淡水鱼混养池塘鲢鱼(Hypophthalmichthys molitrix)的滤食作用对浮游植物群落结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究于2009-2010年在山东省淡水养殖研究所进行,实验采用围隔将淡水养殖池塘进行分隔,在不同围隔中按照不同比例混养草鱼(Ctenopharyngodon idellus)、鲢鱼(Hypophthalmichthys molitrix)和鲤鱼(Cyprinus carpio Linnaeus),应用传统的显微镜计数法与生化标志法,即色素分析与脂肪酸谱分析,相结合的方法,比较了不同混养模式的围隔内浮游植物群落结构的变动和不同,从而对淡水鱼类混养池塘中,鲢鱼的滤食作用对浮游植物群落结构的影响进行了分析研究。
     显微镜计数结果表明,鲢鱼混养组中隐藻门的隐藻与硅藻门的小环藻、冠盘藻或针杆藻等为优势种,鲢鱼的滤食作用导致浮游植物的粒级趋于小型化,<5μm、5~20μm和>20μm的浮游植物分别占浮游植物生物量的69%、24%和7%;同时浮游动物也趋于小型化,个体较小的原生动物和轮虫生物量占有相对优势,导致浮游动物生物量降低;无鲢鱼混养的草鱼单养及草-鲤混养组色球藻和螺旋藻大量发生,导致蓝藻水华的暴发,草-鲤混养组中<5μm、5~20μm和>20μm的各粒级对浮游植物生物量的贡献率分别在30%左右,个体较大的枝角类和桡足类占相对优势。实验中悬浮颗粒物(SPM)范围为18.89~116.27 mg/L,平均值为52.49 mg/L,颗粒有机物(POM)与SPM含量之比的平均值为50.08%,POM与SPM呈显著正相关(R~2=0.188,P<0.01),较好地评价了池塘悬浮颗粒物的性质。从浮游生物群落结构的角度看,三元混养组最好,二元混养组其次,草鱼单养组最差,三元混养组中,草鱼、鲢鱼和鲤鱼的最佳放养密度分别为0.58 ind·m~(-2)、0.69 ind·m~(-2)和0.19 ind·m~(-2)。
     高效液相色谱的方法(HPLC)成功的分离了主要微藻种群的标志性特征色素,各特征色素分别与对应的浮游植物种类生物量相关性显著,如变异花黄素(alloxanthin)与隐藻生物量、叶黄素(lutein)与绿藻生物量相关关系显著。浮游植物种类的多样性与色素种类的多样性相对应。对色素数据进行多元相似性分析显示,8月和9月各混养模式之间差异显著,而10月差异不显著。8月,鲢鱼对蓝藻水华控制能力最强,有效抑制蓝藻水华,9和10月,鲢鱼的抑制作用减弱,但鲤鱼对底泥的扰动作用一定程度上控制了蓝藻水华。整个养殖过程中,各混养组中叶绿素酸酯a (chlorophyllide a)的高含量表明了叶绿素a (chlorophyll a)的大量降解,文中详细分析了chlorophyllide a的具体来源。10月份,chlorophyllide a含量明显高于8、9月,这与10月份温度降低,说明了浮游植物的大量的衰老和死亡。叶绿素酸酯(chlorophyllide a)对组内相似性和组间差异性贡献最大,墨角藻黄素(fucoxanthin)或变异花黄素(alloxanthin)其次,而在草鱼和鲤鱼混养组中,玉米黄素(zeaxanthin)对组内相似性占一定的贡献率,说明在鲢鱼组中包含墨角藻黄素(fucoxanthin)和变异花黄素(alloxanthin)的藻类(硅藻、甲藻和隐藻)占优势,而在草鱼和鲤鱼混养组中包含玉米黄素(zeaxanthin)的蓝藻占优势。
     浮游植物特征脂肪酸的组成与变化较好地表征了水体中浮游植物的群落结构的月份变化以及不同养殖模式对浮游植物群落结构的影响。各月各组内和各组间浮游植物脂肪酸的差异显著,表明各围隔间浮游植物群落结构的差异性。细菌脂肪酸(BAFA)占总脂肪酸的3.40-10.23%,C13:0是主要的BAFA,G组细菌脂肪酸含量略高于GS组,说明了围隔中细菌的大量存在,G组浮游植物衰老更快,鲢鱼加快了浮游植物的演替。多不饱和脂肪酸(PUFA)占总脂肪酸的14.20-56.29%,C18:2n6、C18:3n6、C18:3n3和C20:5n3是PUFA的主要成分,反映了养殖过程中各组营养状态较好。对草鱼组和草-鲢混养组脂肪酸数据进行MDS分析显示,各月草鱼组和草-鲢组明显成簇分布。7月和8月C16:0和C18:1n9均对两组组内的相似性贡献最大,而9月和10月C16:0、C18:3n3、C18:3n6和C20:5n3均对两组组内的相似性贡献最大,各月C20:5n3、C18:3n3和C18:3n6对各组间的不相似性贡献最大,说明不同月份鲢鱼滤食作用不同,鲢鱼对包含C20:5n3、C18:3n3和C18:3n6的浮游植物种类组成影响比较显著。7~9月,草鱼单养组中,包含C18:3n3和C18:3n6的绿藻和裸藻对浮游植物生物量的贡献相对较大,鲢鱼混养组中,绿藻和裸藻对浮游植物的生物量贡献较小。10月份,草鱼单养组中,包含C18:3n3和C18:3n6的绿藻或裸藻对浮游植物生物量的贡献较小,鲢鱼混养组中,绿藻或裸藻对浮游植物的生物量贡献较大,说明鲢鱼通过改变水体浮游植物组成改变了水体的营养状态。
     显微镜计数、色素分析和脂肪酸谱得方法从不同的角度表征了浮游植物的群落结构。三种方法的结合使用可以弥补单一方法的不足,更加全面准确地反映鲢鱼的滤食作用对浮游植物群落结构的影响,为优化草鱼、鲢鱼和鲤鱼混养结构提供了理论依据。
Experiments about polyculture of grass carp, silver carp and common carp are conducted in ponds of Freshwater Fishery Research Institute of Shandong Province from 2009 to 2010 using the enclosure approach. The dynamics of phytoplankton community structure, phytoplankton size structure and seston structure are studied by microscopy; HPLC pigment data are compared with microscopy to analyze the phytoplankton community structure and the use of HPLC pigment analysis in freshwater ponds is also discussed; the relations between phytoplankton fatty acid compositon and phytoplankton community structure, nutrition status are analyzed by using diagnostic fatty acid, respectively. Attentions are focused on the filtration effect of silver carp.
     Polyculture of silver carp can suppress the Cyanobacteria bloom and make phytoplankton size smaller, contributions of <5μm, 5~20μm, >20μm are about 69%, 24%, 7% to total phytoplankton biomass, respectively; Zooplankton are dominated by protozoa and rotifer and zooplankton biomass is reduced by silver carp. In group GC without silver carp, Cyanobacteria bloom occurrs, contributions of three size strcutures to total phytoplankton biomass are about 30% and zooplankton are dominated by copepods and Cladocera. Suspended particulate matter(SPM)concentration ranges from 18.89 mg/L to 116.27 mg/L and is 52.49 mg/L on average. The contribution of particulate organic matter(POM)to SPM averages 50.08%. Positive correlation(R~2=0.188,P<0.001)is found between POM and SPM indicating the quality of SPM. Optimum stocking denstity is 0.58 ind·m~(-2), 0.69 ind·m~(-2) and 0.19 ind·m~(-2) for grass carp, silver carp and common carp respectively.
     HPLC pigment analysis provides accurate separations of main pigment markers. class-specific phytoplankton biomass and corresponding pigment concentrations are correlated significantly such as alloxanthin with Cryptophytes biomass, lutein with Chlorophytes biomass. Significant difference is present between groups exclusively in August and September while insignificance in October. Silver carp can suppress the appearance of Cyanobacteria species in August and it takes a decreasing effect on the Cyanobacteria growth from August to October. Grass carp and common carp have failed to control phytoplankton biomass and algal bloom but common carp may play a complementary role in suppressing the growth of Cyanobactetia to a certain extent. The high content of chlorophyllide a indicates the importance of chlorophyll a degradation. Fucoxanthin-containing algal and alloxanthin-containing algal contribute most to similarity and dominate in silver carp group while contribute most to similarity zeaxanthin-containg algal dominate in group of grass carp and common carp group. The role of HPLC pigment analysis for assessing phytoplankton community structure should be considered as a strong complement to microscopic enumeration.
     Phytoplankton fatty acid compositon reflects the phytoplankton dynamics and the filtrate effect of silver carp. The diversity of fatty acid compositon between groups and within groups indicates the complication of phytoplankton compositon. BAFA, SFA, MUFA and PUFA represent for 3.40-10.23%, 30.06-51.32%, 10.25-34.68% and 14.20-56.29% of total fatty acid, respectively. C13:0, C16:0, C18:1n9, C16:1n7, C18:2n6, C18:3n6, C18:3n3 and C20:5n3 contribute a considerable percentage to the corresponding fatty acid taxa, respectively, which indicates the nutrient status in the ponds. Group of grass carp monoculture and group of polyculture of grass carp and silver carp cluster in the MDS ordination,respectively. C16:0 and C18:1n9 contribute most to similarities within groups in July and August while C18:3n3、C18:3n6 and C20:5n3 contribute a high percentage besides C16:0 in September and October. C20:5n3, C18:3n3 and C18:3n6 contribute most to dissimilarities between groups. Chlorophytes and Euglenophytes which contain abundant C18:3n3 and C18:3n6 contribute more relatively in group G compared with group GS from July to September, while the case is opposite in October. Nutrient status of ponds is changed by the filtration effect of silver carp.
引文
[1]农业部渔业局.中国渔业年鉴.北京:中国农业出版社,2009
    [2]Lu, K., Jin, C., Dong, S., et al.Feeding and control of blue-green algal blooms by tilapia (Oreochromis niloticus).Hydrobiologia,2006,568(1):111~120
    [3]Paerl, H., Fulton, R., Moisander, P., et al.Harmful freshwater algal blooms, with an emphasis on cyanobacteria.The Scientific World Journal,2001,1:76~113
    [4]秦钦,蔡永祥,王明华,等.黄颡鱼优质高效养殖模式鲢最适混养密度研究.南京师范大学学报(工程技术版),2009,9(01):78~83
    [5]陆开宏,金春华,王扬才.罗非鱼对蓝藻的摄食消化及对富营养化水体水华的控制.水产学报,2005,29(06):811~818
    [6]赵文,董双林,张兆琪,等.罗非鱼放养量对盐碱水微型生态系统浮游生物群落的影响.青岛海洋大学学报(自然科学版),2000,30(03):435~440
    [7]刘国才.精养鲤池塘的浮游植物及鲢鳙鱼产潜力的初步研究.华北农学报,1994,9(03):122~126
    [8]赵玉宝.鲤鱼种和鲢鳙对池塘浮游生物的影响.生态学报,1993,13(04):348~355
    [9]陈立侨,陈英鸿,倪达书.池塘饲养鱼类优化结构及其增产原理lI.池塘主养鱼类合理群落结构及其能量转换效率.水生生物学报,1993,17(03):197~205
    [10]Wanstrand, I. Snoeijs, P.Phytoplankton community dynamics assessed by ships-of-opportunity sampling in the northern Baltic Sea: A comparison of HPLC pigment analysis and cell counts.Estuarine, Coastal and Shelf Science,2006,66(1-2):135~146
    [11]Devilla, R.A., Brown, M.T., Donkin, M., et al.The effects of a PSII inhibitor on phytoplankton community structure as assessed by HPLC pigment analyses, microscopy and flow cytometry.Aquatic Toxicology,2005,71(1):25~38
    [12]Lemaire, E., Abril, G., De Wit, R., et al.Distribution of phytoplankton pigments in nine European estuaries and implications for an estuarine typology.Biogeochemistry., 2002,59(1):5~23
    [13]Gieskes, W. Kraay, G.Dominance of Cryptophyceae during the phytoplankton spring bloom in the central North Sea detected by HPLC analysis of pigments.Marine Biology,1983,75(2):179~185
    [14]Furuya, K., Hayashi, M., Yabushita, Y., et al.Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures.Deep-Sea Research Part II,2003,50(2):367~387
    [15]Suzuki, K., Handa, N., Nishida, T., et al.Estimation of phytoplankton succession in a fertilized mesocosm during summer using high-performance liquid chromatographic analysis of pigments.Journal of Experimental Marine Biology and Ecology,1997,214(1-2):1~17
    [16]Wong, C.K. Wong, C.K.HPLC pigment analysis of marine phytoplankton during a red tide occurrence in Tolo Harbour, Hong Kong.Chemosphere,2003,52(Compendex):1633~1640
    [17]Maazouzi, C., Masson, G., Izquierdo, M., et al.Midsummer heat wave effects on lacustrineplankton: variation of assemblage structure and fatty acid composition.Journal of Thermal Biology,2008,33(5):287~296
    [18]Perga, M., Bec, A. Anneville, O.Origins of carbon sustaining the growth of whitefish Coregonus lavaretus early larval stages in Lake Annecy: insights from fatty-acid biomarkers.Journal of Fish Biology,2009,74(1):2~17
    [19]Budge, S., Parrish, C. McKenzie, C.Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site.Marine Chemistry,2001,76(4):285~303
    [20]Dunn, R., Welsh, D., Teasdale, P., et al.Investigating the distribution and sources of organic matter in surface sediment of Coombabah Lake (Australia) using elemental, isotopic and fatty acid biomarkers.Continental Shelf Research,2008,28(18):2535~2549
    [21]Gao, Q., Shin, P., Lin, G., et al.Stable isotope and fatty acid evidence for uptake of organic waste by green~lipped mussels Perna viridis in a polyculture fish farm system.Marine Ecology Progress Series,2006,317:273~283
    [22]Shin, P., Yip, K., Xu, W., et al.Fatty acid as markers to demonstrating trophic relationships among diatoms, rotifers and green-lipped mussels.Journal of Experimental Marine Biology and Ecology,2008,357(1):75~84
    [23]游江涛,董丽华,韩博平.热带富营养化湖泊中浮游植物的脂肪酸组成与分布.湖泊科学,2005,17(01):69~74
    [24]吕淑果,韩博平,孙松,等.藻华发生过程中胶州湾水体颗粒有机物脂肪酸的组成与动态.生态学报,2009,29(05):2391~2399
    [25]Lavaniegos, B. Lopez-Cortes, D.Fatty acid composition and community structure of plankton from the San Lorenzo Channel, Gulf of California.Estuarine, Coastal and Shelf Science,1997,45(6):845~854
    [26]Napolitano, G., Heras, H. Stewart, A.Fatty acid composition of freshwater phytoplankton during a red tide event.Biochemical Systematics and Ecology,1995,23(1):65~69
    [27]李琪,岳茂国.放养鲢鱼(Hypophthalmichys molitrix)对水库围隔浮游生物群落的影响.生态学报,1993,13(01):30~37
    [28]Starling, R.Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Paranoa Reservoir (Brasilia, Brazil): a mesocosm experiment.Hydrobiologia (Netherlands),1993,257:143~152
    [29]Miura, T.The effects of planktivorous fishes on the plankton community in a eutrophic lake.Hydrobiologia,1990,200(1):567~579
    [30]卢静,李德尚,董双林.对虾池混养滤食性动物对浮游生物的影响.青岛海洋大学学报(自然科学版),1999,29(02):75~80
    [31]赵文,董双林,李德尚,等.氯化物水型盐碱池塘浮游植物的季节演替.中国水产科学,2000,7(02):43~50
    [32]Ansotegui, A., Sarobe, A., Trigueros, J., et al.Size distribution of algal pigments and phytoplankton assemblages in a coastal-estuarine environment: contribution of small eukaryotic algae.Journal of Plankton Research,2003,25(4):341~355
    [33]张觉民,何志辉.内陆水域渔业自然资源调查手册.北京:农业出版社,1991
    [34]Mostajir, B., Dolan, J. Rassoulzadegan, F.Seasonal variations of pico-and nano-detrital particles (DAPI Yellow Particles. DYP) in the Ligurian Sea (NW Mediterranean).Aquatic Microbial Ecology,1995,9(3):267~277
    [35]孙军,刘东艳,张晨,等.渤海中部和渤海海峡及其邻近海域浮游植物粒级生物量的初步研究I.浮游植物粒级生物量的分布特征.海洋学报(中文版),2003,25(05):103~112
    [36]Brunet, C. Lizon, F.Tidal and diel periodicities of size-fractionated phytoplankton pigment signatures at an offshore station in the southeastern English Channel.Estuarine, Coastal and Shelf Science,2003,56(3-4):833~843
    [37]Croot, P., Karlson, B., Wulff, A., et al.Trace metal/phytoplankton interactions in the Skagerrak.Journal of Marine Systems,2002,35(1-2):39~60
    [38]姚鹏,于志刚,米铁柱.海洋浮游藻类的化学分类法.海洋环境科学,2003,22(01):75~80
    [39]Barlow, R., Mantoura, R., Gough, M., et al.Pigment signatures of the phytoplankton composition in the northeastern Atlantic during the 1990 spring bloom.Deep Sea Research II,1993,40(1/2):459~477
    [40]Ston, J., Kosakowska, A., Lotocka, M., et al.Pigment composition in relation to phytoplankton community structure and nutrient content in the Baltic Sea..Oceanologia,2002,44(4):419~437
    [41]Zapata, M., Rodriguez, F. Garrido, J.Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases.Marine Ecology Progress Series,2000,195:29~45
    [42]Van Heukelem, L. Thomas, C.Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments.Journal of Chromatography A,2001,910(1):31~49
    [43]Jeffrey, S., Wright, S. Zapata, M.Recent advances in HPLC pigment analysis of phytoplankton.Marine and Freshwater Research,1999,50(8):879~896
    [44]Latasa, M. Bidigare, R.A comparison of phytoplankton populations of the Arabian Sea during the Spring Intermonsoon and Southwest Monsoon of 1995 as described by HPLC-analyzed pigments.Deep-Sea Research Part II,1998,45(10-11):2133~2170
    [45]姚鹏.胶州湾浮游藻的色素分析和基于色素的分类方法研究. [博士学位论文].青岛:中国海洋大学,2005
    [46]Wright, S. Jeffrey, S.Pigment markers for phytoplankton production.Handbook of Environmental Chemistry,2006,2(N):71~104
    [47]陈纪新,黄邦钦,贾锡伟,等.利用光合色素研究厦门海域超微型浮游植物群落结构.海洋环境科学,2003,22(03):16~21
    [48]Lionard, M., Muylaert, K., Tackx, M., et al.Evaluation of the performance of HPLC-CHEMTAX analysis for determining phytoplankton biomass and composition in a turbid estuary (Schelde, Belgium).Estuarine, Coastal and Shelf Science,2008,76(4): 809~817
    [49]Wright, S., Thomas, D., Marchant, H., et al.Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the CHEMTAX matrix factorisation program.Marine Ecology Progress Series,1996,144:285~298
    [50]Barlow, R., Mantoura, R., Gough, M., et al.Phaeopigment distribution during the 1990 spring bloom in the northeastern Atlantic.Deep Sea Research Part I: Oceanographic Research Papers,1993,40(11-12):2229~2242
    [51]陈纪新,黄邦钦,刘媛,等.应用特征光合色素研究东海和南海北部浮游植物的群落结构.地球科学进展,2006,21(07):739~746
    [52]Budge, S. Parrish, C.Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids.Organic Geochemistry,1998,29(5-7):1547~1559
    [53]Volkman, J., Johns, R., Gillan, F., et al.Microbial lipids of an intertidal sediment-I. Fatty acids and hydrocarbons.Geochimica et Cosmochimica Acta,1980,44(8):1133~1143
    [54]Shin, K., Noriki, S., Itou, M., et al.Dynamics of sinking particles in northern Japan trench in the western North Pacific: biogenic chemical components and fatty acids biomarkers.Deep Sea Research Part II: Topical Studies in Oceanography,2002,49(24-25):5665~5683
    [55]Sakdullah, A. Tsuchiya, M.The origin of particulate organic matter and the diet of tilapia from an estuarine ecosystem subjected to domestic wastewater discharge: fatty acid analysis approach.Aquatic Ecology,2009,43(2):577~589
    [56]Alfaro, A., Thomas, F., Sergent, L., et al.Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes.Estuarine, Coastal and Shelf Science,2006,70(1-2):271~286
    [57]Ahlgren, G., Gustafsson, I.B. Boberg, M.Fatty acid content and chemical composition of freshwater microalgae.Journal of Phycology,1992,28(1):37~50
    [58]Volkman, J., Jeffrey, S., Nichols, P., et al.Fatty acid and lipid composition of 10 species of microalgae used in mariculture.Journal of Experimental Marine Biology and Ecology,1989,128(3):219~240
    [59]Hayakawa, K., Handa, N., Kawanobe, K., et al.Factors controlling the temporal variation of fatty acids in piculate matter during a phytoplankton bloom in a marine mesocosm.Marine Chemistry,1996,52(3-4):233~244
    [60]Hayakawa, K., Handa, N. Wong, C.Changes in the composition of fatty acids in sinking matter during a diatom bloom in a controlled experimental ecosystem.Journal of Experimental Marine Biology and Ecology,1997,208(1-2):29~43
    [61]游江涛,顾继光,韩博平.3座热带亚热带水库枯水期浮游植物的脂肪酸组成特征.水生生物学报,2005,29(06):627~632
    [62]Schlüter, L., M hlenberg, F., Havskum, H., et al.The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios.Marine Ecology Progress Series,2000,192:49~63
    [63]Maazouzi, C., Masson, G., Izquierdo, M., et al.Fatty acid composition of the amphipod Dikerogammarus villosus: Feeding strategies and trophic links.Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology,2007,147(4):868~875
    [64]Yongmanitchai, W. Ward, O.Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions.Applied and Environmental Microbiology,1991,57(2):419~425
    [65]Tolosa, I., Vescovali, I., LeBlond, N., et al.Distribution of pigments and fatty acid biomarkers in particulate matter from the frontal structure of the Alboran Sea (SW Mediterranean Sea).Marine Chemistry,2004,88(3-4):103~125
    [66]Suzuki, K., Hinuma, A., Saito, H., et al.Responses of phytoplankton and heterotrophic bacteria in the northwest subarctic Pacific to in situ iron fertilization as estimated by HPLC pigment analysis and flow cytometry.Progress in Oceanography,2005,64(Compendex):167~187
    [67]Milstein, A.Ecological aspects of fish species interactions in polyculture ponds. Hydrobiologia,1992,231(3):177~186
    [68]Domaizon, I. Devaux, J.Experimental study of the impacts of silver carp on plankton communities of eutrophic Villerest reservoir (France).Aquatic Ecology,1999,33(2):193~204
    [69]Hampl, A., Jirásek, J. Sirotek, D.Growth morphology of the filtering apparatus of silver carp (Hypophthalmichthys molitrix): II. Microscopic anatomy.Aquaculture,1983,31(2-4): 153~158
    [70]Smith, D.The feeding selectivity of silver carp.Journal of Fish biology,1989,34:819~828
    [71]李德尚,董双林.鲢、鳙滤食器官结构与功能的研究.动物学报,1996,42(01):10~14
    [72]Xie, P.Gut contents of silver carp, Hypophthalmichthys molitrix, and the disruption of a centric diatom, Cyclotella, on passage through the esophagus and intestine.Aquaculture,1999,180(3-4):295~305
    [73]Ma, H., Cui, F., Liu, Z., et al.Effect of filter-feeding fish silver carp on phytoplankton species and size distribution in surface water: A field study in water works.Journal of Environmental Sciences,2010,22(2):161~167
    [74]Fukushima, M., Takamura, N., Sun, L., et al.Changes in the plankton community following introduction of filter-feeding planktivorous fish.Freshwater Biology,2001,42(4):719~735
    [75]Smith, D.W.Biological control of excessive phytoplankton growth and the enhancement of aquacultural production.Canadian Journal of Fisheries and Aquatic Sciences,1985,42(12): 1940~1945
    [76]Proulx, M., Pick, F., Mazumder, A., et al.Effects of nutrients and planktivorous fish on the phytoplankton of shallow and deep aquatic systems.Ecology,1996,77(5):1556~1572
    [77]isabelle, Domaizon, jean, Dévaux.Impact of moderate silver carp biomass gradient on zooplankton communities in a eutrophic reservoir. Consequences for the use of silver carp in biomanipulation.Comptes Rendus de l'Academie des Sciences Series III Sciences de la Vie,1999,322(7):621~628
    [78]Lu, M., Xie, P., Tang, H., et al.Experimental study of trophic cascade effect of silver carp (Hypophthalmichthys molitrixon) in a subtropical lake, Lake Donghu: on plankton community and underlying mechanisms of changes of crustacean community.Hydrobiologia,2002,487(1):19~31
    [79]Tucker, C.Low-density silver carp Hypophthalmichthys molitrix (Valenciennes) polyculture does not prevent cyanobacterial off~flavours in channel catfish Ictalurus punctatus (Rafinesque).Aquaculture Research,2005,37(3):209~214
    [80]Ke, Z., Xie, P. Guo, L.Impacts of two biomanipulation fishes stocked in a large pen on the plankton abundance and water quality during a period of phytoplankton seasonal succession.Ecological Engineering,2009,35(11):1610~1618
    [81]Zhang, X., Xie, P., Hao, L., et al.Effects of the phytoplanktivorous silver carp (Hypophthalmichthys molitrixon) on plankton and the hepatotoxic microcystins in an enclosure experiment in a eutrophic lake, Lake Shichahai in Beijing.Aquaculture,2006,257(1-4):173~186
    [82]刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践.生态科学,2003,22(03):193~196
    [83]Radke, R. Kahl, U.Effects of a filter-feeding fish [silver carp, Hypophthalmichthys molitrix (Val.)] on phyto-and zooplankton in a mesotrophic reservoir: results from an enclosure experiment.Freshwater Biology,2002,47(12):2337~2344
    [84]Leventer, H. Teltsch, B.The contribution of silver carp (Hypophthalmichthys molitrix) to thebiological control of Netofa reservoirs.Hydrobiologia,1990,191(1):47~55
    [85]Milstein, A., Hepher, B. Teltsch, B.Principal component analysis of interactions between fish species and the ecological conditions in fish ponds: I. Phytoplankton*.Aquaculture research,1985,16(4):305~317
    [86]Starling, F. Rocha, A.Experimental study of the impacts of planktivorous fishes on plankton community and eutrophication of a tropical Brazilian reservoir.Hydrobiologia, 1990,200(1):581~591
    [87]鲁敏.滤食性鲢鱼对浮游甲壳动物群落影响的实验研究.武汉科技学院学报,2002,15(01):72~75
    [88]赵文,董双林,张兆琪,等.鲢放养和施肥对盐碱池塘围隔生态系统浮游生物群落的影响.应用生态学报,2001,12(02):299~303
    [89]董双林.鲢鱼的放养对水质影响的研究进展.生态学杂志,1994,13(02):66~68
    [90]金相灿,屠清瑛.湖泊富营养化调查规范.北京:中国环境科学出版社,1990
    [91]Winner, B. Brown, D.Statistical principles in experimental design. New York Mc. Graw-Hill,1991
    [92]Ke, Z., Xie, P., Guo, L., et al.In situ study on the control of toxic Microcystis blooms using phytoplanktivorous fish in the subtropical Lake Taihu of China: A large fish pen experiment.Aquaculture,2007,265(1-4):127~138
    [93]Davis, C.The importance of understanding phytoplankton life strategies in the design of enclosure experiments.Marine mesocosms: biological and chemical research in experimental ecosystems,1982,332~340
    [94]Saikia, S. Das, D.Feeding ecology of common carp (Cyprinus carpio L.) in a rice-fish culture system of the Apatani plateau (Arunachal Pradesh, India).Aquatic Ecology,2009,43(2):559~568
    [95]Cremer, M. Smitherman, R.Food habits and growth of silver and bighead carp in cages and ponds.Aquaculture,1980,20(1):57~64
    [96]Odate, T.Abundance and size composition of the summer phytoplankton communities in the western North Pacific Ocean, the Bering Sea, and the Gulf of Alaska.Journal of Oceanography,1996,52(3):335~351
    [97]杨宇峰,黄祥飞.鲢鳙对浮游动物群落结构的影响.湖泊科学,1992,4(03):78~86
    [98]刘青,赵玉宝.吉林镇赉地区高产鱼池浮游生物研究.大连水产学院学报,1991,6(03):14~27
    [99]刘国才,李德尚,卢静,等.对虾养殖围隔生态系颗粒悬浮物的研究.应用生态学报,1999,10(03):350~352
    [100]郭赣林,赵文.淡水鱼池生态系统的悬浮物结构及有机碳库储量.大连水产学院学报,2006,21(02):37~40
    [101]赵文,李晓东,赵振兴,等.轮虫培育池生态系统颗粒悬浮物的研究.应用生态学报,2004,15(02):313~315
    [102]赵文,董双林,李德尚,等.盐碱池塘围隔生态系统的悬浮物结构及有机碳库储量.生态学报,2002,22(12):2133~2140
    [103]谢平.武汉东湖颗粒悬浮物的结构与元素组成.水生生物学报,1996,20(03):197~205
    [104]Shei, P., Lin, W., Wang, S., et al.Plankton and seston structure in a shallow, eutrophic subtropic Chinese lake.Archiv fur Hydrobiologie. Stuttgart,1993,129(2):199~220
    [105]何志辉,李永函.无锡市河埒口高产鱼池水质的研究Ⅱ.浮游生物.水产学报,1983,7(04):287~299
    [106]Milstein, A., Kadir, A. Wahab, M.The effects of partially substituting Indian carps or adding silver carp on polycultures including small indigenous fish species (SIS).Aquaculture,2008,279(1-4):92~98
    [107]Trottet, A., Roy, S., Tamigneaux, E., et al.Impact of suspended mussels (Mytilus edulis L.) on plankton communities in a Magdalen Islands lagoon (Québec, Canada): A mesocosm approach.Journal of Experimental Marine Biology and Ecology,2008,365(2):103~115
    [108]Jeffrey, S., Mantoura, R. Wright, S.Phytoplankton pigments in oceanography: guidelines to modern methods. Paris: UNESCO,1997
    [109]Deydier-Stephan, L., Bertru, G. Le Rouzic, B.A chemotaxonomic method to quantify phytoplankton groups in freshwater lentic mesocosms: an approach including chlorophyll a breakdown products.Plant Biology and Pathology,2003,326(1):95~105
    [110]Peeken, I.Photosynthetic pigment fingerprints as indicators of phytoplankton biomass and development in different water masses of the Southern Ocean during austral spring.Deep-Sea Research Part II,1997,44(1-2):261~282
    [111]Descy, J., Higgins, H., Mackey, D., et al.Pigment ratios and phytoplankton assessment in northern Wisconsin lakes.Journal of Phycology,2000,36(2):274~286
    [112]Spataru, P. Gophen, M.Feeding behaviour of silver carp Hypophthalmichthys molitrix Val. and its impact on the food web in Lake Kinneret, Israel.Hydrobiologia,1985,120(1):53~61
    [113]Welschmeyer, N. Lorenzen, C.Chlorophyll budgets: zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyres.Limnology and Oceanography,1985,30(1):1~21
    [114]Suzuki, R. Fujita, Y.Chlorophyll decomposition in Skeletonema costatum: a problem in chlorophyll determination of water samples.Marine Ecology Progress Series,1986,28:81~85
    [115]Napolitano, G., Pollero, R., Gayoso, A., et al.Fatty acids as trophic markers of phytoplankton blooms in the Bahia Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada).Biochemical Systematics and Ecology,1997,25(8):739~755
    [116]Hayakawa, K., Handa, N., Ikuta, N., et al.Downward fluxes of fatty acids and hydrocarbons during a phytoplankton bloom in the austral summer in Breid Bay, Antarctica.Organic Geochemistry,1996,24(5):511~521
    [117]Wainman, B.C. Lean, D.R.S.Carbon fixation into lipid in small freshwater lakes.Limnology and Oceanography,1992,37(5):956~965
    [118]Alkanani, T., Parrish, C., Thompson, R., et al.Role of fatty acids in cultured mussels, Mytilus edulis, grown in Notre Dame Bay, Newfoundland.Journal of Experimental Marine Biology and Ecology,2007,348(1-2):33~45
    [119]Yan, L., Zhang, G., Liu, Q., et al.Optimization of culturing the freshwater pearl mussels, Hyriopsis cumingii with filter feeding Chinese carps (bighead carp and silver carp) by orthogonal array design.Aquaculture,2009,292(1-2):60~66
    [120]刘俊利,熊邦喜,王基松,等.鲢、鳙对养殖水体的生态功能评析.水利渔业,2008,28(04):8~10
    [121]Beveridge, M., Begum, M., Frerichs, G., et al.The ingestion of bacteria in suspension by the tilapia Oreochromis niloticus.Aquaculture,1989,81(3-4):373~378

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700