,212:229-237.
    [29] Vu-Quoc L, Zhang X, Lesburg L. A normal force–displacement model for contacting spheresaccounting for plastic deformation: force-driven formulation [J]. ASME Journal of AppliedMechanics,2000,67:363-371.
    [30] Wang F, Keer L M. Numerical simulation for three dimensional elastic–plastic contact withhardening behavior [J]. ASME Journal of Tribology,2005,127(3):494-502.
    [31] Majumdar A, Tien C L. Fractal characterization and simulation of rough surfaces [J]. Wear,1990,136:313-327.
    [32] Berry M V, Lewis Z V. On the Weierstrass-Mandelbrot fractal function [J]. Proceedings of theRoyal Society of London, Series A,1980,370:459-484.
    [33] Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces [J].ASME Journal of Tribology,1991,113:1-11.
    [34] Blackmore D, Zhou J G. Fractal analysis of height distributions of anisotropic rough surfaces[J]. Fractals,1998,6:43-58.
    [35]盛选禹,雒建斌,温诗铸.基于分形接触的静摩擦系数预测[J].中国机械工程,1998,9(7):16‐18.
    [36]张铁山,张友良,王建中.成形板料表面的接触分形模型研究[J].中国机械工程,2005,16(18):1685-1688.
    [37]魏龙,顾伯勤,冯飞等.粗糙表面接触模型的研究进展[J].润滑与密封,2009,34(7):112-117.
    [38] Ciavarella M, Delfine V, Demelio G. A “re-vitalized” Greenwood and Williamson model ofelastic contact between fractal surfaces [J]. Journal of the Mechanics and Physics of Solids,2006,54:2569-2591.
    [39] Gaul L, Lenz J. Nonlinear dynamics of structures assembled by bolted joints [J]. ActaMechanica,1997,125:169-181.
    [40] Ferri A A. Friction damping and isolation systems [J]. ASME Journal of Vibration andAcoustics,1995,117B:196-206.
    [41] Ibrahim R A, Pettit C L. Uncertainties and dynamic problems of bolted joints and otherfasteners [J]. Journal of Sound and Vibration,2005,279:857-936.
    [42] Caughey T K. Sinusoidal excitation of a system with bilinear hysteresis [J]. Journal ofApplied Mechanics,1960,27:640-643.
    [43] Griffin J H. Friction damping of resonant stress in gas turbine engine air foils [J]. ASMEJournal of Engineering for Power,1980,102:329-333.
    [44] Menq C-H, Griffin J H, Bielak J. The influence of a variable normal load on the forcedvibration of a frictionally damped structure [J]. Journal of Engineering for Gas Turbines andPower,1986,108:300-305.
    [45] Wang J H, Shieh W L. The influence of variable friction coefficient on the dynamic behaviourof a blade with friction damper [J]. Journal of Sound and Vibration,1991,149:137-145.
    [46] Hinrichs N, Oestreich M, Popp K. On the modelling of friction oscillators [J]. Journal ofSound and Vibration,1998,216(3):435-459.
    [47] Iwan W D. A distributed element model for hysteresis and its steady-state dynamic response[J]. ASME Journal of Applied Mechanics,1966,88:893-900.
    [48] Sanliturk K Y, Imregun M, Ewins D J. Harmonic balance vibration analysis of turbine bladeswith friction dampers [J]. Journal of Vibration and Acoustics,1997,119:96-103.
    [49] Sextro W. Forced vibration of elastic structures with frictional contacts [C]. ASME DesignEngineering Technical Conferences, Las Vegas,1999, DETC99/VIB-8180.
    [50] Quinn D D. Distributed friction and microslip in mechanical joints with varyingdegrees-of-freedom [C]. ASME Design Engineering Technical Conferences, Pittsburgh,2001,DETC2001/VIB-21514.
    [51] Song Y X, Hartwigsen C J, McFarland D M, et al. Simulation of dynamics of beam structureswith bolted joints using adjusted Iwan beam elements [J]. Journal of Sound and Vibration,2004,273:249-276.
    [52] Quinn D D, Segalman D J. Using series-series Iwan-type models for understanding jointdynamics [J]. ASME Journal of Applied Mechanics,2005,72:666-673.
    [53] Berger E J, Krousgrill C M. On friction damping modelling using bilinear hysteresis elements[J].ASME Journal of Vibration and Acoustics,2002,124(3):367-375.
    [54] Tan X, Rogers R J. Equivalent viscous damping models of Coulomb friction inmulti-degree-of-freedom vibration systems [J]. Journal of Sound and Vibration,1995,185(1):33-50.
    [55] Deshmukh D V, Berger E J, Begley M R, et al. Correlation of a discrete friction (Iwan)element and continuum approaches to predict interface sliding behaviour [J]. EuropeanJournal of Mechanics A/Solids,2007,26:212-224.
    [56] Menq C-H, Bielak J, Griffin J H. The influence of microslip on vibratory response—part I: anew microslip model [J]. Journal of Sound and Vibration,1986,107:279-293.
    [57] Menq C-H, Bielak J, Griffin J H. The influence of microslip on vibratory response—part II: acomparison with experimental results [J]. Journal of Sound and Vibration,1986,107:295-307.
    [58] Csaba G. Forced response analysis in time and frequency domains of a tuned bladed disk withfriction dampers [J]. Journal of Sound and Vibration,1998,214:395-412.
    [59] Cigeroglu E, Lu W M, Menq C-H. One-dimensional dynamic microslip friction model [J].Journal of Sound and Vibration,2006,292:881-898.
    [60]李以农,郑玲,闻邦椿.螺栓接头非线性模型及其波能耗散[J].振动工程学报,2003(2):137-141.
    [61] Sabot J, Krempf P, Janolin C. Non-linear vibrations of a sphere-plane contact excited by anormal load [J]. Journal of Sound and Vibration,1998,214:359-375.
    [62] Ogi H, Tian J, T. Tada T, et al. Elastic-stiffness mapping by resonance-ultrasound microscopywith isolated piezoelectric oscillator [J]. Applied Physics Letter,2003,83:464-466.
    [63] Tian J Y, Ogi H, Hirao M. Dynamic-contact stiffness at the interface between a vibrating rigidsphere and a semi-infinite viscoelastic solid [J]. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control,2004,51(11):1557-1563.
    [64]张学良,黄玉美,韩颖.基于接触分形理论的机械结合面法向接触刚度模型[J].中国机械工程,2000,11(7):727-729.
    [65]赵永武,吕彦明,蒋建忠.新的粗糙表面弹塑性接触力学模型[J].机械工程学报,2007,43(3):95-101.
    [66]李辉光,刘恒,虞烈.粗糙机械结合面的接触刚度研究[J].西安交通大学学报,2011,45(6):69-74.
    [67] Ciavarella M, Greenwood J A, Paggi M. Inclusion of “interaction” in the Greenwood andWilliamson contact theory [J]. Wear,2008,265:729-734.
    [68] Paggi M, Barber J R. Contact conductance of rough surfaces composed of modified RMDpatches [J]. International Journal of Heat and Mass Transfer,2011,4:4664-4672.
    [69] Beards C F, Williams J L. The damping of structural vibration by rotational slip in joints [J].Journal of Sound and Vibration,1977,53(3):333-340.
    [70] Beards C F. Damping in structural joints [J]. Shock and Vibration Digest,1992,24(7):3-7.
    [71] Tang D M, Dowell E H. Damping in beams and plates due to slipping at the supportboundaries. Part2: numerical and experimental study [J]. Journal of Sound and Vibration,1986,108(3):509-522.
    [72] Nanda B K, Behera A K. Study on damping in layered and jointed structures with uniformpressure distribution at the interfaces [J]. Journal of Sound and Vibration,1999,226(4):607-624.
    [73] Damisa O, Olunloyo V O S, Osheku C A, et al. Dynamic analysis of slip damping in clampedlayered beams with non-uniform pressure distribution at the interface [J]. Journal of Soundand Vibration,2008,309:349-374.
    [74] Chen W, Deng X. Structural damping caused by micro-slip along frictional interfaces [J].International Journal of Mechanical Sciences,2005,47:1191-1211.
    [75] Mohanty R C, Nanda B K. Investigation into the dynamics of layered and jointed cantileveredbeams [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science,2010,224:2129-2139.
    [76] Jacobsen L, Ayre R. Engineering Vibrations [M]. New York: McGraw-Hill,1958.
    [77] Feeny B, Liang J. A decrement method for the simultaneous estimation of Coulomb andinternal friction [J]. Journal of Sound and Vibration,1996,195:149-154.
    [78] Liang J, Feeny B. Identifying Coulomb and viscous friction from free-vibration decrements[J]. Nonlinear Dynamics,1998,16(4):337-47.
    [79] Liang J. Identifying Coulomb and viscous damping from free-vibration accelerationdecrements [J]. Journal of Sound and Vibration,2005,282(3-5):1208-1220.
    [80] Wu Z Y, Liu H Z, Liu L L, et al. Identification of nonlinear viscous damping and Coulombfriction from the free response data [J]. Journal of Sound and Vibration,2007,304:407-414.
    [81] Oliveto N D, Scalia G, Oliveto G. Dynamic identification of structural systems with viscousand friction damping [J]. Journal of Sound and Vibration,2008,318:911-926.
    [82] Rigaud E, Perret-Liaudet J, Belin M, et al. An original dynamic tribotest to discriminatefriction and viscous damping [J]. Tribology International,2010,43:320-329.
    [83] Nayak P R. Contact vibrations [J]. Journal of Sound and Vibration,1972,22(3):297-322.
    [84] Hess D, Soom A. Normal Vibrations and Friction under Harmonic Loads: Part I-HertzianContact [J]. ASME Journal of Tribology,1991,113:80-86.
    [85] Nayfeh A H, Mook D T. Nonlinear Oscillations [M]. New York: Wiley,1979.
    [86] Rigaud E, Perret-Liaudet J. Experiments and numerical results on non-linear vibrations of animpacting Hertzian contact. Part1: harmonic excitation [J]. Journal of Sound and Vibration,2003,265:289-307.
    [87] Rigaud E, Perret-Liaudet J. Experiments and numerical results on non-linear vibrations of animpacting Hertzian contact. Part2: random excitation [J]. Journal of Sound and Vibration,2003,265:309-327.
    [88] Perret-Liaudet J, Rigaud E. Response of an impacting Hertzian contact to an order-2subharmonic excitation: Theory and experiments [J]. Journal of Sound and Vibration,2006,296:319-333.
    [89] Ma Q L, Kahraman A,Perret-Liaudet J, et al. An investigation of steady-state dynamicresponse of a sphere-plane contact interface with contact loss [J]. ASME Journal of AppliedMechanics,2007,74:249-255.
    [90] Ma Q L, Kahraman A. Period-one motions of a mechanical oscillator with periodicallytime-varying, piecewise nonlinear stiffness [J]. Journal of Sound and Vibration,2005,284:893-914.
    [91]赵联春,马家驹.球轴承的弹性接触振动[J].机械工程学报,2003,39(5):60-64.
    [92]姚廷强,迟毅林,王立华等.球轴承柔性多体动力学分析与接触振动研究[J].振动与冲击,2009,28(10):158-162.
    [93] Nashif A D, Jones D I G, Henderson J P. Vibration Damping [M]. New York: John Wiley,1985.
    [94] Hagman L. Micro-slip and surface deformation [D]. Licentiate Thesis, Department ofmachine elements, Royal Institute of Technology, Stockholm, Sweden,1993.
    [95] Olofsson U. Cyclic micro-slip under unlubricated conditions [J]. Tribology International,1995,28(4):207-217.
    [96] Bjorklund S. A random model for microslip between nominally flat surfaces [J]. ASMEJournal of Tribology,1997,119:726-731.
    [97] Kumar P, Jain S C, Ray S. Study of surface roughness effects in elastohydrodynamiclubrication of rolling line contacts using a deterministic model [J]. Tribology International,2001,34:713-722.
    [98] Gorbatikh L, Popova M. Modeling of a locking mechanism between two rough surfaces undercyclic loading [J]. International Journal of Mechanical Sciences,2006,48:1014-1020.
    [99] Duan H L, Xue Y H, Yi X. Vibration of cantilevers with rough surfaces [J]. Acta MechanicaSolida Sinica,2009,22(6):550-554.
    [100] Ciavarella M. The generalized Cattaneo partial slip plane contact problem. I-theory,II-examples [J]. International Journal of Solids and Structures,1998,35:2349-2378.
    [101] Borri-Brunetto M, Chiaia B, Ciavarella M. Incipient sliding of rough surfaces in contact: amulti-scale numerical analysis [J]. Computer Methods in Applied Mechanics and Engineering,2001,190(46-47):6053-6073.
    [102] Chiaia B. On the sliding instabilities at rough surfaces [J]. Journal of the Mechanics andPhysics of Solids,2002,50:895-924.
    [103] Sutanto M. Real time measurements of rough object vibration by imaging of Gaussianillumination [J]. Optics Communications,1979,30(3):317-320.
    [104]王向朝等.使用相位共轭光精密测量粗糙面物体的振动振幅[J].光学学报,2000,20(4):525-528.
    [105] Delaye P, Rossi S, Roosen G. High-amplitude vibrations detection on rough surfaces using aphotorefractive velocimeter [J]. Optics and Lasers in Engineering,2000,33:335-347.
    [106] Britton R D, Elcoate C D, Alanou M P, et al. Effect of surface finish on gear tooth friction [J].ASME Journal of Tribology,2000,122:354-360.
    [107] Xiao L, Rosen B-G, Amini N, et al. A study on the effect of surface topography on roughfriction in roller contact [J]. Wear,2003,254:1162-1169.
    [108]陈学前,杜强,冯加权.螺栓连接非线性振动特性研究[J].振动与冲击,2009,28(7):196-198.
    [109]龚中良,黄平.界面摩擦过程非连续能量耗散机理研究[J].物理学报,2008,4:2358-2361.
    [110] Smallwood D O, Gregory D L, Coleman R G. Damping investigations of a simplifiedfrictional shear joint [C].71th Shock and Vibration Symposium, Arlington, VA, November,SAND2000-1929C,2000,6-10.
    [111] Song Y X, McFarland D M, Bergman L A, et al. Effect of pressure distribution on energydissipation in a mechanical lap joint [J]. American Institute of Aeronautics and AstronauticsJournal,2005,43:420-425.
    [112]姚运萍,王智渊.螺栓连接受载能量损失与结合面参数识别[J].中国机械工程,2010,21(16):1941-1943.
    [113] Denny C M. Mesh friction in gearing [C]. AGMA Fall Technical Meeting,98FTM2,1998.
    [114] Pedrero J I. Determination of the efficiency of cylindrical gear sets [C]. Fourth WorldCongress on Gearing and Power Transmission, Paris, France, March,1999,1:297-302.
    [115] Velex P F, Ville F. An analytical approach to tooth friction losses in spur and helicalgears-influence of profile modifications [J]. ASME Journal of Mechanical Design,2009,131:101008-1-101008-10.
    [116]王成,方宗德,贾海涛.斜齿轮滑动摩擦功率损失的计算[J].燕山大学学报,2009,33(2):99-102.
    [117] Anderson N E, Loewenthal S H. Effect of geometry and operating conditions on spur gearsystem power loss [J]. ASME Journal of Mechanical Design,1981,103:151-159.
    [118] Benedict G H, Kelly B W. Instantaneous coefficients of gear tooth friction [J]. Transactions ofASLE, ASLE Lubrication Conference,1960,57-70.
    [119] Naruse C, Haizuka S, Nemoto R, et al. Influences of tooth profile in frictional loss andscoring strength in the case of spur gears [C]. MPT’91JSME Int’l Conference on Motion andPower Transmissions, Hiroshima, Japan,1991.
    [120] Petry-Johnson T T. An experimental investigation of spur gear efficiency [D]. MS Thesis, TheOhio State University, Columbus, Ohio,2007.
    [121] Moorhead M D. Experimental investigation of spur gear efficiency and the development of ahelical gear efficiency test machine [D]. MS Thesis, The Ohio State University, Columbus,Ohio,2007.
    [122] Martin K F. The efficiency of involute spur gears [J]. Journal of Mechanical Design,1981,103:160-169.
    [123] Mihalidis A, Bakolas V, Panagiotidis K, et al. Prediction of the friction coefficient of spurgear pairs [C]. VDI-Berichte, NR.,2002,1665,705-719.
    [124]谷建功,方宗德,苏进展等.混合弹流润滑下弧齿锥齿轮传动啮合效率计算方法[J].农业机械学报,2010,41(5):188-192.
    [125] Cioc C, Cioc S, Moraru L, et al. A deterministic Elastohydrodynamic lubrication model ofhigh-speed rotorcraft transmission components [J]. Tribology Transactions,2002,45:556-562.
    [126] Xu H, Kahraman A, Anderson N E, et al. Prediction of mechanical efficiency of parallel axisgear pairs [J]. Journal of Mechanical Design,2007,129:58-68.
    [127]李湘南,林哲.船舶机械设备联接处非保守藕合损耗因子的研究[J].振动与冲击,2005,24(4):89-91.
    [128]韩旭,郭永进,朱平等.基于诺顿等效系统功率流计算的多维振动传递特性研究[J].振动与冲击,2007,26(5):44-48.
    [129] Lim T C, Singh R. Vibration transmission through rolling element bearings, part I: Bearingstiffness formulation [J]. Journal of Sound and Vibration,1990,139(2):179-199.
    [130] Lim T C, Singh R. Vibration transmission through rolling element bearings. Part III: Gearedrotor system studies [J]. Journal of Sound and Vibration,1991,151(1):31-54.
    [131] Lim T C, Singh R. Vibration transmission through rolling element bearings, part IV:statistical energy analysis [J]. Journal of Sound and Vibration,1992,153(1):37-50.
    [132] Royston T J, Basdogan I. Vibration transmission through self-aligning (spherical) rollingelement bearings: theory and experiment [J]. Journal of Sound and Vibration,1998,215(5):997-1014.
    [133]邵毅敏,陈再刚,周晓君等.冲击振动能量通过“齿轮-轴-轴承-轴承座”多界面传递损耗研究[J].振动与冲击,2009,28(6):60-65.
    [134] Gottlieb H P W. Frequencies of oscillators with fractional-power non-linearities [J]. Journal ofSound and Vibration,2003,261:557-566.
    [135] Cveticanin L. Oscillator with fraction order restoring force [J]. Journal of Sound andVibration,2009,320:1064-1077.
    [136] Rao S S. Mechanical Vibrations, Third edition [M]. Massachusetts: Addison-Wesley,1995.
    [137] Masri S F, Caughey T K. A nonparametric identification technique for nonlinear dynamicproblems [J]. ASME Journal of Applied Mechanics,1979,46:433-447.
    [138] Kerscheny G, Lenaerts V, Golinval J-C. VTT Benchmark: Application of the restoring forcesurface method [J]. Mechanical Systems and Signal Processing,2003,17(1):189-193.
    [139] Masri S F, Caffrey J P, Caughey T K, et al. Identification of the state equation in complexnon-linear systems [J]. International Journal of Non-Linear Mechanics,2004,39:1111-1127.
    [140] Kovacic I, Brennan M J, Lineton B. On the resonance response of an asymmetric Duffingoscillator [J]. International Journal of Non-Linear Mechanics,2008,43:858-867.
    [141] Worden K. Data processing and experiment design for the restoring force surface method, partI: integration and differentiation of measured time data [J]. Mechanical Systems and SignalProcessing,1990,4(4):295-319.
    [142] Hay J, Herbert E. Measuring the complex modulus of polymers by instrumented indentationtesting [J]. Experimental Techniques,2011, doi:10.1111/j.1747-1567.2011.00732.x.
    [143]陈秀,张霞.高等数学[M].北京:高等教育出版社,2011.
    [144] Xiao H F, Brennan M J, Shao Y M. On the undamped free vibration of a mass interacting witha Hertzian contact stiffness [J]. Mechanics Research Communications,2011,38:560-564.
    [145] Sahoo P, Ghosh N. Finite element contact analysis of fractal surfaces [J]. Journal of Physics D:Applied Physics,2007,40:4245-4252.
    [146] Zhong Z-H. Finite Element Procedures for Contact-Impact Problems [M]. Oxford UniversityPress Inc., New York,1993.
    [147]邵毅敏,肖会芳.动力系统非连续单一叠加结构界面变形与能量损耗特性[J].振动与冲击,2011,30:217-222.
    [148] Ciavarella M, Dibello S, Demelio G. Conductance of rough random profiles [J]. InternationalJournal of Solids and Structures,2008,45:879-893.
    [149] Andrew C, Cockburnt J A, Waring A E. Metal surfaces in contact under normal forces: somedynamic stiffness and damping characteristics [C]. Proceedings of the Institution ofMechanical Engineers, Conference Proceedings,1967,182:92-100.
    [150] Goodman L E, Klumpp J H. Analysis of slip damping with reference to turbine-bladevibration [J]. ASME Journal of Applied Mechanics,1956,23,421-429.
    [151] Sherif H A. Parameters affecting contact stiffness of nominally flat surfaces [J]. Wear,1991,145:113-121.
    [152] Baruh H. Analytical Dynamics [M]. New York: McGraw-Hill,1998.
    [153]张相武.对加速度能量物理意义的探讨[J].力学与实践,2006,28(3):81-82.
    [154]丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术[M].北京:机械工业出版社,2005.
    [155] Hurmuzlu Y. An energy based coefficient of restitution for planar impacts of slender bars withmassive external surfaces [J]. ASME Journal of Applied Mechanics,1998,65:952-962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700