用户名: 密码: 验证码:
借助微波合成纳米NaY分子筛
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Y型分子筛作为催化剂活性组元或催化剂载体,以其良好的催化活性和高温稳定性,广泛应用于催化裂化和加氢裂化等炼油工业过程中。相对于常规粒度的Y分子筛,纳米Y分子筛具有独特的结构特性,如:更大的外表面积、更多的活性中心、短而规整的孔道,因而具有更高的催化活性、选择性、催化剂寿命及更高的抗硫、氮和重金属污染的性能。
     本文采用水热法合成纳米NaY分子筛,详细研究了晶化时间、导向剂陈化时间、合成体系的碱度和微波预处理硅铝凝胶等反应条件对合成所得NaY分子筛晶粒尺寸的影响,并用XRD、SEM等手段对合成所得样品进行表征,得到结果如下:
     (1)上述反应条件均对合成所得NaY晶粒尺寸有直接影响,其中最大的影响因素是合成体系的碱度。为了合成单一晶相的纳米NaY分子筛,晶化温度应选定为90℃,晶化时间为4 h;最佳的硅铝凝胶反应摩尔配比为9.5Na2O:Al2O3:10SiO2:210H2O;导向剂陈化时间为4天,且导向剂中Al2O3的质量占硅铝凝胶总Al2O3质量的10%。
     (2)研究发现,对硅铝凝胶用微波短时间预处理,有利于小晶粒NaY分子筛的合成,而超声波预处理对合成所得NaY晶粒平均尺寸没有影响。在上述优化条件下,成功合成出了晶粒大小均一、平均晶粒约为90 nm的纳米NaY分子筛。
Y-type zeolite as a active catalyst, with its good catalytic activity and high temperature stability, was widely used in catalytic cracking and hydrocracking process. Compared with commercial Y zeolite, Y zeolite with nanosized particals had the unique features, such as greater external surface area, more exposed active sites, short and regular pores, which resulted in a higher catalytic activity, selectivity, longer catalytic lifetime and higher resistance to sulfur, nitrogen and heavy metal pollution performance.
     In this thesis, the factors affecting preparation of nano-NaY zeolite with hydrothermal synthesis method, such as crystallization time, aging time of nucleation gel, alkalinity of the precursor for the synthesis NaY were investigated in detail. The samples synthesized were characterized by XRD and SEM techniques. The corresponding results are as follows:
     (1) The results indicated that the most important factor affecting the synthesis of nano-NaY is alkalinity of the synthesis system. For synthesizing pure nano-NaY zeolite, the best molar composition of synthesis system is 9.5Na2O:Al2O3:10SiO2:210H2O, and the aluminosilicate gel obtained should be crystallized at 90℃for 4 hour. The nucleation gel should be aged for four days before being added to hydrothermal kettle in wt.10% of the synthesis precursor accounted in moles of Al2O3.
     (2) It was found that treating the aluminosilicate gel in microwave for several minutes before hydrothermal crystallization benefits to the nanosized NaY synthesis, while ultrasonic pretreatment do not work. Under the optimized synthesis condition, NaY zeolite with uniform grain size of about 90 nm was successfully obtained.
引文
[1]马跃龙,陈诵英,彭少逸,等.小颗粒NaY分子筛透明液相导向剂的制备及其性能[J].催化学报,1995,16(5):410-413.
    [2]Ch Baerlocher, L B McCusker, D H Olson. Atlas of zeolite framework types[M].2007.
    [3]王彤文,陈施蕾,戴乐蓉.混合表面活性剂模板法合成立方相介孔含钛氧化硅[J].物理化学学报,2000,16(5):385-388.
    [4]王树国,吴东,孙予罕,等.MCM-48分子筛的高效合成途径[J].化学学报,2001,59(7):1150-1152.
    [5]VAN GRIEKEN R, SO TELO J L, MENENDEZ J M, et al. A nomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5 [J].Microporous and Mesoporous Materials,2000,39(162):135-147.
    [6]SEBASTIEN P B K, CHRISTINE E A K, PIERRE A J, et al. Synthesis and characterization of zeogrid molecular sieves [J].Comptes Rendus Chimie,2005,8:379-390.
    [7]成岳,杨宇川,李健生,等.变浓度无有机模板剂合成ZSM-5沸石分子筛膜[J].无机化学学报,2005,6(21):796-800.
    [8]ZHANG Y, SHI X E, KIM J M, et al. Synthesis and catalysis of nanometer-sized bimodal mesoporous aluminosilicate materials [J]. Catalysis Today,2004,93-95:615-618.
    [9]SUMAN K J, TAKAHASHI H, NAKAMURA M, et al. Aluminum incorporation in mesoporous MCM-41 molecular sieves and their catalytic performance in acid-catalyzed reactions[J]. Applied Catalysis A:General,2003,245:33-41.
    [10]DRAGOI B, GERVASINI A, DUMITRIU E, et al. Calorimetric determination of the acidic character of amorphous and crystalline aluminosilicates[J]. Thermochimica Acta,2004,420:127-134.
    [11]DWYER F G, CHU P. Zeolite ZSM-5:Eur,11362[P].1980.
    [12]HOU Q S, XU R R, FENG S H. Synthesis of pentasil-tpye silica zeolite from non-aqueous systems[J]. Chem. Commun.,1988:1486-1487.
    [13]KUPERMAN A. Non-aqueous synthesis of giant crysta of zeolites and molecular sieves[J]. Nature,1993, (365):239-242.
    [14]XIAO F S, QIU S L, PANG W Q, et al. New development in microporous materials [J]. Advanced Materials,1999,11:1091.
    [15]CHEN J S, PANG W Q, XU R R. Mixed-bonded open-framework aluminophosphates and related layered materials[J]. Topics in Catalysis,1999,9:93-103.
    [16]范景新,苏罡,段林海,等.微波在沸石分子筛研究中的应用[J].化工进展,2005,24(11):1244.
    [17]张扬健,赵杉林,孙桂大,等.W-MCM-48中孔分子筛的微波合成与表征[J].催化学报,2001,21(4):345-349.
    [18]张迈生,姚云峰,杨燕生.XRD粉末衍射法研究全微波合成的MCM-41介孔分子筛[J].无机化学学报,2000,16(1):119-122.
    [19]赵彬林,张扬健,孙桂大等.钒硅MCM-41沸石分子筛微波合成与表征[J].燃烧化学学报,1999,27(2):130-133.
    [20]宋天佑,徐家宁,徐文国,等.微波辐射法合成NaX分子筛.[J].高等学校化学学报,1992,10(13):1209-12101.
    [21]JANSEN J C, ARAFAT A, BARAKAT A K, et al. In synthesis of microporous materials; OCCELLI M L, ROBSON H E, Eds. [J]VAN NOSTRAND R:New York,1992,1:507-511.
    [22]ARAFAT A, JANSEN J C, EBAID A R, et al. Microwave preparation of zeolite Y and ZSM-5[J]. Zeolites,1993,13(3):162-165.
    [23]张磊,王正阳,皱向宇,等.微波水热法合成A型分子筛[J].辽宁石油化工大学学报,2006,26(4):60-61.
    [24]周荣飞,刘丹,顾逸,等.微波加热法快速合成T型分子筛[J].无机化学学报,2006,22(9):1719-1722.
    [25]王荧光,桂建舟,张晓彤,等.纳米ZSM-5分子筛的合成与表征[J].光谱实验室,2005,22(2):225-229.
    [26]SCHMIDT I, MADSEN C, JACOBSEN C J H. Confined space synthesis:a novel route to nanosized zeolite[J]. Inorg. Chem.,2000,39(11):2279-2283.
    [27]WANG B, MA H Z. Synthesis of nanosized nay zeolite by confined space method[J]. Chem. Letter,2002,13(4):385-388.
    [28]NAIK S P, CHEN J C, CHIANG S T A. Synthesis of silicalite nanocrystals via steaming of surfactant protected precursors[J].Microporous and Mesoporous Materials,2002,54:293-303.
    [29]WANG H T, HALMBERG B A, YAN Y S. Synthesis of template-free zeolite nanocrystalls by using in situ thermoreversible polymer hydrogels[J].J. AAm. Chem. Soc. 2003,125:9928-9929.
    [30]TANEV P T, PINNAVAIA T J. A neutral templating route to mesoporous molecular sieves[J]. Science,1995,267:865-867.
    [31]CHO G, LEE J, GLATZHOFER D T, et al. Ultra-thin zeolite films through simple self-assembled processes[J]. Advanced Materials,1999,11(6):497-499.
    [32]LIU Y, ZHANG W Z, PINNAVAIA T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite Beta seeds[J]. Angew Chem Int Ed,2001,40:1256-1258.
    [33]HUANG L M, WANG ZH B, SUN J Y, et al. Fabrication of ordered Porous structures by self-assembly of zeolite nanocrystals[J]. J. Am. Chem. Soc.,2000,122(14):3530-3531.
    [34]XIA Y D, MOKAYA R. On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials[J]. Journal of Materials Chemistry,2004, 14(5):863-870.
    [35]MAHUYA B, RAJIB B, SHOGO T, et al. Catalytic performance of silicoaluminphosphate(SAPO) molecular sieves in the isopropylation of biphenyl[J]. Applied Catalysis A:General 2002,225(1-2):51-56.
    [36]SCHOEMAN B J, STERTE J, OTTERSTEDT J E. Colloidal zeolite suspensions[J]. Zeolites,1994,14:110-116.
    [37]周群,李宝宗,裘式纶,等.导向剂法合成低硅铝比B-沸石[J].高等学校化学学报,1999,5(20):693-695.
    [38]王祥生,王学勤,郭新闻.超细颗粒五元环型沸石:中国,CN1240193[P].2000.
    [39]ZHANG Y, SHI X S, KIM J M, et al. Synthesis and catalysis of nanometer-sized bimodal mesoporous aluminosilicate materials[J]. Catalysis Today,2004,93-95:615-618.
    [40]JANAS J, JANIK R, MACHEJ J, et al. Bastardo-Gonzalez, W. Jones. Cr-doped Zr, Si-mesoporous molecular sieves as catalysts of CH2Cl2 oxidation[J]. Catalysis Today,2000,59:241-248.
    [41]杨效益,张高勇,李秋小.用蒸汽相法合成4A沸石[J].日用化学工业,2003,33(5):295-297.
    [42]邬建辉,张传福,湛菁,等.超声波在粉体材料制备中的应用[J].有色金属,2001,53(3):81-83.
    [43]RUN M T, WU S ZH, WU G. Ultrasonic synthesis of mesoporous molecular sieve[J]. Microporous and Mesoporous Materials,2004, (74):37-47.
    [44]钟声亮,张迈生,苏锵.超细4A分子筛的超声波低温快速合成[J].高等学校化学学报,2005,26(9):1603-1606.
    [45]Eric G, Derouane, Serge Determmerie, Zelimir Gabelica and Niels Blom, Synthesis and characterization of ZSM-5 type zeolites I. physico-chemical properties of precursors and intermediates[J]. Appl.Catal.,1981,1(2)201-224
    [46]Lindner T, Lechert H. Chelate ligands as mineralizing agents in hydrothermal synthesis of faujasite-type zeolites:A kinetic study [J]. Zeolites,1996,16:196-206.
    [47]Hamilton K E, Cokwer E N, et al. The effects of the silica source on the crystallization of zeolites NaX [J].Zeolites,1993,13:645-653.
    [48]Freund E F. Mechanism of the crystallization of zeolite X [J].J. Cryst. Growth 1976,43:11-23.
    [49]Albers E W. US Patent,3755538[P],1973.
    [50]高滋主编.沸石催化与分离技术[M].北京:中国出版社,1999 P9.
    [51]Wang B, et al. Factors affecting the synthesis of microsized NaY zeolite [J]. Microporous and Mesoporous Materials,1998,25:131-136.
    [52]马跃龙,陈诵英,彭少逸,等.分子筛成核与晶体生长动力学研究一非自成核体系中修正的Lechert模型[J].石油学报[石油加工],1997,13:47-54.
    [53]晁自胜,林海强,陈国周,等.超微分子筛的合成一添加稀土的影响[J].高等化学学报,2000,21(9):1353-1358.
    [54]晁自胜,林海强,陈国周,.超微分子筛的合成一添加铝络合剂的影响[J].高等化学学报,2001,22(1):10-25.
    [55]李瑞丰,杨槐签,宋芬等.微细沸石的制备方法.CN1296915A[P].2001.
    [56]Sdhoeman B J, Sterte J, Otterstedt J E. J. Chem.Soc, Chem.Commun.,1993:994-995
    [57]Ambs W A, Swarthmore Pa. US Patent 4372931 [P].1983.
    [58]Maher P K, Scherzer J. US Patent 3516786 [P].1970.
    [59]Dutta P K, Bowers C. Synthesis of zeolites A and X:Influence of Cosolvents [J]. Zeolites,1991,11:507-510
    [60]李酽.利用天然资源合成NaY分子筛[J].化工矿物与加工,2004,(2):11.
    [61]董为屹,张文杰,等.气流粉碎对Y型分子筛结构与性能的影响[J].催化学报,1996,17(1):68.
    [62]张文杰,何红波.气流粉碎对分子筛酸中心及催化性能的影响[J].沈阳工业学院学报,2001,02.
    [63]赵文江,刘靖,朱金红,等.纳米NaY分子筛的合成[J].工业催化,2004,12(4):50-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700