太湖渔业和环境的生态系统模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太湖是中国第三大淡水湖,水域面积2338km~2,占太湖流域湖泊总面积的74%,具有蓄洪、供水、渔业、航运、旅游、科研等多方面的生态服务功能,为太湖流域的可持续发展提供了不可替代的自然支持系统。近40年来,太湖流域经济发展极为迅速,1999年以仅占全国的0.4%土地面积创造了占全国10.1%的GDP。在经济高速发展的同时,太湖所承受的捕捞强度和污染负荷日益增加。湖泊水质平均十年下降一个等级,水体富营养化严重,生物多样性显著下降,渔业捕捞面临严重的小型化和低值化问题。2000年,太湖被国家环保总局列为“三河”“三湖”水污染防治计划及其规划的重点对象之一。计划在1997~2010年间投资204.3亿元,解决太湖的富营养化问题。此外,每年为维持太湖渔业资源所投放的鱼苗高达410~924×10~4尾。然而,有关太湖污染治理和渔业管理的工作尚未在“生态系统的架构”下统一管理目标和行动。比如在强调污染源控制的同时,湖泊生态系统的恢复工作尚未充分展开。渔业生产仍然着眼于短期利益,捕捞结构不尽合理,捕捞强度控制不力,过度的捕捞和养殖仍然在加速破坏太湖生态系统的正常结构。
     为探讨太湖生态健康恶化的成因,解决其环境污染和渔业资源衰退的问题,有关科研单位对太湖的环境、生态、渔业和生物资源等,进行了多次大规模的调查和长期的监测统计工作,开展了许多深入的研究,积累了相当全面、系统的基础资料。但是,以往的研究大多只针对生态系统中一种或几种环境、生物因子,未能充分整合有关太湖完备的基础数据和资料。采用基于食物网的计算机模型,从整个生态系统的角度来探讨渔业和环境影响的研究在国内也不多见。本论文综合运用生态学、水生生物学、生态经济学以及计算机科学的理论和方法,构建了反映太湖生态系统结构和发育过程的EwE模型,得出了量化和综合的结果,对太湖的渔业和环境决策也具有一定的指导意义。该论文首次从生态系统发育(ecosystem development)的角度,指出“幼态化”是太湖生态系统结构的现状特征,其发育的过程是由“成熟态”向“幼态”逆向演替;对太湖生态系统的发育进行了动态模拟,得出了与其发育进程相一致的结果,分析了渔业和富营养化
    
     摘要
     一一一一一一一一---一-一--一一一
    对生态系统发育影响的“下行”和“上行”机制;对太湖生态系统各功能组以及
    渔业之间的相互关系进行了量化分析,并对相关捕捞策略进行了动态模拟,指出
    适当降低捕捞强度,尤其是控制对顶级捕食者的捕捞,可显著改善太湖生态系统
    的结构,提高渔业收益;运用生态系统服务和自然资本评价的理论和方法;首次
    对太湖生态系统的服务价值进行了初步研究,指出其服务价值主要由间接使用价
    值构成,太湖生态系统的服务功能在30年间遭到了严重破坏。具体结果及结论
    如下。
    1.太湖生态系统结构的Ecopath模型分析
     构建了一个具有22个功能组的Ecopath模型,并利用其基本分析和网络分
    析(network analysis)功能,对1 991~1 995年间太湖生态系统的结构和特征进
    行了量化和系统的研究。整个太湖生态系统主要由4个整合营养级构成。由于水
    体的富营养化,营养级I的营养流量(湿重)达9956.107灯bllZ行ear,然而其利
    用率极低,浮游植物和碎屑的生态营养效率(ee以rophic efficiency)仅为0.413
    和0.326。小型鱼虾类如刀鳞、新银鱼、野杂鱼和虾蟹类等在系统中占优势地位,
    其生产量和营养流量分别占所有鱼虾类的84.26%和86.18%。刀鳞、野杂鱼等低
    值鱼类与新银鱼之间的饵料重叠指数较高,分别为0.963,0.845,表明其间存在
    激烈的饵料竞争关系。红白鱼对大多数鱼虾类的混合营养负效应(negative而xed
    thophic effect)都较低,对新银鱼和虾蟹类反而表现出正值。渔业捕捞对大部分
    鱼虾类,尤其是对大中型鱼类的混合营养效应都表现出较高的负值,其影响程度
    大大超过了系统中的顶级捕食者。过高的净初级生产力(NPP)、净初级生产力/
    呼吸(NPP瓜)以及较低的联结指数(CI)、系统杂食指数(soI)和Finn、循环
    指数(FCI)等,则表明太湖是一个典型的尚处于“幼态”的生态系统。
    2.太湖生态系统发育的Ecopath比较研究
     采用Eeopath,构建了太湖1 960(1 961~1 965),1 980(1 981~1 985)和1990
    (1991一1995)年代的生态系统模型。比较了这3个模型在基本生态参数、系统
    总体特征、食物网关系以及营养流的分布和循环等方面的差异。模型参数估计表
    明,大中型鱼类尤其是肉食性鱼类的生物量在3个年代段均呈现下降趋势,而小
    型鱼虾类生物量则显著上升。各种鱼虾类的P忍系数以及捕捞死亡占鱼虾类生产
    量的比例在3个年代段均显著上升,表明捕捞压力的日益增强。初级生产力、总
    
     摘要
     一一一一一一-一一一-一----
    生物量以及总物流在3个年代段均显著上升。尤其是在1980年代至1990年代之
    间,上述指标分别增长了135.7%、40.9%和49.5%。因沉积而脱离系统的碎屑,
    1980年代比1960年代增长24%,1990年代比1980年代增长了4.42倍,表明虽
    然系统的总体规模?
Taihu lake is the third largest freshwater lake in China with an area of 2338 km2, which is 74% of the total area of all lakes in Taihu basin. Its aquatic system provides lots of ecosystem services such as flood controlling, water supplying, fishery, shipping, touring and culture, and affords a undisplaced natural supporting system for the sustainable social and economic development of Taihu basin. In the recent 40 years, Taihu lake sustained more and more stress from fisheries and pollution. The water quality reduced one class every 10 years and the water body sustained serious eutrophication. The biodiversity declined remarkably and the composition of fishery products was composed of small species with lower value. In 2000, Taihu lake was listed in "water pollution prevention and control on the three rivers and three lakes" by the state environmental protection administration of China. The government planed to solve its eutrophication problem with a investment of 20.43 billion yuan RMB in 1997-2010. And 4.
    1-9.24 million fry was put into Taihu lake every year to maintain the fishery resources. But the efforts of pollution controlling and fishery management have not been integrated in the "frame of ecosystem". As the pollution sources were controlled, the rebuild of the aquatic ecosystem was not processed on schedule. The composition of catches was not reasonable and the fishing intensity was not controlled effectively yet. The excessive fishery and aquaculture kept on destroying the structure of Taihu lake ecosystem.
    For revealing the facts affects the health of Taihu ecosystem and figuring out the problems of environmental pollution and fishery degradation, some academic groups have carried out several large-scale investigations and long-term monitoring on the environment, ecology, fishery and biological resources of Taihu lake. Lots of the researches have studied the relationship between pollution, fishery and ecology, and
    
    
    provided comprehensive and systematic information about Taihu ecosystem. But the former studies just focused on one or several environmental and biological facts of the system. Most of the basal data was not utilized and integrated in them. The study based on food-web models, which was constructed in the "frame of ecosystem", was still few in the study of lake ecosystem in China. The paper constructed static and dynamic models using Ecopath with Ecosim, which was a ecosystem modeling software based on food-web. The structures, functions and services value of Taihu lake ecosystem in different decades were studied by 3 static mass-balanced models as viewed form maturity and ecosystem development. The developments of the ecosystem in the stress of fishery and pollution were simulated by several dynamic food-web models. The mechanisms of eutrophication and fishery degradation were revealed, and the effects of future alternative management strategies on ecosystem and fishery profits were evaluated. The results and conclusions are described in detail as follows. 1. The modeling analysis of the structure of Taihu lake ecosystem
    Using the basic and network analysis function of Ecopath, a mass-balanced model with 22 groups was constructed to proceed a quantitative and synthetic analysis for the structure of Taihu lake ecosystem. The Taihu lake ecosystem was composed of 4 aggregated trophic levels. Because of the eutrophication, the throughput of trophic level I was as high as 9956.11t/km2/y. But the ecotrophic efficiency (EE) of phytoplankton and detritus were only 0.413 and 0.362. It meaned that the utilizing efficiency of trophic level I was very low. Small pelagic species such as tapertail anchovy (TapA), silver fish (SilF), macrocrustacean (MacC) and other pelagic fishes (OthF) dominate the ecosystem. The prey overlap index of TapA, OthF, SilF and MarC were higher than 0.8, which meant that there was intensive food competition between the small pelagic species. The negative mixed thophic effects (MTE) of large culters (LarC) on most of its preys were much lower than the trawl fishery. On the oth
引文
Arreguín-Sámchez F, Arcos E, Chávez E A. 2002. Flows of biomass and structure in an exploited benthic ecosystem in the gulf of California, Mexico. Ecological Modelling, 156: 167-183.
    Arreguín-Sáinchez F, Manickchand-Heileman S. 1998. The trophic role of lutjanid fish and impacts of their fisheries in two ecosystems in the Gulf of Mexico. Journal of Fish Biology, 53 (Supplement A): 143-153.
    Beverton R J H and Holt S J. 1957. On the dynamics of exploited fish populations. Chapman and Hall, London. 533 p.
    Bradford-Grieve J M. 2003. Pilot trophic model for subantarctic water over the Southern Plateau, New Zealand: a low biomass, high transfer efficiency system. Journal of Experimental Marine Biology and Ecology, 289: 223-262.
    Brando V E, Ceccarelli R., Libralato S, et al. 2004. Assessment of environmental management effects in a shallow water basin using mass-balance models. Ecological Modelling, 172:213-232.
    Brett J R and Groves T D D. 1979. Physiological energetics. In: fish Physiology (Hoars W S eds). New York : Academic Press, 8: 279-352.
    Brey T. 1990. Estimating production of macrobenthic invertebrates from biomass and mean individual weight. Meeresforsch, 32:329-343
    Brey T. 1995. Empirische Untersuchungen zur Populationsdynamik makrobenthischer Evertebraten. Habilitation thesis, University of Bremen, Germany.
    Bundy A. 1997. Assessment and management of multispecies, multigear fisheries from San Miguel Bay, Philippines. Doctoral Thesis, University of British Columbia, Vancouver. 395 pp.
    Caddy J F, Csirke J, Garcia S M, et al. 1998. How pervasive is "fishing down marine food webs"?. Science, 282: 1383a.
    Carpenter S R, Kitcell J F, Hodgson J R, et al. 1987. Regulation of lake primary productivity by food web structure. Ecology, 68:1863~1876.
    Carrer S, Halling-Srensen B, Bendoricchio G. 2000. Modelling the fate of dioxins in
    
    a trophic network by coupling an ecotoxicological and an Ecopath model. Ecological Modelling, 126:201-223.
    Christensen V, Pauly D. 1992a. ECOPATH Ⅱ-a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol. Model. 61: 169-185.
    Christensen V, Pauly D. 1992b. A guide to the ECOPATH Ⅱ software system (ver 2.1). ICLARM Software 6.
    Christensen V, Walters C J, Pauly D. 2000. Ecopath with ecosim: a user's guide, October 2000 edition. Fisheries center, University of British Columbia, Canada; ICLARM, Malaysia. pp130.
    Christensen V. 1998. Fishery-induced changes in a marine ecosystem: insight from models of the Gulf of Thailand. Journal of Fish Biology, 53 (Supplement A), 128-142.
    Conover D O, Munch S B. 2002. Sustaining fishing yields over evolutionary time scales. Science, 297: 94-96.
    Costanza R, d' Arge R, Rudolf de G, et al. 1997. The value of the world's ecosystem services and natural capital. Nature, 387: 253-260.
    Daily GC, et al. 1997. Nature's services: Societal dependence on natural ecosystems. Washington D C: Island Press.
    David O C, Stephan B. 2002. MunchSustaining Fisheries Yields Over Evolutionary Time Scales. Science, 297: 94-96.
    Ferdinando V, Matthew A. Wilson, Rudolf de Groot, et al. 2002. Design an integrated knowledge base to support ecosystem services valuation. Ecological Economics, 41: 445-456.
    Guo Z W, Xiao X M, Gan Y L, et al. 2001. Ecosystem functions, services and their values- a case study in Xingshan county of China. Ecological Economics, 38: 141-154.
    Gustavson K, Lonergan S C, Ruitenbeek J. 2002. Measuring contributions to economic production- use of an index of Captured Ecosystem Value. Ecological Economics, 41: 479-490.
    
    
    Halfon E, Schito N, Ulanowicz R E. 1996. Energy flow through the Lake Ontario food web conceptual model and an attempt at mass balance. Ecological Modelling, 86:1-36.
    Hastings A. and Botsford L. W., 1999, Equivalence in Yield from marine reserves and traditional fisheries management. Science, 284, 1537-1538.
    Heymans J J, Baird D. 2000. Network analysis of the northern Benguela ecosystem by means of Netwrk and Ecopath. Ecological Modelling, 131: 97-119.
    Hosper H, Meijer M L. 1993. Biomanipulation, will it work for your lake? A simple test for the assessment of chances for Clearwater, following drastic fish-stock reduction in shallow, eutrophic lakes. Ecological Engineering, 2: 63~72.
    Janet M, Bradford-Grievea P K P, and Scott D N, et al. 2003. Pilot trophic model for subantarctic water over the Southern Plateau, New Zealand: a low biomass, high transfer efficiency system. Journal of Experimental Marine Biology and Ecology, 289: 223-262.
    Jarre-Teichmann A, Shannon L J, Moloney C L, et al. 1998. Comparing trophic flows in the southern benguela to those in other upwelling ecosystem. South African Journal of Marine Science, 19: 391-414.
    John L, Paula K, Liz S. 2000. Measuring the total economic value of restoring ecosystem services in an impaired river basin: results from a contingent valuation survey. Ecological Economics, 33:103-117.
    Kitchell J F, Cox S P, Harvey C J, et al. 2000. Sustainability of the lake superior fish community: interactions in a food web context. Ecosystems, 3: 545-560.
    Lalli C M, Parsons T R. 1997. Biological Oceanography. An Introduction. Secnond Edition. Butterworth Heinemann. 314
    Li W, Huang B, Li R R. 2002. Assessing the effect of fisheries development on aquatic vegetation using GIS. Aquatic Botany. 73:187-199.
    Loomis J, Kent P, Strange L. 2000. Measuring the total economic value of restoring ecosystem services in an impaired river basin: results from a contingent valuation survey. Ecological Economics, 33 : 103-117.
    Lynn M. 2001. Biodiversity, Biocomplexity, and the Economics of Genetic
    
    Dissimilarity, Land Economics, 77(1): 79-83.
    McNeely J A, Miller KR, Reid W V, et al. Conserving the world biological diversity. World bank.
    Micheli F. 1999. Eutrophication, Fisheries, and Consumer-Resource Dynamics in Marine Pelagic Ecosystems. Science, 285:1396-1398.
    Moreau J, Mavuti K, Daufresne T. 2001. A Synoptic Ecopath model of biomass flows during two different static ecological situations in Lake Nakuru (Kenya). Hydrobiologia 458: 63-74.
    Nunes P A and van den Bergh J C. 2001. Economic valuation of biodiversity: sense or nonsense?. Ecological Economics, 39: 203-222.
    Odum E P. 1969. The strategy of ecosystem development. Science, 104: 262-270.
    Odum H T. 1983. Systems ecology. An introduction. J Wiley& Sons, New York.
    Oglethorpe D R, Miliadou D. 2000. Economic Valuation of the Non-use Attributes of a Wetland: A Case-study for Lake Kerkini. Journal of Environmental Planning & Management, 43 (6): 755-767.
    Okey T A, Pauly D. 1998b. A mass-balanced model oftrophie flows in Prince William Sound. In: Ecosystem Consideration in Fisheries Management. Alaska:The 16th Lowell Wakefield Fisheries Symposium, 621-635.
    Okey T A, Pauly D. 1999. A mass-ballanced model of trophic flows in prince William sound: decopartmentalizing ecosystem knowledge. Ecosystem approaches for fisheries management, Alaska sea grant college program. AK-SG-99-01.
    Palomares M L D, Pauly D. 1998. Predicting food consumption of fish populations as functions of mortality, food type, morphometrics, temperature and salinity. Mar. Freshwater Res., 49: 447-453.
    Park R A, O'Neill R V, Bloomfield J A, et al. 1974. A generalized model for simulating lake ecosystems. Simulation, 23: 33-50.
    Pastorok R A, Bartell S M, Ferson S, et al. Ecological modeling in risk assessment, chemical effects on populations, ecosystems and landscapes. Lewis Publishers.
    Pauly D, Christensen V, and Walters C. 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. Journal of Marine Science, 57:
    
    697-706.
    Pauly D, Christensen V, Dalsgaard J. 1998. Fishing Down Marine Food Webs. Science, 279 (6): 860-863
    Pauly D, Christensen V, Walters C. 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. Journal of Marine Science, 57: 697-706.
    Pauly D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. int. Explor. Mer 39: 175-192.
    Pearce D W, Moran D. 1994. The economic value of biodiversity. Cambridge.
    Pearce D W. 1995. Blueprint 4: Capturing global environmental value. London: Earthsean.
    Pedersen S A, Zeler D. 2001. A mass balance model for the west Greenland marine ecosystem. In: Guenette, S., Chdstensen, V. and Panly, D (eds). Fisheries impact on North Atlantic Ecosystems: Models and Analyses. Fisheries Centre Research Reports 9(4).
    Pitcher T J. Watson R, Haggan N. et al. 2000. Marine Reserves and the Restoration of Fisheries and Marine Ecosystems in the South China Sea. Proc. Mote Symposium on Marine Protected Areas, Sarasota Springs, Florida. November 1998. Bulletin of Marine Science, 66(3): 121-132
    Polvina J J. 1984a. Model of a coral reef ecosystems 1. The ECOPATH model and its application to French Frigate Shoals. Coral Reefs, 3 (1): 1-11.
    Poor P J, Boyle K J, Taylor L O, et al.2001. Objective versus subjective measures of water clarity in hedonic property value models. Land Economics, 77(4): 482-493.
    Scavia D, Bloomfield J A, Fisher J S, et al. 1974. Documentation of CLEANX: a generalized model for simulating the open-water ecosystems of lakes. Simulation. 23: 51-56.
    Shannon L J, Cury P M, and Jarre A. 2000. Modelling effects of fishing in the Southern Benguela ecosystem. ICES Journal of Marine Science, 57: 720-722.
    
    
    Shapiro J. 1990. Biomanipulation: The next phase-making it stable. Hydrobiologia, 200/201: 13~27.
    Sparre P. 1991. Introduction to multispecies virtual population analysis. ICES Marine Science Symposium, 193: 12-21.
    Stevens J D, Bonfil R, Dulvy N K, et al. 2000. The effects of fishing on sharks, rays, and chimaeras (chondrichthtans), and the implications for marine ecosystems. Journal of Marine Science, 57: 476-494.
    Stevens T H, Belkner R, Dennis D, et al. 2000. Comparison of contingent valuation and conjoint analysis in ecosystem management. Ecological Economics, 32: 63-74.
    Stevens T H, Belkner R, Dennis D, et al. Comparison of contingent valuation and conjoint analysis in ecosystem management. Ecological Economics, 32 : 63-74.
    Turner K. 1991. Economics and wetland management. Ambio, 20(2): 59-61.
    Turner P K, jeroen C J M, van den Bergh S T, et al. 2000. Ecological-economic analysis of wetlands: scientific integration for management and policy. Ecological Economics, 35: 7-23.
    Ulanowicz, R.E.1986. Growth and development: ecosystem phenomenology. Springer Verlag, New York. 203 p.
    Vega-Cendejas M E, Arreguin-Sanchez E. 2001. Energy fluxes in a mangrove ecosystem from a coastal lagoon in Yucatan Peninsula, Mexico. Ecology Modelling, 137: 119-133.
    Walters C, Christensen V, Pauly D. 1997. Sturctureing dynamic models of exploited ecosystems from trophic mass-balance assessments. Review in Fish Biology and Fisheries, 7(2): 139-172.
    Walters C, Pauly D, Christensen V. 2000. Ecospace: prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems, 2: 539-554.
    Walters C, Pauly D, Christensen V. 2000. Representing Density Dependent Consequences of Life History Strategies in Aquatic Ecosystems: EcoSim Ⅱ. Ecosystems, 3: 70-83.
    
    
    Waters T F. 1977. Secondary production in inland waters. Adv Ecol Res, 10: 91-164.
    Williams N. 1998. Overfishing Disrupts Entire Ecosystems. Science, 279:809
    Winberg G G. 1956. Rate of metabolism and food requirements of fishes. Transl. Fish. Res. Board Can. 253.
    Winberg G G. 1970. Energy flow in aquatic ecological system. Pol. Arch. Hydrobiologia. 17(1): 11-19.
    Xu F L, Tao S, Dawson R W, et al. 2001. A geographical information system (GIS)-based method of lake eutrophication assessment was undertaken to study. Ecological Modelling 144:231-244.
    鲍建平,缪为民,李劫夫等.1991.太湖水生维管束植物及其合理开发利用的调查研究.大连水产学院学报,6(1):13-20.
    鲍建平,许兆明.1984.太湖浮游植物初级生产力及鱼产力估算.淡水渔业,(5):1-5.
    邴旭文.1995.太湖所产银鱼的食性及分布/数量变动与饵料生物的关系.In:中国水产科学院淡水渔业研究中心,太湖敞水区鱼类群落结构特征和调整依据.pp101.
    蔡后建,陈宇炜,蔡启铭等.1994.太湖梅梁湾口浮游植物初级生产力及其相关因素关系的研究.湖泊科,学6(4):340-347.
    蔡启铭.1998.太湖环境生态研究.北京:气象出版社.228pp
    蔡启铭.1995,太湖水质的动态变化及影响因子的多元分析,湖泊科学,Vol.7,97—105
    蔡庆华,唐涛,邓红兵.2003.淡水生态系统服务及其评价指标体系的探讨.应用生态学报,14(1):135-138.
    曹文明,周刚,盛建明等.2000.太湖河蚬资源现状及演变.南京林业大学学报,24:125-128.
    陈荷生,范成新,季江等.1997.太湖水环境生态及富营养化研究94-95,南京:中国科学院南京地理与湖泊研究所,太湖流域水资源保护局.135pp.
    陈洪达.1989.养鱼对武汉东湖生态系的影响.水生生物学报,13:359-368.
    陈少莲.1991.鲢、鳙在东湖生态系统的氮、磷循环中的作用.水生生物学报.15:8-26
    
    
    陈卫,李圭白,邹浩春.高锰酸钾复合药剂去除太湖水中蓝藻的室内试验研究.2001.哈尔滨建筑大学学报.34(3):72~74.
    陈宇炜,高锡云,秦伯强等.1998.西太湖北部藻类夏季种间关系的初步研究.湖泊科学,10(4):35-40.
    陈宇炜,秦伯强,高锡云.2001.太湖梅梁湾藻类及相关环境因子逐步回归统计和蓝藻水华的初步预测.湖泊科学,13:63-71.
    陈仲新,张新时.2000.中国生态系统效益的价值.科学通报,45(1):17-22.
    程建新,王小林.1999.太湖渔业现状及其发展前景.现代渔业信息,14(10):16-19.
    崔丽娟.2002.扎龙湿地价值货币化评价.自然资源学报,17(4):451-456.
    邓思明,臧增嘉,詹鸿禧.1997.太湖敞水区鱼类群类结构特征和分析.水产学报,21(2):134-142.
    杜红文.1985.1985年太湖浮游动物及其鱼产潜力的研究.In:太湖水产资源增殖技术研究论文集.中国水产科学研究院淡水渔业研究中心,江苏省太湖渔业生产管理委员会.143-148.
    范成新.1995.太湖水体有机污染与主要环境因子的响应.海洋与湖沼,26:13-20.
    高维平,韩曜平,李春梅.2000.太湖流域涉禽资源及保护.四川动物,19(4):241-242.
    龚志军,谢平,阎云君.2001.底栖动物次级生产力研究的理论与方法。湖泊科学,13(1):79-88.
    顾丁锡,孙超白.1983.二十年来太湖生态环境变化及其趋势的初步分析.中国科学院南京地理研究所集刊,(1):51-61.
    关劲峤,黄贤金,刘红明等.2003.太湖流域水环境变化的货币化成本及环境治理政策实施效果分析——以江苏省为例.湖泊科学,15(3):275-279.
    国家环境保护总局.2000.“三河”“三湖”水污染防治计划及其规划.北京:中国环境出版社.516pp
    韩维栋,高秀梅,卢昌义等.2000.中国红树林生态系统生态价值评估.生态科学,19(1):40-46.
    
    
    何孟常,杨居荣.1999.水质模型、生态模型及计算机模型软件.环境科学进展,7:62-69.
    何文辉,赫广春,尤洋等.2000.不同纬度太湖新银鱼的食性比较及其饵料生物学容量评价.青海畜牧兽医杂志,30(5):11-12.
    华东师范大学生物学系.1959.东太湖水生生物调查报告.118pp
    黄文钰,杨桂山,许朋柱.2002.太湖流域“零点”行动的环境效果分析.湖泊科学,14(1):167-71.
    黄漪平,范成新,濮培民等.2001.太湖水环境及其污染控制.北京:科学出版社.298pp.
    黄漪平等,1992,太湖水质现状及变化趋势,中国科学院南京地理与湖泊研究所集刊,(9):27-36.
    黄玉瑶.2001.内陆水域污染生态学原理与应用.北京:科学出版社.291pp
    江苏省太湖渔业生产管理委员会.1986.太湖渔业史.190pp.
    蒋延玲,周广胜.1999.中国主要森林生态系统公益的评估.植物生态学报,23(5):426-432.
    金相灿.1995.中国湖泊环境(第二册).北京:海洋出版社.536pp.
    金相灿.2001.湖泊富营养化控制和管理技术.北京:化学工业出版社.224pp.
    赖伟,邓雪怀,陈炳良等.1983.太湖秀丽白虾(Palaemon modestus Heller)种群及其生殖习性研究.华东师范大学学报(自然科学版).(3):81-88.
    李金昌,姜文来,靳乐山.1999.生态价值论.重庆:重庆大学出版社.260p.
    李景锟,顾丁锡,盛俊宝等.1983.太湖环境质量调查研究80-81.上海师范学院学报自然科学专辑.195pp.
    李荣刚,夏源陵,吴安之等.2000.江苏太湖地区水污染及其向水体的排放量.湖泊科学,12(2):147-153.
    李圣法,臧增嘉,邓思明.1998.太湖敞水区鱼类种间关系现状.水产学报,22(1):44-48.
    李圣法,臧增嘉,詹鸿禧.1996.太湖敞水区小型鱼虾类生物量变化和分布的研究.现代渔业信息,11:19-24.
    凌根生.1994.太湖渔管会依法治湖科学兴渔三十年.现代渔业信息,(7):2-4.
    
    
    刘健康,何碧梧.1992.中国淡水鱼类养殖学.北京:科学出版社.427pp
    刘健康.1999.高级水生生物学.北京:科学出版社.402pp
    刘元波,陈伟民,范成新等.1998.太湖梅梁湾藻类生态模拟与蓝藻水华治理对策分析.湖泊科学,10(4):53-59.
    刘正文,朱松泉.1994.滇池产太湖新银鱼食性与摄食行为的初步研究.动物学报,40(3):252-261.
    鲁春霞,谢高地,成升魁等.2001.河流生态系统的休闲娱乐功能及其价值评估.资源科学,23(5):77-82.
    缪学祖,殷名称.1983.太湖花(鱼骨)生物学研究.水产学报,7(1):31-44.
    欧阳志云,王效科,苗鸿.1999.中国陆地生态系统服务功能及其生态经济价值的初步研究.生态学报,19(5):607-913.
    潘文斌,唐涛,邓红兵等.2002.湖泊生态系统服务功能评估初探-以湖北保安湖为例.应用生态学报,13(10):1315-18.
    秦安令,袁传宓,谷庆义.1981.太湖鲚鱼鱼群变动情况及生物学调查报告.In:太湖水产资源调查材料汇编(1980—1981).中国水产科学研究院太湖水产增殖科学实验基地,江苏省太湖渔业生产管理委员会.
    秦伯强,胡维平,陈伟民等.2004(待出版).太湖水环境演化的过程与机理研究.北京:科学出版社.
    秦伯强,吴庆龙,高峻峰.2002.太湖地区的水资源与水环境问题、原因与管理.自然资源学报,17(2):221-228.
    盛俊宝,顾丁锡,沈炳康.1982.污染源调查及评价.太湖环境质量调查研究.上海师范学院学报自然科学专辑.17-26.
    施炜纲,严小梅,邴旭文.1995.太湖秀丽白虾生物学与食性的研究,湖泊科学,7:69-76.
    苏纪兰,唐启升.2002.中国海洋生态系统动力学研究Ⅱ渤海生态系统动力学过程.北京:科学出版社.445pp
    苏金明,傅荣华,周建斌等.2000.统计软件SPSS for windows实用指南.北京:电子工业出版社.535p.
    孙帼英,王培潮.1959,太湖的鱼类及其食性分析.华东师范大学生物学系东太
    
    湖水生生物调查报告.77-94.
    孙军,宋秀贤,殷克东等.2003.香港水域夏季微型浮游动物摄食研究.生态学报,23(4):712-720.
    孙顺才,黄漪平.1993.太湖.北京:海洋出版社.270pp.
    太湖流域管理局.2000.2000年太湖流域水质通报.上海:太湖流域管理局(http://www.tba.gov.cn/wqinform/200209020045_1_0.pdf).23p.
    谭北平.1996.太湖沙塘醴生长与食性的研究.湖北农学院学报,16(1):31-37.
    谭北平.1997.几种肉食性鱼类在太湖渔业中生态地位初析.水利渔业,(5):27-30.
    谭北平.1997.太湖红鳍鉑生物学的研究.湖北农学院学报,17(4):274-278.
    谭北平.1997.太湖乌鳢的生长、食性与渔业.水利渔业,(3):14-18.
    谭北平.1994.太湖鳜鱼食物的初步研究.湖北农学院学报.14(4):36-41.
    唐文乔,诸廷俊,陈家宽等.2003.长江口九段沙湿地的鱼类资源及其保护价值.上海水产大学学报,12(3):193-200.
    唐渝.1995.太湖湖鲚食性的研究.In:中国水产科学研究院淡水渔业研究中心,太湖敞水区鱼类群落结构特征和调整依据.pp101.
    仝龄,唐启升,Pauly D.2000.渤海生态通道模型初探.应用生态学报,11(3):435-440.
    童春富,陆健健,何文珊等.2002.湿地功能及生态经济价值评估研究.前沿论坛,(11):31-33.
    王骥,梁彦龄.1981.用浮游植物的生产量估算武昌东湖鲢鳙生产潜力与鱼种放养量的探讨.水产学报,5(4):343-350.
    王骥,王建.1984.浮游植物的叶绿素含量、生物量、生产量相互换算中的若干问题.武汉植物学研究,2(2):249-257.
    王苏民,窦鸿身.1998.中国湖泊志.北京:科学出版社.pp
    吴玲玲,陆健健,童春富.2003.长江口湿地生态系统服务功能价值的评估.长江流域资源与环境,12(5):411-416.
    吴庆龙,陈开宁,高光等.1995.大水面网围精养对水环境的影响及其对策.水产学报,19(4):343-349.
    
    
    吴庆龙.1993.东太湖的贝类及其生物学.海洋湖沼通报,(4):69-74.
    吴泰来.2001.21世纪初太湖流域的水问题及其对策初探.水利发展研究,(1):42-44.
    伍献文,王祖熊,饶钦止等.1962.五里湖1951年湖泊学调查.水生生物学集刊,(1):63-113.
    肖寒,欧阳志云,赵景柱等.2000.森林生态系统服务功能及其生态经济价值评估初探-以海南岛尖峰岭热带森林为例.应用生态学报,11(4):481-484.
    肖克勒.1986.从渔具渔法分析封湖的重要性.In:太湖水产资源增殖技术研究论文集.中国水产科学研究院淡水渔业研究中心,江苏省太湖渔业生产管理委员会:172-174.
    辛琨,肖笃宁.2002.盘锦地区湿地生态系统服务功能价值估算.生态学报,22(8):1345-1349.
    徐秋瑾,秦伯强,陈伟民等.2001.太湖藻类生长模型研究.湖泊科学,13(2):149-157.
    许品诚.1984.太湖翘嘴红鉑的生物学及其增殖问题的探讨.水产学,报8(4):275-286.
    薛达元,包浩生,李文华.1999.长白山自然保护区森林生态系统间接经济价值评估.中国环境科学,19(3):247-252.
    闫云军,梁彦龄.2003.扁担塘底栖动物群落的能量流动.生态学报,23(3):527-538.
    严小梅,胡绍坤,施须坤.1996.太湖银鱼资源变动关联因子及资源预报方法探讨.水产学报,20(4):307—313.
    严小梅,施炜纲.1995.太湖敞水区鱼类群落结构特征与调整的依据.In:太湖敞水区鱼类群落结构特征和调整依据.无锡:中国水产科学院淡水渔业研究中心.102p.
    杨清心,李文朝.1995.东太湖围栏养殖及其环境效应.湖泊科学,1995,7(3):256-262.
    杨清心,李文朝.1996,东太湖围网养殖后生态环境的演变.中国环境科学,16(2):101-106
    
    
    杨清心,李文朝.1996.高密度网围养殖对水生植被的影响及生态对策探讨.应用生态学报,7(1):83-88.
    杨清心.1996.水华成因及控制途径初探.湖泊科学,8(1):67-73.
    杨清心.1998.东太湖水生植被的生态功能及调节机制.湖泊科学,10(1):67-72.
    杨瑞斌,谢从新.2000.鱼类摄食生态研究内容与方法综述.水利渔业,20(3):1-3.
    杨妍.2003.地学过程预测与演化发现的可计算模型与技术实现.上海:华东师范大学地理信息重点实验室2003硕士毕业论文.99pp.
    杨再高,周建平,许建华等.1997.太湖富营养化原水除污染阶段研究小结.净水技术,61:2-5.
    殷名称,谬学祖.1991.太湖常见鱼类生态学特点和增殖措施探讨.湖泊科学,3(1),25-33.
    殷名称.1993.太湖鲫鱼生物学调查和增殖问题.动物学杂志,28(4):11-16.
    于子山,张志南,韩洁.2001.渤海大型底栖动物次级生产力的初步研究.青岛海洋大学学报,31(6):867-871.
    詹秉义.1995.渔业资源评估.北京:中国农业出版社.353pp.
    张国华,曹文宣,陈宜瑜.1997.湖泊放养渔业对我国湖泊生态系统的影响.水生生物学报,21(3):271-280.
    张建文,张海燕.2001.城市污水处理厂运行管理优化方案.城市环境与城市生态,14(4):18-19.
    张仁田.2003.水资源价值与成本的关系及其在水价制定中的应用.水电能源科学,21(1):15-28.
    张圣照,王国祥,濮培民.1999.东太湖水生植被及其沼泽化趋势.植物资源与环境,8(2):1-6.
    张世义等.2001.中国动物志,硬骨鱼纲:鲟形目 海鲢目 鲱形目 鼠(鱼喜)目.北京:科学出版社.531pp
    张硕,董双林,王芳.1998.虾蟹类能量收支的研究概况.动物学杂志,33(6):34-38.
    张堂林,崔弈波.1999.鱼类生产力研究的方法与进展.水产学报,23(4):409-414.
    张勇,朱成德等.2004(待出版).太湖鱼类志.上海:上海科技出版社.
    
    
    张志强,徐中民,程国栋.2001.生态系统服务与自然资本价值评估.生态学报,21(11):1918-1926.
    章琪,姚萱.2002.高锰酸盐复合药剂预处理巢湖微污染原水.中国给水排水.18(8):36-39.
    章宗涉,黄祥飞.1991.淡水浮游生物研究方法.北京:科学出版社,pp352.
    赵肯堂.1990.苏州-无锡地区鸟类调查.苏州铁道师院学报,7(1):46~61.
    中国科学院南京地理研究所.1965.太湖综合调查初步报告.北京:科学出版社.84pp.
    中国水产咨询网.2004.各地鱼价.http://www.china-fisheries.org/price/.
    周刚,张彤晴,朱成德.1999.太湖似鱎和间鱵的种群生长与食性的初步研究.In:凌更生(编).依法治湖,科技兴渔—江苏省太湖渔业生产管理委员会成立35周年论文集(1964-999).苏州:江苏省太湖渔业生产管理委员会.191-198.
    朱成德.1985.太湖大银鱼生长与食性的初步研究.水产学报,9(3):275-287.
    朱成德.1999.艰苦创业,开拓前进—江苏省太湖渔业生产管理委员会成立35周年(1964-1999.).苏州:江苏省太湖渔业生产管理委员会.pp121.
    朱茂晓.2003.太湖鱼虾类捕捞量以及捕捞强度(1961~1998).江苏:江苏省太湖渔业生产管理委员会.
    诸葛海.1998.太湖机械吸螺蚬由兴到衰的启示.中国渔业经济研究,(2):30-31.
    诸敏.1996.太湖水质变化趋势及其保护对策.湖泊科学,8(2):133-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700