电针修复慢性应激致抑郁大鼠海马星形胶质细胞损伤的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     通过电针改善慢性应激致抑郁大鼠行为学及大鼠海马星形胶质细胞(AST)损伤的研究,以及电针改善侧脑室注射星形胶质细胞代谢高度选择性的神经毒物L-α-氨基己二酸(L-AAA)造模大鼠行为学及大鼠海马AST损伤的研究,探讨电针在修复星形胶质细胞损伤方面的抗抑郁作用机制。
     实验一电针改善慢性应激致抑郁大鼠行为学及大鼠海马AST损伤的研究
     方法:
     1.动物分组及造模方法
     将7-8周龄体重220-250g的成年雌性SD大鼠66只,随机分为4组:正常对照组(n=12)、空白组(n=18)、电针组(n=18)和药物组(n=18);其中正常对照组大鼠不予任何处理,其余三组采用慢性不可预见性温和刺激联合孤养建立抑郁大鼠模型。
     2.干预措施
     ①空白组,造模成功后不予任何处理;②电针组,于造模成功后第二天开始进行电针四关穴治疗,选择G-6805Ⅱ型电针仪,连续波,频率15-30Hz,每次15-20分钟,左右交替进行。治疗第1周每日1次,治疗第2周开始隔日1次,共治疗3周;③药物组,于造模成功后第二天开始给予利鲁唑灌胃治疗,每12小时1次(4mg/kg),连续治疗3周。
     3.评价指标
     ①行为学指标,在造模前以及造模的第7、14、21、28、35天进行体重测量、旷场试验、糖水偏好实验、新环境抑制进食实验,作为检验造模成功与否的重要指标;在治疗第7、14、21天进行上述指标检测,对电针和药物的疗效进行评价。②光镜、电镜、Western-Blot、RT-PCR检测,治疗结束后,运用上述指标对大鼠海马AST的形态、超微结构以及AST标志蛋白GFAP含量以及GFAP mRNA的表达情况进行检测,对各组大鼠AST结构和功能损伤程度进行评价。
     4.统计方法
     采用PASW statisticsl8.0统计软件对实验数据进行统计分析,实验计量资料若服从正态分布计算x±s,组间比较采用方差分析,不服从正态分布或方差不齐,采用非参数检验;多个不同时点比较采用重复测量方差分析,不满足协方差矩阵或球形检验采用矫正检验(Greenhouse-Gei sser)方法及两两比较,或采用多元方差分析,检验水平α=0.05。
     结果:
     1.电针对慢性应激致抑郁大鼠行为学的影响
     (1)体重
     各组体重的基础值无统计学差异(P>0.05),具有可比性。在接受5周慢性应激后,模型大鼠体重增长减缓,与正常对照组比较差异有统计学意义(P<0.05);各造模组大鼠组间比较,差异无统计学意义(P>0.05)。电针四关穴或利鲁唑灌胃治疗3周后,空白组、电针组大鼠体重低于正常对照组,差异有统计学意义(P=0.000,P=0.030);电针组、药物组分别与空白组比较体重升高,差异有统计学意义(P=0.031,P=0.002);电针组与药物组比较,差异无统计学意义(P>0.05)。
     (2)旷场实验
     ①水平运动
     各组水平运动的基础值差异无统计学意义(P>0.05),具有可比性。在接受5周慢性应激后,各组造模大鼠的水平运动次数下降,与正常对照组比较差异有统计学意义(P<0.05);各造模组大鼠组间比较差异无统计学意义(P>0.05)。治疗3周后,空白组大鼠水平运动低于正常对照组,两组比较差异有统计学意义P=0.000);与空白组比较电针组和药物组的水平运动次数增多,差异有统计学意义(P=0.000);电针组与药物组比较,差异无统计学意义(P>0.05)。
     ②垂直运动
     各组垂直运动的基础值差异无统计学意义(P>0.05),具有可比性。在接受5周慢性应激后,各组造模大鼠的垂直运动次数下降,与正常对照组比较差异有统计学意义(P<0.05);各造模组大鼠组间比较差异无统计学意义(P>0.05)。治疗3周后,空白组大鼠垂直运动与正常对照组比较差异无统计学意义(P>0.05)。与空白组比较,电针组和药物组垂直运动增多,差异有统计学意义(P=0.011,P=0.008);电针组与药物组、正常对照组之间两两比较,差异无统计学意义(P>0.05)。
     (3)糖水偏好实验
     各组糖水偏好率的基础值差异无统计学意义(P>0.05),具有可比性。在接受5周慢性应激后,各组造模大鼠的糖水偏好率显著下降,与正常对照组比较差异有统计学意义(P<0.05);各造模组大鼠组间比较差异无统计学意义(P>0.05)。治疗3周后,空白组大鼠糖水偏好率低于正常对照组,两组比较差异有统计学意义(P=0.000);与空白组比较,电针组和药物组糖水偏好率升高,差异有统计学意义(P=0.000);电针组与药物组比较,差异无统计学意义(P>0.05)。
     (4)新环境抑制进食实验
     各组新环境进食第一口食物花费时间的基础值无统计学差异(P>0.05),具有可比性。在接受5周慢性应激后,各组造模大鼠新环境进食第一口食物花费时间增多,与正常对照组比较差异有统计学意义(P<0.05);各造模组大鼠组间比较差异无统计学意义(P>0.05)。治疗3周后,空白组大鼠新环境进食第一口食物花费时间明显高于正常对照组,两组比较差异有统计学意义(P--O.015);与空白组比较,电针组和药物组新环境进食第一口食物花费时间下降,差异有统计学意义(P=-0.000);电针组与药物组比较,差异无统计学意义(P>0.05)。
     2.电针对慢性应激致抑郁大鼠海马AST结构和功能的影响
     (1)光镜下观察AST形态和结构
     慢性应激致抑郁大鼠海马AST形态变化主要表现为,细胞核的固缩。同时部分脑区(CA1区、CA3区)出现锥体细胞变性、数目减少情况,DG区部分颗粒细胞胞浆空泡化。治疗3周后,电针组,CA1区锥体细胞均恢复正常,星形胶质细胞核固缩情况未见明显好转;CA3区锥体细胞恢复正常,星形胶质细胞核固缩部分恢复;DG区颗粒细胞、星形胶质细胞恢复正常。药物组,CA1区锥体细胞均恢复正常,星形胶质细胞核固缩情况未见明显好转;CA3区锥体细胞恢复正常,星形胶质细胞恢复正常;DG区颗粒细胞恢复正常,星形胶质细胞恢复不明显。
     (2)光镜下观察AST数目
     在接受5周慢性应激后,造模大鼠海马各区(CA1、CA3、DG区)星形胶质细胞数目均明显减少,与正常对照组比较,差异有统计学意义(P<0.05);治疗3周后,药物组大鼠海马CA1、CA3、DG区星形胶质细胞数目明显增多,与空白组比较,差异有统计学意义(P=0.005,P=-0.019,P=0.020);电针组大鼠CA1区、DG区星形胶质细胞数目增多,与空白组比较,差异有统计学意义(P=0.015,P=-0.035),与药物组比较差异无统计学意义(P>0.05);电针组CA3区星形胶质细胞数目无明显上升,与药物组比较差异有统计学意义(P=0.032),与空白组和正常对照组比较差异无统计学意义(P>0.05)。
     (3)电镜下观察AST超微结构
     接受5周慢性应激后大鼠海马AST超微结构损伤,主要表现为细胞质中粗面内质网明显扩张和线粒体的嵴疏松变。治疗3周后,电针组和药物组AST胞质中粗面内质网扩张和线粒体嵴疏松变均有所减轻,其他细胞器,核糖体、微丝等也较空白组清晰可见。
     (4)电针对慢性应激致抑郁大鼠海马GFAP含量和GFAP mRNA表达的影响
     接受5周慢性应激后大鼠海马GFAP含量减少,与正常对照组比较差异有统计学意义(P=-0.004)。治疗3周后,电针组和药物组GFAP含量升高,与空白组比较差异有统计学意义(P=0.007, P=0.001);电针组与药物组比较,差异无统计学意义(P>0.05)。
     接受5周慢性应激后大鼠海马GFAP mRNA表达值下降,与正常对照组比较差异有统计学意义(P=-0.001)。治疗3周后,电针组和药物组GFAP mRNA表达值升高,分别与空白组比较,差异有统计学意义(P=-0.029,P=-0.015);电针组与药物组比较,差异无统计学意义(P>0.05)。
     实验二电针改善侧脑室注射L-AAA造模大鼠行为学及海马AST损伤的研究
     方法:
     1.动物分组
     将7-8周龄体重220-250g成年雌性SD大鼠78只,随机分为:正常对照组(n=12)、生理盐水组(n=12)、空白组(n=18)、电针组(n=18)和药物组(n=18)。
     2.造模方法
     ①正常对照组大鼠正常饲养,不予任何处理;②空白组、电针组以及药物组侧脑室埋管术后第8天侧脑室注射星形胶质细胞高度选择性神经毒物L-AAA (100ug/ul,lul),注射速率控制在0.25ul/min,注射频次为,前3天每天注射1次,此后分别于造模第6天,第9天,第12天,第15天对大鼠以相同浓度和速率进行侧脑室注射,造模周期为15天,共进行药物注射7次;③生理盐水组,侧脑室埋管术后第8天,于侧脑室注射生理盐水,注射剂量、速率、频次、周期均同侧脑室注射L-AAA造模组。
     3.干预措施
     ①空白组和生理盐水组大鼠造模成功后不予任何处理;②电针组大鼠,于造模结束后第二天开始进行电针四关穴治疗,操作方法和治疗周期同“实验一”。③药物组大鼠,于造模结束后第二天开始进行利鲁唑灌胃治疗,操作方法和治疗周期同“实验一”。
     4.评价指标
     ①行为学指标,在造模前以及造模的第3、6、9、12、15天进行体重测量、旷场试验、糖水偏好实验、新环境抑制进食实验,对造模期间大鼠行为学进行评价;在治疗第7、14、21天检测上述指标,对电针和药物的疗效进行评价。②光镜、电镜、Western-Blot、RT-PCR检测,治疗结束后,运用上述技术对大鼠海马AST的形态、超微结构以及AST标志蛋白GFAP含量以及GFAP mRNA的表达情况进行检测,对各组大鼠AST结构和功能损伤程度进行评价。
     5.统计方法
     同“实验一”。
     结果:
     1.电针对侧脑室注射L-AAA造模下大鼠行为学的影响
     (1)体重
     各组体重的基础值差异无统计学意义(P>0.05),具有可比性。在接受15天L-AAA侧脑室注射后,各组造模大鼠体重增长减缓,与正常对照组和生理盐水组比较,差异有统计学意义(P=0.000);各造模组大鼠组间比较差异无统计学意义(P>0.05),正常对照组与生理盐水组比较差异无统计学意义(P>0.05)。治疗3周后,空白组大鼠体重明显低于正常对照组和生理盐水组,差异均有统计学意义(P=0.000);电针组、药物组分别与空白组比较体重明显升高,差异有统计学意义(P=0.000);电针组与药物组比较,差异无统计学意义(P>0.05)。
     (2)旷场实验
     ①水平运动
     各组水平运动的基础值差异无统计学意义(P>0.05),具有可比性。在接受15天L-AAA侧脑室注射后,各组造模大鼠的水平运动次数明显下降,与正常对照组和生理盐水组比较差异有统计学意义(P=0.000),各造模组大鼠组间比较差异无统计学意义(P>0.05),正常对照组与生理盐水组比较差异统计学意义(P>0.05)。治疗3周后,与正常对照组比较,空白组和电针组大鼠水平爬格数目减少,差异均有统计学意义(P=0.000,P=0.013);与空白组比较,电针组和药物组大鼠水平爬格数目增多,差异均有统计学意义(P=0.000);电针组与药物组比较,差异无统计学意义(P>0.05)。
     ②垂直运动
     各组垂直运动的基础值差异无统计学意义(P>0.05),具有可比性。在接受15天L-AAA侧脑室注射后,各组造模大鼠的垂直运动次数明显下降,与正常对照组和生理盐水组比较差异有统计学意义(P=0.000);各造模组大鼠组间比较没有差异无统计学意义(P>0.05),正常对照组与生理盐水组比较差异无统计学意义(P>0.05)。治疗3周后,与正常对照组和生理盐水组比较,空白组大鼠垂直站立次数明显减少,差异有统计学意义(P=0.000,P=0.001);与空白组比较,电针组和药物组大鼠垂直站立次数增多,差异均有统计学意义(P=0.001,P=0.000);正常对照组、电针组、药物组以及生理盐水组组间两两比较,差异无统计学意义(P>0.05)。
     (3)糖水偏好实验
     各组糖水偏好率的基础值差异无统计学意义(P>0.05),具有可比性。在接受15天L-AAA侧脑室注射后,各组造模大鼠的糖水偏好率明显下降,与正常对照组和生理盐水组比较差异有统计学意义(P=0.000);各造模组大鼠组间比较差异无统计学意义(P>0.05),正常对照组与生理盐水组比较差异无统计学意义(P>0.05)。治疗3周后,空白组大鼠糖水偏好率明显低于正常对照组和生理盐水组,差异有统计学意义(P=0.000),与空白组比较,电针组、药物组大鼠糖水偏好率升高,差异均有统计学意义(P=0.000);正常对照组、电针组、药物组、生理盐水组组间两两比较,差异无统计学意义(P>0.05)。
     (4)新环境抑制进食实验
     各组新环境进食第一口食物花费时间的基础值差异无统计学意义(P>0.05),具有可比性。在接受15天L-AAA侧脑室注射后,各组造模大鼠的新环境进食第一口食物花费时间明显增多,与正常对照组和生理盐水组比较差异有统计学意义(P=0.000);各造模组大鼠组间比较差异无统计学意义(P>0.05),正常对照组与生理盐水组比较差异无统计学意义(P>0.05)。治疗3周后,与正常对照组和生理盐水组比较,空白组大鼠新环境进食第一口食物花费时间明显增多,差异均有统计学意义(P=0.014,P=0.024);与空白组比较,电针组和药物组大鼠新环境进食第一口食物花费时间明显减少,差异均有统计学意义(P=0.000);正常对照组、生理盐水组、电针组、药物组组间两两比较,差异无统计学意义(P>0.05)。
     2.电针对侧脑室注射L-AAA造模大鼠海马AST结构和功能的影响
     (1)光镜下观察AST形态结构
     经15天侧脑室注射L-AAA造模后,大鼠海马各区星形胶质细胞发生广泛性损害,细胞形态发生变化,主要表现为细胞核的固缩。同时侧脑室注射L-AAA造模还引起CA1区、CA3区部分锥体细胞以及DG区部分颗粒细胞变性、胞浆固缩。侧脑室注射NS后,大鼠海马CA1、CA3区星形胶质细胞未见明显损害,仅DG区少量星形胶质细胞和部分颗粒细胞出现变性、胞浆固缩。治疗3周后,电针组大鼠CA1区、CA3区、DG区星形胶质细胞均得以有效修复,CA1、CA3区锥体细胞修复,DG区颗粒细胞部分修复;药物组大鼠CA1区、CA3区星形胶质细胞和锥体细胞均得以有效修复,DG区星形胶质细胞恢复不明显,颗粒细胞变性部分恢复。
     (2)光镜下观察AST数目
     接受15天L-AAA侧脑室注射后,在海马CA1区,空白组大鼠AST数目明显减少,与正常对照组比较差异有统计学意义(P=-0.011)。治疗3周后,与空白组比较,电针组与药物组大鼠海马CA1区AST数明显目,差异均有统计学意义(P=0.03,P=0.016);电针组与药物组之间比较,差异无统计学意义(P>0.05)。
     在海马CA3区,空白组大鼠AST数目明显减少,与正常对照组和生理盐水组比较差异均有统计学意义(P=0.034, P=0.008)。治疗3周后,电针组与药物组大鼠海马CA3区AST数目显著增多,与空白组比较差异均有统计学意义(P=0.034, P=0.011);电针组与药物组之间比较,差异无统计学意义(P>0.05)。
     在海马DG区,空白组大鼠AST数目明显减少,与正常对照组和生理盐水组比较差异均有统计学意义(P=0.007, P=0.017).治疗3周后,电针组与药物组大鼠海马DG区AST数目增多,分别与空白组比较差异均有统计学意义(P=0.022, P=0.007);电针组与药物组之间比较,差异无统计学意义(P>0.05)。
     (3)电镜下观察AST超微结构
     侧脑室注射L-AAA15天后,空白组大鼠海马星形胶质细胞遭受较为严重的破坏,星形胶质细胞由梭形变为近似椭圆形,胞质减少,胞质内细胞器几乎缺失;生理盐水组大鼠海马AST未见明显损害。
     治疗3周后,电针组大鼠AST细胞质内部分细胞器(粗面内质网、核糖体、微丝、线粒体)得以修复,但细胞形状以及胞质稀少情况没有得到很好的改善。药物组大鼠AST超微结构改善情况同电针组相仿。
     (4)电针对侧脑室注射L-AAA大鼠海马GFAP含量和GFAP mRNA表达的影响
     侧脑室注射L-AAA15天后,与正常对照组和生理豁水组比较,空白组大鼠海马GFAP含量显著减少,差异均有统计学意义(P=0.006, P=0.043);治疗3周后,与空白组比较,电针组和药物组GFAP含量升高,差异均有统计学意义(P=0.011,P=0.009);电针组与药物组比较,差异无统计学意义(P>0.05)。
     侧脑室注射L-AAA15天后,与正常对照组和生理盐水组比较,空白组大鼠海马GFAP mRNA表达值显著下降,差异有统计学意义(P=0.000);治疗3周后,与空白组比较,电针组和药物组GFAP mRNA表达值升高,差异有统计学意义(P=0.000);电针组与药物组比较,差异无统计学意义.05)。
     结论:
     本研究通过上述两个实验相互佐证得出结论:①电针对慢性不可预见性温和刺激联合孤养造模导致的大鼠抑郁样行为及抑郁大鼠海马星形胶质细胞结构和功能的损伤有很好的保护作用;②电针对侧脑室注射L-AAA造模导致的大鼠抑郁样行为及造模大鼠海马星形胶质细胞结构和功能的损伤有很好的保护作用;③电针的上述作用与利鲁唑类似;④实验结果提示,海马星形胶质细胞参与了慢性应激致抑郁以及电针抗抑郁的过程;电针对海马星形胶质细胞的保护作用可能是其发挥抗抑郁的重要机制之
Object ive
     Through the two study, one is the improvement of electro-acupuncture on the behavior and the injured hippocampal astrocytes of depression model rats induced by chronic stress, another is the improvement of electro-acupuncture on the behavior and the injured hippocampal astrocytes of rats with intracerebroventricular injection L-AAA, to discuss the antidepressant mechanism of electric acupuncture on astrocyte injury. Part1:The study of electro-acupuncture to improve chronic stress induced depression rat behaviors and protect the hippocampal astrocytes injury
     Methods
     1. Animal grouping and modeling methods
     66adult female SD rats(220-250g,7-8weeks) were randomly divided into four groups:normal control group (NC, n=12), depression model group(DM, n=18), electro-acupuncture group(EA, n=18),and riluzole group (RZ, n=18). Normal control group rats would not be any processing, and the rest three groups were exposed to chronic unpredictable mild stress and separation to build depression rat model.
     2. Interventions
     ①After the successful modeling, rats of DM group would not be any processing;②The day after the successful modeling, rats of EA group accepted Si Guan electro-acupuncture treatment, selecting the G-6805type Ⅱ electric acupuncture apparatus, sparse wave,15-30Hz frequency,15to20minutes at a time, alternately left and right sides. The1st week1times per day, the second and third week treated every other day, for3weeks;③The day after the successful modeling, rats of RZ group accepted riluzole gavage every12 hours (4mg/kg), for3consecutive weeks.
     3. Evaluation
     ①Behavioral indicators:Body Weight Measurement (BWM), Open-Field Test (OFT), Sucrose Preference Test (SPT) and Novelty Suppressed Feeding Test (NSFT) were carried out before and in the building7th,14th,21th,28th,35th day and treating7th,14th,21th day for detecting group behavior in rats.②Light microscope, electron microscope, Western-Blot and RT-PCR technique were used to observe the morphology and ultrastructure of astrocytes in rat hippocampal and test their GFAP and GFAP mRNA expression after the treatment.
     4. Statistical methods
     The PASW statisticsl8.0statistical software was used for statistical analysis. If the experimental measurement data follow a normal distribution, calculated x±s and used ANOVA analysis to compare the differences between groups. If the data did not follow a normal distribution or dissatisfied with the homogeneity of variance, non-parametric tests were used. When compare the differences between multiple different measurement points, using ANOVA for repeated measurement. If the data dissatisfied with the sphericity test or Covariance matrix, Using Greenhouse-Geisser method or MANOVA to realize pairwise comparisons, the test level α=0.05.
     Results
     1. The influence of electro-acupuncture on the behaviors of depression rats induced by chronic stress
     (1) Body Weight Measurement
     Baseline data of each group in body weight is homogeneous (P>0.05). After5weeks chronic stress, compared with NC group, weight of DM, EA and RZ group dropped significantly (P<0.05). No differences in body weight were observed between DM, EA and RZ group (P>0.05). Over3weeks of treatment, compared with NC group, weight of DM group dropped significantly (P=0.000). Compared with DM group, weight of EA and RZ group increased significantly(P=0.031P=0.002). There is no difference in body weight between EA and RZ group(P>0.05).
     (2) Open-Field Test
     ①Horizontal motion
     Baseline data of each group in horizontal motion is homogeneous (P>0.05). After5weeks chronic stress, compared with NC group, horizontal motion of DM, EA and RZ group dropped significantly (P<0.05). No differences in horizontal motion were observed between DM, EA and RZ group(P>0.05). Over3weeks treatment, compared with NC group, horizontal motion of DM group dropped significantly(P=0.000). Compared with DM group, horizontal motion of EA and RZ group increased significantly(P=0.000).There is no difference in horizontal motion between EA and RZ group(P>0.05).
     ②Vertical motion
     Baseline data of each group in vertical motion is homogeneous (P>0.05). After5weeks chronic stress, compared with NC group, vertical motion of DM, EA and RZ group dropped significantly (P<0.05). No differences in vertical motion were observed between DM, EA and RZ group (P>0.05). Over3weeks treatment, compared with DM group, vertical motion of EA and RZ group increased significantly(P=0.011, P=0.008). There is no differences in vertical motion between EA and RZ group(P>0.05). And no difference was detected in vertical motion between DM and NC group(P>0.05).
     (3) Sucrose Preference Test
     Baseline data of each group in sucrose consumption is homogeneous (P>0.05). After5weeks chronic stress, compared with NC group, sucrose consumption of DM, EA and RZ group dropped significantly (P<0.05). No differences in sucrose consumption were observed between DM, EA and RZ group(P>0.05). Over3weeks treatment, compared with NC group, sucrose consumption of DM group dropped significantly (P=0.000). Compared with DM group, sucrose consumption of EA and RZ group increased significantly (P=0.000). There is no differences in sucrose consumption between EA and RZ group(P>0.05).
     (4) Novelty Suppressed Feeding Test
     Baseline data of each group in the time of first bite is homogeneous (P>0.05). After5weeks chronic stress, compared with NC group, the time of first bite of DM, EA and RZ group increased significantly (P<0.05). No differences in the time of first bite were observed between DM, EA and RZ group(P>0.05). Over3weeks treatment, compared with NC group, the time of first bite of DM group increased significantly (P=0.015). Compared with DM group, the time of first bite of EA and RZ group dropped significantly (P=0.000). There is no difference in the time of first bite between EA and RZ group(P>0.05).2. The influence of electro-acupuncture on the structure and function injury of hippocampal astrocytes in depression rats induced by chronic stress
     (1) Electro-acupuncture on the structure of hippocampal astrocytes
     Over5weeks chronic stress, the morphological changes of hippocampal astrocytes in depression rats mainly exhibited nucleus pyknosis. At the same time, we also found pyramidal cell degeneration and reducing the number in both area CA1and CA3, and granulosa cell cytoplasm vacuoles in area DG.3weeks after treatment, EA group, the area CA1pyramidal cells were returned to normal, astrocytes nucleus pycnosis were not obviously improved; Area CA3pyramidal cells back to normal, astrocytes nucleus pycnosis partial recovery; DG area granulosa cells, astrocytes have returned to normal. RZ group, area CA1pyramidal cells were returned to normal, astrocytes cell nucleus pyknosis situation were not well improved; Area CA3pyramidal cells back to normal, astrocytes had returned to normal; DG area granulosa cells back to normal, astrocytes recovery was not obvious.
     (2) Electro-acupuncture on the number of hippocampal astrocytes
     After5weeks chronic stress, compared with NC group, number of astrocytes of DM, EA and RZ group dropped significantly (P<0.05).3weeks after treatment, compared with DM group, number of astrocytes of RZ group increased significantly in area CA1.CA3and DG(P=0.005, P=0.019, P=0.020). Compared with DM group, number of astrocytes of EA group increased significantly in area CA1and DG(P=0.015, P=0.035). There is no difference in number of astrocytes between EA and RZ group in area CA1and DG(P>0.05). Compared with RZ group, number of astrocytes of EA group in area CA3decreased significantly (P=0.032). There are no differences in number of astrocytes between EA, DM and NC group in area CA3(P>0.05).
     (3) Electro-acupuncture on the ultrastructure of hippocampal astrocytes
     After5weeks chronic stress, ultrastructural damage of hippocampus astrocytes in depression rats mainly to the cytoplasm rough endoplasmic reticulum expansion and mitochondrial cristae loose change.3weeks after treatment, The ultrastructure injury of EA group and RZ group astrocytes were both repaired, and other organelles, such as ribosome, microfilament were more clearly visible than DM group
     (4) Electro-acupuncture on GFAP and GFAP mRNA
     After5weeks chronic stress, compared with NC group, hippocampal GFAP levels of DM, EA and RZ group dropped significantly (P=0.004).3weeks after treatment, compared with DM group, GFAP levels of EA and RZ group increased significantly (P=0.007, P=0.001). There is no difference in GFAP levels between EA and RZ group(P>0.05).
     After5weeks chronic stress, compared with NC group, hippocampal GFAP mRNA expression value of DM, EA and RZ group dropped significantly (P=0.001).3weeks after treatment, compared with DM group, GFAP mRNA expression value of EA and RZ group increased significantly(P=0.029, P=0.015). There is no difference in GFAP mRNA expression value between EA and RZ group (P>0.05). Part2:The study of electro-acupuncture improve behavior and protect hippocampal astrocytes of rats modeled by L-AAA lateral cerebral ventricle injection
     Methods
     1. Animal grouping and modeling methods
     78adult female SD rats(220-250g,7-8weeks) were randomly divided into five groups:normal control group (NC, n=12), intracerebroventricular injection of normal saline model group(NS, n=12), intracerebroventricular injection of L-AAA model group (LM, n=18), electro-acupuncture group(EA, n=18),and riluzole group (RZ, n=18).
     2. Modeling method
     ①Rats of normal control group rats would not be any processing;②Rats of LM, EA and RZ groups would be injected L-AAA, a kind of highly selective neurotoxin of astrocytes, through the lateral ventricle pipe(100ug/uL, luL)8days after surgery. The injection rate was controlled to0.25uL/min. The first3days, injected once a day, then injected in the building6th,9th,12th,15th day respectively. The cycle of intracerebroventricular injection is15days, a total of seven times for injection.③NS group would be injected normal saline through the lateral ventricle pipe. The dose, injection rate, frequency, and cycle were the same as LM group.
     3. Interventions
     ①After the modeling, rats of LM and NS group would not be any processing;②The day after the modeling, rats of EA group accepted Si Guan electro-acupuncture treatment, the manipulation in details and the treatment frequency and cycle were the same as part1;③The day after the modeling, rats of RZ group accepted riluzole gavage every12hours (4mg/kg), for3consecutive weeks, as the same as part1.
     4. Evaluation
     ①Behavioral indicators:Body Weight Measurement (BWM), Open-Field Test (OFT), Sucrose Preference Test (SPT) and Novelty Suppressed Feeding Test (NSFT) were carried out before and in the building3th,6th,9th,12th,15th day and treating7th,14th,21th day for detecting group behavior in rats.②Light microscope, electron microscope, Western-Blot and RT-PCR technique were used to observe the morphology and ultrastructure of astrocytes in rat hippocampal and test their GFAP and GFAP mRNA expression after the treatment.
     5. Statistical methods
     The same as Part1.
     Results
     1. The influence of electro-acupuncture on the behaviors of rats modeled by L-AAA lateral cerebral ventricle injection
     (1) Body Weight Measurement
     Baseline data of each group in body weight is homogeneous (P>0.05). After15days lateral cerebral ventricle injection of L-AAA, compared with NC and NS group, weight of LM, EA and RZ group dropped significantly (P=0.000). No differences in body weight were observed between the three groups(P>0.05). No differences in body weight were observed between NC and NS group(P>0.05).3weeks after treatment, compared with NC and NS group, weight of LM group dropped significantly (P=0.000). Compared with LM group, weight of EA and RZ group increased significantly(P=0.000). There is no difference in body weight between EA and RZ group(P>0.05).
     (2) Open-Field Test
     ①Horizontal motion
     Baseline data of each group in horizontal motion is homogeneous (P>0.05). After15days lateral cerebral ventricle injection of L-AAA, compared with NC and NS group, horizontal motion of LM, EA and RZ group dropped significantly (P=0.000). No differences in horizontal motion were observed between the three groups (P>0.05). No differences in horizontal motion were observed between NC and NS group(P>0.05).3weeks after treatment, compared with NC and NS group, horizontal motion of LM group dropped significantly (P=0.000, P=0.013). Compared with LM group, horizontal motion of EA and RZ group increased significantly(P=0.000). There is no difference in horizontal motion between EA and RZ group (P>0.05).
     ②Vertical motion
     Baseline data of each group in vertical motion is homogeneous (P>0.05). After15days lateral cerebral ventricle injection of L-AAA, compared with NC and NS group, vertical motion of LM, EA and RZ group dropped significantly (P=0.000). No differences in vertical motion were observed between the three groups(P>0.05). No differences in vertical motion were observed between NC and NS group(P>0.05).3weeks after treatment, compared with NC and NS group, vertical motion of LM group dropped significantly (P=0.000, P=0.001). Compared with LM group, vertical motion of EA and RZ group increased significantly (P=0.001, P=0.000). There is no difference in vertical motion between NC, NS, EA and RZ group (P>0.05).
     (3) Sucrose Preference Test
     Baseline data of each group in sucrose consumption is homogeneous (P>0.05). After15days lateral cerebral ventricle injection of L-AAA, compared with NC and NS group, sucrose consumption of LM, EA and RZ group dropped significantly (P=0.000). No differences in sucrose consumption were observed between the three groups(P>0.05). No differences in sucrose consumption were observed between NC and NS group(P>0.05).3weeks after treatment, compared with NC and NS group, sucrose consumption of LM group dropped significantly (P=0.000). Compared with LM group, sucrose consumption of EA and RZ group increased significantly(P=0.000). There is no difference in sucrose consumption between NC, NS, EA and RZ group(P>0.05).
     (4) Novelty Suppressed Feeding Test
     Baseline data of each group in the time of first bite is homogeneous (P>0.05). After15days lateral cerebral ventricle injection of L-AAA, compared with NC and NS group, the time of first bite of LM, EA and RZ group all increased significantly (P=0.000). No differences in the time of first bite were observed between the three groups(P>0.05). No differences in the time of first bite were observed between NC and NS group (P>0.05).3weeks after treatment, compared with NC and NS group, the time of first bite of LM group increased significantly (P=0.014, P=0.024). Compared with LM group, the time of first bite of EA and RZ group dropped significantly(P=0.000). There is no difference in the time of first bite between NC, NS, EA and RZ group(P>0.05).
     2. The influence of electro-acupuncture on the structure and function of hippocampal astrocytes in L-AAA lateral cerebral ventricle injection model rats
     (1) Electro-acupuncture on the structure of hippocampal astrocytes
     Over15days lateral cerebral ventricle injection of L-AAA, rat hippocampal astrocytes were extensively damaged, mainly showed the nucleus pyknosis. At the same time Lateral ventricle injection of L-AAA also caused parts of pyramidal cells in area CA1and CA3and parts of granulosa cell in DG area degeneration, cytoplasm pyknosis. After15days lateral ventricle injection of normal saline, rat hippocampal astrocytes in CA1, CA3area did not show obvious damage, and a small amount of astrocytes and part of the granular cell degeneration, cytoplasm pyknosis were detected in DG area.3weeks after treatment, astrocytes of EA group in CA1, CA3and DG area were effectively repaired, as well as pyramidal cell of CA1and CA3area and part of granulosa cell of DG area were well repaired. Astrocytes of RZ group in CA1and CA3area were effectively repaired, but astrocytes recovery in DG area is not obvious, granular cell degeneration partially restored.
     (2) Electro-acupuncture on the number of hippocampal astrocytes
     After15days lateral cerebral ventricle injection of L-AAA, compared with NC group, number of astrocytes of LM group dropped significantly in CA1area(P=0.011). There is no difference between LM and NS group in CA1area(P>0.05).3weeks after treatment, compared with LM group, number of astrocytes of EA and RZ group increased significantly in area CA1(P=0.013, P=0.016). There was no difference in number of astrocytes between EA and RZ group in area CA1(P>0.05).
     After15days lateral cerebral ventricle injection of L-AAA, compared with NC and NS group, number of astrocytes of LM group dropped significantly in CA3area(P=0.034, P-0.008).3weeks after treatment, compared with LM group, number of astrocytes of EA and RZ group increased significantly in area CA3(P=0.034, P=0.011). There was no difference in number of astrocytes between EA and RZ group in area CA3(P>0.05).
     After15days lateral cerebral ventricle injection of L-AAA, compared with NC and NS group, number of astrocytes of LM group dropped significantly in DG area(P=0.007, P=0.017).3weeks after treatment, compared with LM group, number of astrocytes of EA and RZ group increased significantly in area DG (P=0.022, P=0.007). There was no difference in number of astrocytes between EA and RZ group in area DG(P>0.05).
     (3) Electro-acupuncture on the ultrastructure of hippocampal astrocytes
     After15days lateral cerebral ventricle injection of L-AAA, the rat hippocampal astrocytes suffered serious damage. Astrocytes were deformed to near oval, Cytoplasm and organelles almost missing; There was no significant damage of astrocytes in NS group.
     3weeks after treatment, Astrocytes organelles of EA group were partly repaired, including rough endoplasmic reticulum, ribosome, microfilament, mitochondria and et cl. But the deformation and cytoplasmic scarce of astrocytes didn't get well improvement. Riluzole did the same work as electro-acupuncture in the improvement of astrocytes ultrastructure damaged by L-AAA.
     (4) Electro-acupuncture on GFAP and GFAP mRNA
     After15days lateral cerebral ventricle injection of L-AAA, compared with NC and NS group, hippocampal GFAP levels of LM group dropped significantly (P=0.006, P=0.043).3weeks after treatment, compared with LM group, GFAP levels of EA and RZ group increased significantly (P=0.011, P=0.009). There is no difference in GFAP levels between EA and RZ group(P>0.05).
     After15days lateral cerebral ventricle injection of L-AAA, compared with NC and NS group, hippocampal GFAP mRNA expression value of LM group dropped significantly (P<0.05).3weeks after treatment, compared with LM group, GFAP mRNA expression value of EA and RZ group increased significantly (P<0.05). There is no difference in GFAP mRNA expression value between EA and RZ group (P>0.05).
     Conelusions
     Through the two experiments, we conclude:①Electro-acupuncture can effectively improve the behavior of the depression rats induced by chronic unpredictable mild stress joint solitary raising. And it can also protect the structure and function damage of the hippocampal astrocytes in these model rats.②Electro-acupuncture can effectively improve the depression-like behavior of the rats that were injected by L-AAA through lateral cerebral ventricle. At the same time,to protect the structure and function damage of the hippocampal astrocytes in these model rats.③The curative effect of electro-acupuncture is similar to riluzole.
     This study suggests that the hippocampal astrocytes involve in the procedure of chronic stress induced depression as well as the procedure of electro-acupuncture antidepressant. The protective effect of electro-acupuncture on the hippocampal astrocytes may be one of the most important mechanisms in antidepressant.
引文
[1]Kessler R, Mc Gonagle KA, Zhao S, et al. (1994):Lifetime and 12-month prevalence of DSM-Ⅲ-R psychiatric disorders in the United States:results from the national comorbidity survey. Arch Gen Psychiatry 51:8-19.
    [2]]Greden, J.F. The burden of recurrent depression:causes, consequences, and future prospects[J]. Clin. Psychiatry,2001,62:5-9.
    [3]Mathers, C.,Stevenson, C.. The Burden of Disease and Inquiry in Australia[N]. Australian Institute of Health and Welfare, Canberra,1999.
    [4]Lopez A. D, Mathers C.D, Ezzati M, et al. Measuring the global burden of disease and risk factors,1990-2001. Global Burden of Diseases and Risk Factors, ed. Oxford University Press, New York,2006:1-13.
    [5]Murray, C. J. L.,LoPez, A. D.. Alternative Projections of mortality and disability by cause 1990-2020:Global Burden of Disease study. Lancet,1997,349:1498-1504.
    [6]Commonwealth Department of Health and Aged Care,1999a. National Health Priority Areas Report:Mental Health,1998, Canberra.
    [7]Mental Health:a report of the Surgeon General. US Department of Health and Human Services,Rockville. US Department of Health and Human services,1999.
    [8]The Centre for Economic Performance's Mental Health Policy Group,2006. The depression report:a newdeal for depression and anxiety disorders. The London school of economics and political science,London.
    [9]MD Waldinger, B Olivier. Sexual dysfunction and fluvoxamine therapy. J Clin Psyehiatry. 2001:62(2):126-7.
    [10]B Czeh, M Simon, B Sehmelting, et al. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 2006:31(8):1616-26.
    [11]JA Bridge, S Iyengar, CB Salary, et al. Clinical response and risk for reported suicidal ideation and suicide attempts in pediatric antidepressant treatment:a meta-analysis of randomized controlled trials. JAMA 2007;297 (15):1683-96.
    [12]Y Mukaino, J Park, A White, et al. The effectiveness of acupuncture for depression-a systematic review of randomised controlle dtrials. Acupunct Med 2005;23 (2):70-6.
    [13]MT Cabyoglu, N Ergene, U Tan. The mechanism of acupuncture and clinical applications. Int J Neurosci2006:116(2):115-25.
    [14]GAUlett, S Han, JS Han. Electroacupuncture:mechanisms and clinical application. Biol Psychiatry.1998;44(2):129-38.
    [15]符文彬.针灸治疗抑郁性神经症的临床研究[J].中国针灸学会第六届全国中青年针灸推拿学术交流暨针灸学科发展与建设研讨会论文汇编,2004:175.
    [16]符文彬,樊莉,朱晓平,等.针刺调肝法治疗抑郁性神经症的临床研究[J].针刺研究,2006,31(6):355-358.
    [17]符文彬,樊莉,朱晓平,等.针刺调肝法治疗抑郁性神经症的多中心随机对照研究[J].第三届世 界中西医结合大会论文集,2007:245.
    [18]刘月姮,董宇翔,王晓晨,等.针剌对躯体化障碍的疗效及其对血清DA、N王、5—HI从的影响[J].江苏中医药,2009,41(2):47-48.
    [19]杜元灏,李桂平,颜红.针刺治疗郁证的临床和基础研究[J].天津中医药,2004,21(2):171.
    [20]余瑾,林小姬,古琨如.音乐电针对抑郁模型大鼠行为学和海马BDNF、c_fos蛋白表达的影响[J].中国音乐治疗学会第十届学术年会论文集,2011.
    [21]韩毳,李学武,李晓泓,等.电针对慢性应激抑郁模型大鼠海马BDNF的影响[J].中国中医基础医学杂志,2001,7(7):55.
    [22]罗和春.抑郁症的电针合并舒血宁治疗与实验室细胞免疫水平改变的研究[J].美国中华健康卫生杂志,2000,3(2):1.
    [23]吴元坪.电针干预慢性应激抑郁大鼠脑组织Bcl-2和GAP-43表达的影响[D].北京中医药大学博士论文,2009.
    [24]符文彬,刘健华,白艳甫,等.电针对抑郁症大鼠海马CREB-BDNF受体后信号转导通路的作用[J].中国老年学杂志,2009,29(23):3038-3042.
    [25]蒋丽.针刺四关穴治疗肝郁型抑郁症的临床及cAMP-PKA信号通路研究[D].广州中医药大学,2012.
    [26]徐伟,徐钤.星形胶质细胞的生物学功能[J].生命的化学,2010,30(1):12-17.
    [27]Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA, et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry.2000;48:861-873.
    [28]胡蓉,吴喜贵,扬忠,等.大鼠星形胶质细胞在突触形成中的作用及机制.解剖学报.2005;36(3):225-230.
    [29]Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets.2007;6:219-233.
    [30]KN Botteron, ME Raichle, WC Drevets, AC Heath, RD Todd. Volumetric reduction in left subgenual prefrontal cortex in early onset depression. Biol Psychiatry 2002; 51 (4):342-4.
    [31]Cotter D, Mackay D, Chana G, BeASTley C, Landau S, Everall IP. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex.2002;12:386-394.
    [32]Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry.2000; 48:766-777.
    [33]Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA, et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry.2000;48:861-873.
    [34]Rodrigo Machado-Vieira, Husseini K. Manji,, et al. The Role of the Tripartite Glutamatergic Synapse in the Pathophysiology and Therapeutics of Mood Disorders. The Neuroscientist,2009;15(5):525-539.
    [35]Kenneth S Kendler, Charles 0. Gardaer, Card A. Prescott. Toward a comprehensive development model for major depression in women [J]. Am J Psychiatry,2002,159:1133-1145.
    [36]韩勇,韩春美,刘伶.内源性抑郁症的病因机理及治疗[J].山东精神医学,2006,19(1):55-57.[37]丁桂霞,胡胡大吉,李有田.抑郁症发病机理的研究进展[J].中华中医药学刊,2007,25(4):733-734.
    [38]余殿飞,谢铜华.战胜人类第—心理杀手:抑郁症的早期认识和有效防治[M].北京:中国医药科技出版社,2001:28.
    [39]侯钢,张心保,陈钮,等.抑郁症患者中枢单胺类神经递质相互关系的对照研究[J].中国神经精神疾病杂志,2002:28(1):7.
    [40]杨楠,李秋波,闫玉忠.浅析抑郁症发病机理的研究现状[J].中国社区医师,2006,8(16):5-6.
    [41]Owens MJ, et al. Pole of serotonin in the pathophysiology of depression:focus on the serotonin trasporterl Clin Chem,1994,40:288.
    [42]陈瑶,韩婷,芮耀诚,等.积雪草总苷对实验性抑郁症大鼠血清皮质酮和单胺类神经递质的影响[J].中药材,2005,28(6):493-496.
    [43]蔡焯基.抑郁症基础与临床[M].北京:科技出版社,2002:29[60]胡胡靖,付宝忠.三环类药物及人参皂甙抗抑郁作用的研究[J].黑龙江医学,2003,27(4):268-269.
    [44]胡靖,付宝忠.三环类药物及人参皂甙抗抑郁作用的研究[J].黑龙江医学,2003,27(4):268-269.
    [45]高霄飞,王雪琦,何成,等.抑郁症单胺类递质受体研究进展[J].生理科学进展,2002,33(1):17-20.
    [46]Huang M S, Zou W Y. Primary research of ChE in victims of depressive disorder [J]. Chin J Neurol Psych, Chin,1989,22(4):229-230.
    [47]朱艺,刘群英,卓廉十.电针对抑郁大鼠5-羟色胺和乙酰胆碱酯酶在海马表达的影响[J].针刺研究,2009,34(1):16-20.
    [48]Reddy PL, Khanna S, Subhash MN, et al. CSF amine metabolites in depression, Biol Psychiatry,1992,31(2):112.
    [49]Ossowska G, Nowa G, Kata R, et al. Brain monoaminereceptors in a chronic unpredictable stress model in rats[J]. JN euralT ran sm,2001,108:311-319.
    [50]O'Mahony CM, Clarke G, Gibney S, et al. Cryan JF. Strain differences in the neurocheraical response to chronic restraint stress in the rat:relevance to depression, Pharmacol Biochem Behav.2011 Feb;97(4):690-9.
    [51]桑倩.慢性应激所致海马损伤及其机制的研究进展[J].中国校外教育,2009.370-371.
    [52]吴东辉,杨权.慢性应激所致海马损害及其机制[J].汕头大学医学院学报,2001,14(4):270-271.
    [53]Huang EJ, Reichardt LF. Neurotrophins:roles in neuronal development and function.Annu Rev Neurosci,2001,24:677-736.
    [54]Udziszewska B, Jaworska-Feil L, kajta M, et al. Antid epressant drugs inhibit Glucocorticoid receptor-mediated gene transcription-a Possible mechanism[J]. BrJ Pharmacol,2000,130(6):1385-1393.
    [55]王学义.情感性精神障碍治疗前后血清甲状腺激素水平的对照研究[J].中华精神科杂志,1998,31:19-21.
    [56]陈文泽,于宏地,高祖华.反复发作抑郁症患者甲状腺素水平观察[J].临床精神医学杂志,1999,9:147-148.
    [57]李鹤展,贾福军.甲状腺激素与抑郁症研究进展[J].国外医学·精神病学分册,2003,30(1):21-23.
    [58]方力群,胡建,张延承,颜景章.抑郁症与心境恶劣障碍患者的甲状腺素水平[J].临床精神医学杂志,2006,16(6):338-339.
    [59]夏军,夏宏杰,周新萍.围绝经期妇女心理障碍分析及综合康复效果[J].中国临床康复,2003,7(15):2202-2203.
    [60]齐旋.绝经后骨质疏松的抑郁状态及心理干预治疗[J].中国临床康复.2002, 6(131905-1952.
    [61]白琳.绝经期妇女抑郁和焦虑症状与绝经年限及雌激素水平的关系[J].中国临床康复,2004,8(12):2210-2211.
    [62]马学红.针刺抗抑郁的临床研究[D].北京中医药大学博士论文,2011,5.
    [63]SkareSS. Stimulatory tests of growth hormonesecretion in prepubertal major depressed versus normal children. J Am Acad child Adolesc psychiatry,1994;33(6):824-833.
    [64]朱晓峰.抑郁病人的应激激素测定及变化分析[J].医学理论与实践,2005, 15(12):1407-1408.
    [65]Kim H, Whang WW, Kim HT, et al. Expression of neuropeptide Y and cholecystokinin in the rat brain by chronic mild stress. Brain Res.2003; 983(1-2):201-208.
    [66]Heilig M, Zachrisson O, Thorsell A, et al. Decreased cerebrospinal fluid neuropeptide Y (NPY) in patients with treatment refractory unipolar major depression:preliminary evidence for association with prepro NPY gene polymorphism. J Psychiatr Res.2004; 38(2) 113-121.
    [67]Jimenez Vasquez PA, Salmi P, Ahlenius S, et al. Neuropeptide Y in brains of the Flinders Sensitive Line rat, a model of depression. Effects of electroconvulsive stimuli and damphetamine on peptide concentrations and locomotion. Behav Brain Res. 2000:111(1-2):115-123.
    [68]沈悦娣,许百华.神经肽与抑郁症[J].国际精神病学杂志,2006,33(3):135-138.
    [69]Mitchell AJ. The role of corticotropin releasing factor in depressive illness:a critical review. Neurosci Biobehav Rev.1998:22(5):635-651.
    [70]梁佳,卢峻,王俊仁,等.不同针刺方法对慢性应激抑郁大鼠下丘匠脑CRH基因表达及血清ACTH、CORT的影响[J].北京中医药大学学报,2012,35(4):265-268.
    [71]胡胡随瑜,李云辉,张春虎,等.柴胡疏肝散对慢性应激抑郁模型大鼠行为及血浆CRH_ACTH的影响[J].中国中西医结合学会精神疾病专业委员会第十届学术会议论文集,2010, 11:106-113.
    [72]Herpfer I, L iebK. Substance P and Substance P receptor antagonists in the pathogenesis and treatmen t of affective disorders[J].Wodd J B io IPsych iatry,2003, 4(2):56-63.
    [73]Millan MJ, Lejeune F, De Nanteuil G, et al. Selective blockade of neurokinin(NK) (1) receptors facilitates the activity of adrenergic pathways projicting to frontal cortex and dorsal hippocampus in rats. J Neurochem.2001; 76(6):1949-1954.
    [74]Haddjeri N, Blier P. Sustained blockade of neurokinin-1 receptors enhances serotonin neurotransmission. Biol Psychiatry,2001; 50 (3):191-199.
    [75]李晓白,黄继忠,王祖承.抑郁症与谷氨酸传导[J].中国新药与临床杂志,2005;24(8):601-604.
    [76]杨辉,许丽娟.谷氨酸N-甲基D天冬氨酸受体拈抗剂的抗抑郁作用研究进展[J].中国新药与临床杂志,2011,30(12):891-894.
    [77]王丹.海马BDNF和iNOS与慢性应激性抑郁的关系[J].信阳师范学院学报(自然科学版),2010,23(2):237-241.
    [78]Malberg J E, Eisch AJ, Nestler EJ, et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus[J]. J Neu rosci (S0270-6474),2000,20:9104-9110.
    [79]Nibuya M, Morinobu S, Duman R S. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments[J]. JN eurosci (S0270-6474),1995,15:7539-7547.
    [80]Miller HL, Kusumi I, Kagaya A, et allIncreased 5-HT2 recep2 tor function as measured by serotonin stimulated phosphoinositide hydrolysis in platelets of depressed pationtsl Prog Ner-ropsycho2 pharmacol Biol Psychiatry,1991,15:49-611.
    [81]Jope RS, Song L, Li PP, et al. The phosphoinositide signal trans2 duction system is impaired in bipolar affective disorder brainl J Neurochem,1996,66:2402-91
    [82]李海燕,周东丰,宋煜青,等.电针和氟两汀治疗抑郁症对血小板蛋白激酶C的影响[J].中国心理卫生杂志,2004,18(10):688-691.
    [83]Hyunyoung Kim, Hyun-Jung Park, Hyun Soo Shim, et al. The effects of acupuncture (PC6) on chronic mild stress-induced memory loss. Neuroscience Letters 488 (2011) 225-228.
    [84]Dowlatshahi D, Mac Queen GM, Wang JF, et al. Protein-coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders:effects of diagnosis, suicide, and treatment at the time of death[J].J Neurochem,1999; 73:1121-6.
    [85]Shelton RC,MainerDH, Sulser F. cAMP-dependent protein kinase activity in major depression[J]. Am J Psychiatry,1996;153:1037-42.
    [86]Dowlatshahi D, Mac Queen GM, Wang JF, et al. Increased temporal cortex CREB concentrations and antidepressant treatment in major depression[J]. Lancet,1998; 352:1754-5.
    [87]Ozawa H, RasenickM. Chronic electroconvulsive treatment augments coupling of the GTP-binding protein Gs to the catalytic moiety of adenylyl cyclase in a manner similar to that seen with chronic antidep ressant drugs[J].J Neurochem,1991; 56:3302-8.
    [88]Jensen J, Mikkelsen JD, Mork A. Increased adenylyl cyclase type 1 mRNA, but not adenylyl cyclase type 2 in the rat hippocampus following antidepressant treatment[J]. Eur Neuropsy-chopharmacol,2000; 10:105-11.
    [89]Sheline YI. Neuroimaging studies of mooddisorder effects on the brain. Biol Psychiatry.2003;54:338-352.
    [90]Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets.2007;6:219-233.
    [91]KN Botteron, ME Raichle, WC Drevets, AC Heath, RD Todd. Volumetric reduction in left subgenual prefrontal cortex in early onset depression. Biol Psychiatry 2002; 51 (4):342-4.
    [92]沈渔邨.精神病学[M].第3版.北京:人民卫生出版社,1994:431.
    [93]Rajkow ska G. Depression:what we can learn from postmortem studiesLJ]. Neuroscientist,2003,9(4):273-284.
    [94]Mitra R, Sundlass K, Parker K J. et al. Social stress-related behavior affects hippocampal cell proliferation in mice [J]l.Physiol Behav,2006,89(2):123-127.
    [95]FOSSATI P, RADTCH A, BOYER P. Neuroplasticity:from MRI to depressive symptoms. Eur Neuropsychopharmacol.2004;15:s503-s510.
    [96]Sheline YI. Neuroimaging studies of mooddisorder effects on the brain. Biol Psychiatry.2003; 54:338-352.
    [97]Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets.2007;6:219-233.
    [98]MK odama, T Fujioka, RS Duman. Chronic olanzapine or fluoxetine administration inereases cell Proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry,2004:56(8):570-80.
    [99]P Fagergren, DH Overstreet, M Goiny, YL Hurd. Blunted response to cocaine in the Flinders hypereholinergic animal model of depression. Neuroscience,2005:132(4):1159-71.
    [100]H Manev, T Uz,R Manev. Glia as a putative target for antidepressant treatments. Journal of affective disorders,2003;75 (1):59-64.
    [101]Jeffrey DR, Margaret DH, Carlos AP. Knockout of glutamate transporters reveals a major role of Astroglia transport in excitotoxicity and clearance of glutamate[J]. Neuron,1996,16(3):675-686.
    [102]郭树仁,吴俊芳.海马长时程增强的研究进展[J].中国临床药理学与治疗学,1999,4(4):344-349.
    [103]亓晓丽,姚树桥.应激与海马可塑性及其机制的研究进展[J].中国行为医学科学2003,12(3):356-358.
    [104]潘苗,张三强,裴丽粉,等.慢性应激抑郁大鼠海马CA1神经元突触可塑性研究[J].中国神经精神疾病杂志,2012,38(11):672-676.
    [105]杨楠,李秋波,闫玉忠.浅析抑郁症发病机理的研究现状[J].中国社区医师,2006, 8(16):5-6.
    [106]王东林,林文娟.细胞因子与抑郁症发病机制研究进展[J].中国神经精神疾病杂志,2007,33(9):572-574.
    [107]范长河,谢光荣,陈凤华.抑郁症患者血清炎症细胞因子和急性期反应蛋白水平及其意义[J].中国神经精神疾病杂志,2000,5(26):272-275.
    [108]汪广剑,仲爱芳.重症情感障碍的遗传学研究[J].山东精神医学,2001, 14(4):272-274.
    [109]祁曙光,陈德沂,姜厚璧.单相抑郁症遗传效应的研究[J].中华精神科杂志,2001,34(2):106-108.
    [110]郝伟.精神科疾病临床诊疗规范教程,北京大学医学出版社,2009:226.
    [111]左玲俊,罗星光.抑郁症的防治[M].上海:复旦大学出版社,2001:90.
    [112]Akiskal H S. New insight into the nature and heterogeneity of mood disorders. J ch in Psychiatry.1989, (5.supp 1):6
    [113]Perris H. Life events and personality characteristics in Pepression Acts Psychiatrey Scand,1984,69:350
    [114]陈璨,高镇松.抑郁症与抑郁/焦虑共病患者的人格特征及社会支持对比研究[J].国际内科学杂志,2007,34(7):373.
    [115]刘强,俞峻瀚,张海音.抑郁症患者防御方式与人格特征关系的探讨[J].精神医学杂志,2010,23(3):170.
    [116]Zohar J, Sasson Y, Amital D, et al. Current diagnostic issues and epidemic-logical insights in PTSD. Inter J Neuropsychiatric Med,1998,3 Suppl 2:12214.
    [117]张本,王学义,孙贺祥,等.唐山大地震所致孤儿心理创伤后应激障碍的调查[J].中华精神科杂志,2000,33(2):111-114.
    [118]Francico GB. An overview of post-stroke depression. N J Msd,1993,90 (9):686-689.
    [119]Andersen G, Vesstergaard K, Kii SJ, et al. Incidence of post-stroke depression during the first year in a large unselected stroke population determined using a Valid Standardized rating scale. Acta Psychiatr Scand.
    [120]刘平.心血管疾病与抑郁症[J].中国医刊,2002, 37(9):18-20
    [121]Assertheil Surolbeer S, Applegate WB, Berge K, et al. Change in depression asaprecursor of cardiovascu larevent; SHEP Cooperative Research Group (Systolich Hypertens ion in theelderly) [J].Arch InternM ed,1996,156:553-561.
    [122]钟宝亮,黄悦勤,李会娟.针灸治疗抑郁症疗效和安全性的系统评价[J].中国心理卫生杂志,2008,22(9):641-647.
    [123]王健.健脑调神针刺法干预中风后抑郁大鼠作用机理的研究[J].世界中联第三届中医、中西医结合老年医学学术大会论文集,2010:527-528.
    [124]唐胜修,徐祖豪,唐萍,等.针刺治疗抑郁性神经症的临床研究[J].中国针灸,2003,23(10):585.
    [125]陈光,周东丰,沈渔邮,等.抑郁症神经内分泌功能及其对电针治疗反应的研究[J].北京医科大学学报,1992,24(5):401.
    [126]韩毳,李晓泓,郭顺根,等.电针对抑郁大鼠中枢及外周单胺类神经递质的影响[J].中医药学刊,2004,22(1):185.
    [127]徐虹,孙忠人,李丽萍,等.针刺治疗抑郁症及其对患者下丘脑-垂体一肾上腺轴的影响[J].中国针灸,2004,24(2):78.
    [128]韩毳,李晓泓,李学武,等.电针“百会”“三阴交”穴对慢性应激抑郁模型大鼠HPA轴的影响[J].北京中医药大学学报,2001,24(3):74.
    [129]孙冬玮.针刺百会、太冲对慢性应激抑郁模型大鼠HPA轴影响的实验研究[J].中国优秀硕士学位论文全文数据库,2005.
    [130]徐世芬,庄礼兴,唐纯志.针刺对抑郁大鼠海马神经因子表达的影响[J].广州中医药大学学报,2009,26(6):532-534.
    [131]沈鲁平,金光亮,范建华,等.抗抑郁处理对慢性应激大鼠海马鸟苷酸结合蛋白表达的影响[J].中华精神科杂志,2002,35(1):25-27.
    [132]陈嘉,董文心.抗抑郁药物对海马神经元保护作用的研究进展[J].中国新药杂 志,2008,17(6):441-444.
    [133]符文彬,马瑞,刘健华.电针对抑郁症大鼠海马超微结构的影响[J].广州中医药大学学报,2011,28(5):495-498,563,564.
    [134]刘琼,吴根诚.针刺治疗实验性抑郁症时成年大鼠海马神经发生的变化[D].复旦大学博十学位论文,2008.
    [135]林小姬,余瑾,廖铭斌.音乐电针对抑郁模型大鼠大鼠行为学和血清TGF-β 1的影响[J].中国音乐治疗学会第十届学术年会论文集,2011.
    [136]NJ Laping, NR Niehols, JR Day, CE Finch. Corticosterone differentially regulates the bilateral response of astrocyte mRNAs in the hippocampus to entorhinal cortex lesions in male rats. Brain Res Mol Brain Res,1991;10(4):291-7.
    [137]陈湘,窦建卫,胡亚丽.抑郁症动物模型的应用及研究进展[J].中国 织工程研究与临床康复,2008,12(28):5521-4.
    [138]贾宝辉,李志刚,卢峻等.电针抗抑郁研究的模型探讨[J].针刺研究,2005,30(1):22-25.
    [139]Bondi M, Caretta A. Animal models of depression:olfactory lesions affect amygdala, subventricular zone, and aggression. Neurobiol Dis 2004;16(2):386-395.
    [140]Tejani-Butt S, Kluezynski J, Pare WP:Strain-dependent modification of behavior following antidepressant treatment. Prog Neuro Psycho Pharmacol Biol Psychiatry,2003:27:7-14.
    [141]郭建友,李昌煜,葛卫红,等.抑郁症动物模型研究进展[J].中国临床康复,2004, 8(10):1932-1933.
    [142]Willner P. Validation criteria for animal models of human mental disorders:learned helplessness as a paradigm case. Prog Neuro psychopharmacol Biol Psychiatry 1986; 10 (6): 677-690.
    [143]Bach-Rojecky L, Kalodjera Z, Samarzija I. The antidepressant activity of Hypericum perforatum L. measured by two experimental methods on mice. Acta Pharmaceutica,2004,54: 157-162.
    [144]亓晓丽,林文娟.焦虑和抑郁动物模型的研究方法和策略[J].心理科学进展2005, 13(3):327-332.
    [145]Cryan JF, Mombereau C. In search of a depressed mouse:utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 2004;9:326-357.
    [146]Pryce CR, Ruedi-Bettschen D, Dettling AC, et al. Long-term effects of early-life environmental manipulations inrodents and primates:potential animal models in depression research. Neurosci Biobehav Rev 2005;29(4-5):649-674.
    [147]Karten YJ, Olariu A, Cameron HA. Stress in early life inhibits neurogenesis in adulthood. Trends Neurosci 2005;28(4):171-172.
    [148]Pryce CR, Ruedi-Bettschen D,Dettling AC, Weston A, Russig H, Ferger B, Feldon J:Long-term effects of early-life environmental manipulations in rodents and primates ".Potential animal models in depression researeh. Neurosci Bio behav Rev 2005:29:649-674.
    [149]Shabanov, ROSPR:Evaluation of antidepressant activity in a model of depression like state due to social isolation in rats. Eksp Klin Farmakol,2005:68:11-15.
    [150]Katz RJ, Roth KA, CarrollBJ:Acute and chronic stress effecets on openfield activity in the rat:implications for a model of depression. Neurosci Bio behav Rev,1981; 5:247-251.
    [151]Willner P:Validity, reliability and utility of the chronic mild stress model of depression:a 10-year review and evaluation. Psycho Pharmacology (Berl),1997; 134: 319-329.
    [152]赵幸福,徐一峰.生活事件和抑郁症.上海精神医学,1995,7:209-211.
    [153]Gronli J, Murison R, Bjorvatn B, et al. Chronic mild stress affects sucrose intake and sleep in rats. Behavioural Brain Research,2004,150:139-147.
    [154]胡华.抑郁症动物模型与脑血管因素相关研究[D].复旦大学博十学位论文,2010.
    [155]N Nakatani, H Aburatani, K Nishimura, et al. Comprehensive expression analysis of a rat depression model. Pharmacogenomics. J 2004; 4(2):114-126.
    [156]VA Vaidya, K Femandes, S Jha. Regulation of adult hippocampal neurogenesis:relevanee to depression. ExPertRevNeurother2007:7(7):853-64.
    [157]T Broehier, JP Olie. Stress et depression. Encephale 1993:19 Spec No 1:171-8.
    [158]LF Gram. Concepted antidepresseurs desecond generation. Encephale 1991;17 SPec Nol:115
    [159]Kitayama, S Murase, M Koishizawa, S Kawaguchi,J Nomura. Effect of antidepressant on behavior and central catecholamine of depression-model rats. Nihon Shinkei Seishin Yakurigaku Zasshi 1987;7(4):433-6.
    [160]JL Moreau. Validation d'un modele animal del'anhedonie, symptome majeurdela depression. EneePhale 1997:23(4):280-9.
    [161]Willner P. Chronic mild stress(CMS) revisited:consistency and behavioural-neurobiological concordance in the effects of CMS. Neuro Psycho biology,2005;52:90-110.
    [162]MatthewsK., ForbesN., ReidI. C. Suerose consumption as an hedonic measure following chlonic unpredictable mild stress [J].Physiol. Behav,1995,57:241-248.
    [163]Li S, Wang C, Wang M, Li W, Matsumoto K, Tang Y:Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci 2007:80:1373-1381.
    [164]吴艳艳.慢性应激性抑郁大鼠胃运动变化中海马谷氨酸代谢1型受体和多巴胺D1受体的关系[D].陕西师范大学硕士论文,2010.
    [165]A. Blokland, C.Lieben, N.E.Deutz. Anxiogenic and depressive-like effects, but non cognitive eficits, after repeated moderate tryptophan depletion in the rat[J]. Psyehopharmacol,2002,16:39-49.
    [166]董素平,徐畅,原婷婷,安书成.海马NMDA受体经SP-NKl受体通路参与慢性应激诱发的抑郁样行为[J].心理学报,2011,43(9):1045-1054.
    [167]American Psychiatric Association. DSM-Ⅲ Diagnostic and statistical manualof psychiatric disorders,1994,4
    [168]Anisman H, Matheson K:Stress, depression, and anhedonia:caveats concerning animal models. Neurosci Biobehav Rev 2005:29:525-546.
    [169]Gronli J, Murison R, Bjorvain B, Sorensen E, Portas CM, Ursin R:Chronic mild stress affeets suerose intake and sleep in rats. Behav Brain Res 2004:150:139-147.
    [170]Willner, P., Towell, A., Sampson, D., Sophokleous, S., & Muscat, R. (1987). Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology,93,358-364.
    [171]桑倩.慢性应激对大鼠空间学习记忆影响机制的研究[D].浙江理工大学硕十学位论文,2010.
    [172]张艳美,杨权等.慢性应激对大鼠海马锥体细胞形态结构的效应[J].生物化学与生物物理进展,2002,29(5):719-723.
    [173]Sousa N, Lukoyanov NV,Madeira MD,et al. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement [J]. Neuroscience,2000,97(2):253-266.
    [174]谢守付,贾丁鑫等.慢性应激对大鼠行为及海马各区神经元凋亡的影响[J].中国行为医学科学,2003,12(3):257-259.
    [175]杨春章;于常海.谷氨酸引起星形胶质细胞核形态改变[J].全国第十一届生化与分子药理学学术会议论文集,2009
    [176]吴鹤鸣,李静,郭国祯,等.慢性应激抑郁大鼠学习记忆及海马非对称性超微结构的改变[J].现代生物医学进展,2007,7(1):9-11,14.
    [177]Lin Yan-hua, LIU Ai-hua, Xu Ying, Lu. Effect o f chronic unpredictable mild stress on brain-pancreas relative protein in rat brain and pancreas[J]. Behav Brain Res, 2005,165(1):63-71.
    [178]李那永,田金洲,时晶,等.抑郁症相关情绪疾病中医证候要素与症状相关性的占代文献研究[J].中华中医药学刊,2013,31(1):127-130.
    [179]鱼浚镛.抑郁症的证候要素及其组合规律研究[D].北京中医药大学,2012
    [180]Ozawa S. Role of glutamate transporters in excitatory synapses in cerebellar Parkinje cells[J]. Brain Nerve,2007,59:669F-76.
    [181]曹海燕,张月华,梁卫兰,等.高钾和(或)谷氨酸对培养的星形胶质细胞Connexin43表达的影响.中国神经科学杂志,2001,17(4):290-293
    [182]粟文杰,李锦.利鲁唑的药理作用及其机制的研究进展[J].国外医学药学分册,2003,30(2):90-93.
    [183]Melissa Schorr. Alternative medicine:first choice for depression [J]. American Journal of Psychiatry,2001,158:289-294.
    [184]Fellin T. Communication between neurons and astrocytes:relevance to the modulation of synaptic and network activity [J]. J Neurochem,2009,108 (3):533-544.
    [185]Araque A, Navarrete M. Glial cells in neuronal network function [J]. PhilosTrans R Soc Lond B Biol Sci,2010,365(1551):2375-2381.
    [186]Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression [J]. CNS Neurol Disord Drug Targets,2007,6(3):219-233.
    [187]Seifert G, Schilling K, Steinh user C. Astrocyte dysfunction in neurological disorders:a molecular perspective [J]. Nat Rev Neurosci,2006,7(3):194-206.
    [188]Czeh B,Simon M, Schmelting B,et al. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment[J]. Neuropsychopharmacology,2006,31(8):1616-1626.
    [189]Lian XY, Stringer JL. Astrocytes contribute to regulation of extracellular calcium and potassium in the rat cerebral cortex during spreading depression[J]. Brain Res, 2004,1012(1-2):177-184.
    [190]Day JR, Laping NJ, Lampert — Etchells M, et al.Gonadal steroids regulate the expression of glial fibrillary acidic protein in the adult male rat hippocampus[J]. Neuroscience,1993:55(2):435.
    [191]邓莉.胶质纤维酸性蛋白(GFAP)在神经系统中的研究进展[J].泸州医学院学报,2005,28(2):189-192.
    [192]沈维高,何欣,王振江.星形胶质细胞的生物学功能及其与疾病的关系研究进展,北华大学学报(自然科学版),2008,9(8):501-509.
    [193]Chin-Yen Chen, Ming-Luen Doong, Chung-Pin Li,etc. A novel simultaneous measurement method to assess the influence of intracerebroventricular obestatin on colonic motility and secretion in conscious rats, Peptides 31 (2010) 1113-1117.
    [194]Banasr M,Duman R S. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors[J]. Biol Psychiatry,2008,64:863-870.
    [195]戴建国.助阳宁神方拮抗应激致抑郁小鼠海马星形胶质细胞可塑性损伤的作用研究[D].南京中医药大学博十论文,2012.
    [196]Brown DR, Kretzschmar HA. The glio-toxic mechanism of alpha-aminoadipic acid on cultured astrocytes. J Neurocytol 1998;27:109-118. [PubMed:9609401]
    [197]Takada M, Hattori T. Fine structural changes in the rat brain after local injections of gliotoxin, alpha-aminoadipic acid. Histol Histopathol 1986;1:271-275. [PubMed: 2485166]
    [198]Mounira Banasr, Ronald S. Duman. Glial Loss in the Prefrontal Cortex Is Sufficient to Induce Depressive-like Behaviors[J]. Biol Psychiatry,2008,64:863-870.
    [199]Sheline YI. Neuroimaging studies of mooddisorder effects on the brain. Biol Psychiatry.2003:54:338-352.
    [200]毕秀华,宋云,秦竹.抑郁症发病机理的研究进展[J].云南中医中药杂志,2012,33(1):64-66.
    [201]Banasr M, Valentine GW, Li XY, Gourley SL, Taylor JR, Duman RS. Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol Psychiatry 2007; 62:496-504.
    [202]王艳,刘继文,连玉龙.抑郁模型大鼠海马S100-蛋白的表达研究[J].新疆医科大学学报,2008,31(1):16-18.
    [203]肖贻财.不同电针频率对局灶性脑缺血大鼠脑星形胶质细胞的影响[D].广西医科大学硕十学位论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700