粒子群算法的研究及其在船舶工程中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于科学研究和实际工程中许多问题的复杂性、约束性、非线性、多局部极值和建模困难等特点,寻找适用于各种不同需求的新型智能优化方法一直是许多学科的一个重要研究方向。群智能优化技术是模仿自然界群体生物行为特征而产生的一类新兴智能优化算法,该算法在没有集中控制且不提供全局模型的前提下,为求解复杂问题的最优解提供了基础。
     本文在研究群智能优化算法的模型之——粒子群算法的基本原理和研究现状的基础上,针对基本粒子群算法研究中存在的一些问题,提出了多种改进的粒子群算法,并研究这些改进算法在船舶工程问题中的应用策略。
     本文的研究目的是探索粒子群算法的改进形式,使之能够有效解决高维大值域多峰函数优化、复杂工业系统的优化控制与决策等理论和工程应用问题。主要研究工作包括以下几个方面:
     1.针对目前PSO算法参数选取方法(单因素试验法)的不足,提出一种通用的多因素的粒子群参数的选择方法。首先通过粒子群算法参数约束方法来限制参数范围,再利用数论和统计学中的均匀设计法,对算法参数进一步选定。这种试验优选方法,可以在考虑多参数相互耦合、相互制约的复杂条件下,快速给出一组较好的参数值。对参数的泛化能力进行了试验验证。对比分析测试结果表明,本文提出的参数选定方法速度快且优化效果好,对各种改进PSO算法的参数组合选择具有通用性。
     2.针对高维大值域多峰优化问题寻优困难的现状,提出了基于多种群的空间压缩PSO算法,克服了目前存在的算法在此类问题寻优中存在的缺陷。在PSO算法中引入不完全搜索策略,将搜索分为几个阶段,每一阶段依靠各种群中的最优势粒子来确定各种群下一次搜索的空间。通过对搜索空间的不断压缩,避免了大量无效搜索,提高了搜索的速度和质量。同时,该方法适合多台计算机协同工作,且不需要特殊的并行计算平台。测试表明:本文提出的空间压缩PSO算法可以有效地压缩搜索空间,显著提高搜索效率。
     3.由于随机算法种群产生的随机性,使得算法的搜索质量和速度也呈随机性,这使普通的随机算法难以满足某些无法多次优化、但又需要实时优化的工程需要。针对这一问题,提出了基于均匀设计法确定关键代次种群的PSO算法。利用均匀设计方法产生PSO算法的初始种群(或关键代次种群),使种群中的粒子在搜索空间分布更好地保持了均匀分散性。给出了4种种群的生成方案,通过测试和对比分析表明,基于值域分割的均匀设计种群生成法能使算法的搜索效果最好;基于均匀设计设定初始种群的算法可以在不丧失搜索质量和效果的前提下,能使算法具有更稳定的搜索效率和搜索质量,同时能有效减少粒子聚集和搜索早熟的随机性发生。
     4.将社会心理学的意识选择在“个人与团体”、“领导与服从”中的作用引入算法中,给出了一种具有选择意识异步PSO算法。使粒子跟随优势粒子不再盲从而是具有选择能力,并对算法的计算性能进行了对比分析与测试。测试表明,这种结合了社会心理学思想的异步模式PSO算法,可以在保持异步模式收敛速度快于同步模式的优势基础上,进一步提高搜索的质量。
     5.针对目前船舶自动舵仍信赖PID舵的现状,设计了基于具有选择意识的异步PSO算法的新型实时参数优化。给出了解决该工程问题的步骤和方法和数值计算结果及分析。仿真结果表明:本文提出的PSO免疫自动舵控制策略使得系统鲁棒性得到提高,算法搜索的快速性得到了体现。
     6.针对目前舰艇消磁目标单一、消磁优化决策难的现状,将基于多种群的空间压缩PSO算法应用到舰船消磁优化决策中,很好地解决了舰船消磁中变量值域范围大、目标函数维数高的工程难题,并可以实现多种目标的优化决策。本文给出了解决该工程问题的方法、步骤和数值计算的结果及分析。本文提出的方法具有通过多阶段的不完全搜索来压缩调节量取值范围、通过多群体之间的独立性保证对压缩区域对最优解包围的概率、通过逐步压缩搜寻范围来减低搜索难度的特点,仿真结果表明,本文提出的方法可以加快消磁优化决策速度和质量,在船舶消磁线圈系统的优化调整工作中起到很好的效果。
     7.针对船舶电力系统网络重构问题,本文提出了新的离散编码公式,将实数编码的基于均匀设计产生关键代次种群的PSO算法运用到了属于离散优化的船舶电力系统网络重构问题中。不但充分利用了基于均匀设计产生关键代次种群的PSO算法搜索稳定性高的的特点,还形成了一种新的离散粒子群算法。在工程实现过程中,还给出了利用故障提取信息对粒子的取值范围进行压缩的方法和优启发式规则。测试表明:提出的PSO改进算法在决策生成速度上略优于其他方法,搜索质量也和其他方法相当,在最优解的稳定性上明显优于其它算法,对船舶电力系统的网络重构问题有很好的实用性,具有较好的应用前景。
     最后总结了整个论文研究工作的成果,并展望了粒子群算法需要进一步研究的方向。
Researchers have focused on developing novel intelligence optimization methods to address the complexity, constraint, nonlinearity, multiple local minimum as well as the modeling difficulties in lots of scientific and engineering problems. Swarm intelligence optimization technique is such an algorithm developed from mimicking social behavior of animals in the natural environment. The algorithm can be used to solve complicated optimization problem, without requiring centralized control and global modeling.
     In this dissertation, focus is on particle swarm optimization (PSO), one branch in the swarm optimization. Given the limitations of the existing PSO and its general application fields, several approaches are proposed to revise and improve the existing techniques. And application strategies of these improved algorithms in the field of shipping engineering are investigated.
     The research in this dissertation is to improve the existing PSO such that it can effectively solve the problems including optimization of complex multimodal problems. The main contributions of the dissertation include:
     Ⅰ. A kind of method to select PSO parameter based on universal multi-factor is given, which can offset the shortage of normal method to select PSO parameter based on single factor. Basic steps of the method include: in the beginning, parameters bound are limited by the PSO parameter restriction method, then parameters are confirmed by uniform design from number theory and statistics. This kind of method to select optimum parameter can give a group of good parameter quickly in spite of coupling and restriction in the middle of parameters. Otherwise, generalization ability of parameter is researched. Research results show that: the speed of algorithm to select parameter is fast, and effect is good, it is universal to select parameter in all kinds of PSO algorithms improved.
     Ⅱ. A kind of PSO algorithm based on multi-species space compress strategy is given, which can solve some difficulties in normal PSO algorithm to optimize multidimensional, large range of value and multimodal problems. Incomplete searching strategy is imported to PSO, and searching is divided into several phases. To every phase, next searching space is confirmed by optimum swarm in every a specie. A lot of invalid searching is avoided by compressing constantly space searched, which can improve searching speed and quality. At the same time, the method is suited to multicomputer team working without special team working plat. Test results show that: the algorithm can compress space effetely and improve searching efficiency.
     Ⅲ. Usually, population is brought randomly in normal PSO algorithm, which leads into randomcity of searching quality and speed. So these normal algorithms can not be used to some engineering problem that can not be optimized many times but real time. In order to solve above problem, a kind of PSO algorithm based on uniform design to confirm key population in some one generation is given. Initial population of PSO algorithm is brought by uniform design, so distributing of swarms in searching space can keep uniform dispersity much better. Four kinds of methods to bring population is given, test results show that: uniform design method based on range of value division can improve searching efficiency.
     Ⅴ. Consciousness selection in social psychology is imported into PSO algorithm, so a kind of asynchronism PSO with selection consciousness is given, which can make swarm has selection ability not to follow blindly preponderant swarm. Test results show that: compared with synchronization model, the algorithm can keep fast convergence speed and good searching quality.
     Ⅵ. A kind of immune PID autopilot combining immune algorithm is designed. And the asynchronism PSO algorithm with selection consciousness is used to optimize parameters real time in the new PID autopilot system. Optimization step and method are introduced in a detail. Simulation results show that: the PSO algorithm can improve the robustness of autopilot designed and at the same time, rapidity of the PSO algorithm improved to solve searching problem can proved.
     Ⅶ. Nowadays, simplex degaussing targets and difficult optimization decision are main shortages in warships and submarines degaussing system. So a kind of new optimization method based on multi-species space compress strategy PSO is applied to optimization decision of warships and submarines degaussing, which can solve engineering difficulties in warships and submarines degaussing such as variable with large range of value and object functions with multimodal. Steps, results and analyses of the method are discussed in a detail. Simulation results show that: the method can improve speed and quality of warships and submarines degaussing optimization decision and bring good efficiency to warships and submarines degaussing winding system optimization.
     Ⅷ. The electrical network reconfiguration of shipboard power system (SPS) is one of the most important methods to restore power supply and improve survivability. A new kind of discrete coding method based on uniform design PSO algorithm, and the algorithm is used to electrical network reconfiguration of SPS. In real engineering, methods and rules of swarm compress by fault to extract message are given. Test show that: the PSO algorithm improved is better than other methods to improve the speed of building decision, its searching quality is same with other method, but stability of optimum solution is better than others. The method has good practicability and application foreground in electrical network reconfiguration of SPS.
引文
[1]王玫,朱云龙,何小贤.群体智能研究综述[J].计算机工程,2005,31(22):194-196页.
    [2]高尚,杨静宇.群智能算法及其应用[M].北京:中国水利水电出版社,2006.5:10-60页.
    [3]Rao,S.S.Optimization Theory and Application(Second Edition).New Delhi:Wiley Eastern Limited,1984.
    [4]曾建潮,介婧,崔志华.微粒群算法.北京:科学出版社,2004.5:1-20页.
    [5]Goos G,Hartmanis J.Global Optimization.Berlin Herderlberg:Springer Verlag,1989.
    [6]Yagiura M,IbarakiT.On Metaheuristic Algorithms for Combinatorial Optimization Problems.Systems and Computers in Japan,2001,32(3):3-25P.
    [7]Pardalos P.M,Romeijn H.E,Tuy H.Recent developments and trends in global optimization.Journal of Computational and Applied Mathematics,2000,124:209-228P.
    [8]Hopfield J.J,Tank D.W.Computing with neural circuits:A model Science,1986,233:625-633P.
    [9]Goldberg D.E.Genetic algorithms in search,optimization and machine learning.Addison-Wesley Publishing Company,1989.
    [10]Rudolph G.Convergence analysis of canonical genetic algorithms.IEEE Transaction on Neural Networks,1994,5:96-101P.
    [11]Kirkpatrick S.,Gelatt J.C.D.,and Vecchi M.P Optimization by simulated annealing.Science,1983,220:671-680P.
    [12]Kirkpatrick S.Optimization by simulated annealing:quantitative studies.Journal of Statistical Physics,1984,34:975-986P.
    [13]Ghen L,et al.Optimization by chaotic simulated annealing.中 日青年国际学术讨论会论文集,日本,神奈川,1995,3:57-59页.
    [14]李兵,蒋慰孙.混沌优化方法及其应用.控制理论与应用.1997,14(4):613-615页.
    [15]Glover F.Tabu search:a tutorial.Interfaces,1990,20(4):74-94P.
    [16]Glover,F.Tabu search-part Ⅰ.ORSA Journal on Computing,1989,1(3):190-206P.
    [17]Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies.Proceedings of the First European Conference on Artificial Life,Paris,France,Varela,Rand Bourgine,P.Elsevier Publishing,1991,134-142P.
    [18]Kennedy J,Eberhart R.Particle Swarm Optimization[C].Proc IEEE Int Conf on Neural Networks.Perth.1995:1942-1948P.
    [19]Hyun K,Kim J H.Quantum-inspired evolutionary algorithm for a class of combinational optimization[J].IEEE Transactions on Evolutionary Computing,2002,6(6):580-593P.
    [20]肖人彬,王磊.人工免疫系统:原理、模型、分析及展望[J].计算机学报,2002,25(12):1281-1293页.
    [21]Bandini S,Mauri G,Serra R.Cellular automata:From a theoretical parallel computational model to its application to complex systems[J].Parallel Computing;2001,27:539-553P.
    [22]TSAIC F,TSAI C W,TSENG C C.A New Hybrid Heuristic Approach for Solving Large Traveling Salesman Problem.Information Sciences,2004,166:67-81P.
    [23]DORIGO M,CARO G D,GAMBARDELLA.LM.Ant Algorithms for Discrete Optimization..Artificial Life,1999,5(3):137-172P.
    [24]COLORNI A,DORIGO M,et al.Ant Systems for Job-shop Scheduling[J].Belgian Journal of Operations Research,Statistics and Computer Science,1994,34:39-53P.
    [25]PARPINELLIR S,LOPESH S,FREITAS A A.Data Mining with an Ant Colony Optimization Algorithm.IEEE.Transactions on Evolutionary Computation,2002,6(4):321-332P.
    [26]SOUSA T,SILVAA,NEVESA.Particle Swarm Based on Data Mining Algorithms for Classification Tasks.Parallel Computing,2004,30:767-783P.
    [27]CASILLAS J,CORDON O,HERRERA F.Learning Fuzzy Rules Using Ant Colony Optimization Algorithms[C].Proceedings of the ANTS2000from Ant Colonies to Artificial Ants:Second International Workshop on Ant Algorithms,2000:13-21P.
    [28]JIANG CW,ETORRE B.A Hybrid Method of Chaotic Particle Swarm Optimization and Linear Interior for Reactive Power Optimization.Mathematics and Computers in Simulation,2005,68:57-65P.
    [29]OURIOUE C O,BISCAIA E C,PINTO J C.The Use of Particle Swarm Optimization for Dynamical Analysis in Chemical Processes.Comp Chem Eng,2002,26:1783-1793P.
    [30]RASMUSSENITK,KRINK T.Improved Hidden Markov Model Training for Multiple Sequence Alignment by a Particle Swarm Optimization:Evolutionary Algorithm Hybrid.Bio Systems,2003,72:5-17P.
    [31]Wolpert D.H,MacreadyW.G.No free lunch theorems for search.Technical Report SFI-TR-95-02-010,Santa Fe Inst.,Sante Fe,New Mexico,1995.[Online]citeseer.nj.nec.com/wolpert95no.html.
    [32]WolpertD.H,MacreadyW.G.Nofreelunchtheoremsforoptimization.IEEE transactions on Evolutionary Computation,1997,1:67-82P
    [33]刘士新,宋健海,唐加福.蚁群最优化--模型、算法及应用综述[J],系统工程学报,2004,05:496-502页.
    [34]James Kennedy,Eberhart Russell.[C].Swarm Intelligence,Morgan Kaufmann,2001:10-35P
    [35]MillonasMM.Swarms,phase transition,and collective intelligence.In C.G..Langton,Ed.,Artificial Life Ⅲ.Addison Wesley,MA,1994.
    [36]Bonabeau E,Dorigo M,Theraulaz G.Swarm Intelligence:From Natural to Artificial Systems.New York:Oxford Univ.Press,1999.
    [37]Richard Dawkins.The Selfish Gene[C].Oxford University Press,1976.
    [38]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践,2002,22(11):32-38页.
    [39]李晓磊,薛云灿,路飞,等.基于人工鱼群的参数估计方法[J].山东大学学报,2004,34(3):84-87页.
    [40]李晓磊,冯少辉,钱积新,等.基于人工鱼群算法的鲁棒PID控制器参数整定方法研究[J].信息与控制,2004,33(1):112-115页.
    [41]马建伟,张国立.人工鱼群神经网络在电力系统短期负荷预测中的应用[J].电网技术,2005,29(11):36-39页.
    [42]EUSUFFM M,LANSEY K E.Optimization of Water Distribution Network Design Using Shuffled Frog Leaping Algorithm.Journal of Water Resources Planning and Management,2003,129(3):210-225P.
    [43]EUSUFFMM.Water Resources Decision Making Using Meta-Heuristic Optimization Methods[D].Tucson:University of Arizona,2004.
    [44]Clerc M,Kennedy J.rhe particle swarm:Explosion,stability,and convergence in a multimodal complex space.Proceedings of the Congress of Evolutionary Computation,2002.6,58-73P,Washington DC,NJ,USA.
    [45]Y.Shi,R.C.Eberhart.Parameter selection in particle swarm optimization,in Proceedings of the Seventh Annual Conference on Evolutionary Programming.1998.New York,USA.
    [46]Ratnaweera A,Halgamuge S K,Watson HC.Self-Organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients.IEEE Trans.on Evolutionary Computation,2004,8(3):240-255P.
    [47]C.K.Monson,K.D.Seppi.The kalman swarm-A new approach to particle motion in swarm optimization[A].Proceedings of Genetic and Evolutionary Computation[C]. Seattle, WA, USA,2004:140-140P.
    [48] M. Lvbjerg, T. Rasmussen, T. Krink. Hybrid particle swarm optimizer with breeding and subpopulations[A]. Proceedings of the Genetic and Evolutionary Computation Conference. LNCS. Springer-Verlag,2001: 223-228P.
    [49] F. Van Den Bergh, A.P. Engelbrecht. A study of particle swarm optimization particle trajectories. Information Science. 2006,176:937-971P.
    [50] Rodriguez J. A. Reggia. Extending self-organizing particle systems to problem solving. Artificial Life, 2004, 10(4):379-395P.
    [51] G. Ciuprina, D. loan, I. Munteanu. Use of intelligent particle swarm optimization in electromagnetics[J]. IEEE Transactions on magnetics, 2002, 38(2): 1037-1040P.
    [52] J. Kennedy. The Behavior of Particles [M]. In Porto V W, Saravanan N, Waagen D and Eiben A E, editors, Evolutionary Programming VII, Springer, 1998. 581-590P
    [53] Eberhart R. C, Kennedy J.A new optimizer using particle swarm theory. Proceedings of the 6th International Symposium on Micro Machine and Human Science, 1995, Nagoya, Japan, IEEE, Piscataway,NJ,USA. 39-43P
    [54] Kennedy, J. The Particle Swarm: Social Adaptation of Knowledge.Proceedings of the International Conference on Evolutionary Computation, 1997. 303-308P.
    [55] Suganthan, P. N. Particle swarm optimizer with neighborhood operator. Proceedings of the Congress of Evolutionary Computation, 1999(3),1958- 1962P .Washington DC, IEEE,Pi scataway , NJ, USA.
    [56] J. Kennedy, R. Mehdes. Population structure and particle swarm performance. Proceeding of Congress on Computational Intelligence. Honolulu, Havaii, USA, 2002.
    [57] Hu R. C. Eberhart. Multi-objective optimization using dynamic neighborhood particle swarm optimization [A]. Proceedings of the Congress on Evolutionary Computation[C]. Honolulu, Hawaii, USA,2002:603-607P.
    [58] R. Mendes, J. Kennedy, J. Neves. The fully informed particle swarm:simpler, maybe better[J]. IEEE Transactions on Evolutionary and Computation. 2004, 8(3):204-210P.
    [59] R. C. Eberhart and Y.Shi, Guest Editorial Special Issue on Particle Swarm Optimization. IEEE Transaction on evolutionary computation.2004,8(3):201-203P.
    [60] M. Clerc. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[A]. Proceedings of the Congress on Evolutionary Computation[C]. Washington DC, USA.1999: 195-1957P.
    [61] M. Clerc, J. Kennedy. The particle swarm: explosion, stability,and convergence in a multi-dimensional complex space. IEEE Transaction on Evolutionary Computation. 2002, vol. 6: 58-73P.
    [62] Y H. Shi, R. C. Eberhart. Parameter selection in particle swarm optimization[A]. 7th International Conference on Evolutionary Programming VII, 1998, Springer-Verlag London, UK
    [63] F. Van Den. Bergh, An analysis of particle swarm optimizers[D].Pretoria, South Africa: University of Pretoria, 2002.
    [64] A. Ratnaweera, S. K. Halgamuge, H.C.Watson. Self-organizing hierarchical particle swarm optimizer -with time varying accelerating coefficients [J]. IEEE Transaction on Evolutionary Computation, 2004,8(3):240-255P.
    [65] Angeline, P.J. Using selection to improve particle swarm optimization. Proceedings of the 1998 Inter. Conf. on Evolutionary Computation,84-89.Anchorage,AK,USA.
    [66]N.Higashi,H.Iba.Particle swarm optimization with Gaussian mutation.Proceedings of the Congress on Evolutionary Computation.Piscataway,NJ,IEEE Press,2003:72-79P.
    [67]吕振肃,侯志荣.白适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420页.
    [68]高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,40(6):72-79页.
    [69]S.Katar,Kalos.D,A.West.A hybrid swarm optimizer for efficient parameter estimation.Proceedings of the Congress on Evolutionary Computation[C].Portland,USA,2004:309-315P.
    [70]S.K.Fan,Y C.Liang,E.Zahara.Hybrid simplex search and particle swarm optimization for the global multimodal function.Engineering Optimization,2004,36(4):401-18P.
    [71]T.A.A.Victoire,A.g.Jeyakumar.Hybrid PSO-SQP for economic dispatch with wave point[J].Electric Power System Search,200471(1):51-59P.
    [72]K.g.Parsopoulos,M.N.Vrahatis.Particle swarm optimization method in multi-objective problem[A].Proceedings ACM Symposium on Applied Computing[C].Leganes,Spain 2002:603-607P.
    [73]X.Hu,R.C.Eberhart;YH.Shi.Swarm intelligence for permutation optimization:A case study of N-queens problem[A].Proceedings of the IEEE Swarm Intelligence Symposium[C].Indianapolis,Indiana,USA,2003:243-246P.
    [74]T.Ray,K.M.Liew.A swarm with an effective information sharing Mechanism for unconstrained and constrained single optimization problem[A].Proceedings of the Congress on Evolutionary Computation[C].Seoul Korea,2001:75-80P.
    [75]E.M.Z.Angel,A.H.Aguirre,E.R.Diharce.Constrained Optimization via Particle Evolutionary Swarm Optimization Algorithm [A]. Proceedings of the Genetic and Evolutionary Computation Conference. Washington DC, USA, 2005: 209-216P.
    [76] T. Ray, K. M. Liew. A swarm metaphor for multi-objective design optimization[J]. EngineeringOptimization, 2002, 34(2): 151-153P.
    [77] C. A. Coello Coello, G. T. Puludo, M. S. Lechuga. Handling muti-objectives with particle swarm optimization. IEEE Transaction on Evolutionary Computation.2004,8(3) :256-279P.
    [78] S. Mostaghim, J. Teich. Strategies for finding local guides in multi-objective particle swarm optimization. Proceedings of the IEEE Swarm Intelligence Symposium[C]. Indianapolis, Indiana,USA, 2003: 26-33P.
    [79] X. Hu, R. C. Eberhart. Multi-objective optimization using dynamic neighborhood particle swarm optimization. Proceedings of the IEEE Congress on Evolutionary Computation[C]. 2002: 1677-1681P.
    [80] G T Pulido, C. A. Coello Coello. Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer. Proceedings of Genetic and Evolutionary Computation Conference[C]. Springer, 2004: 225-237P.
    [81] X. D. Li. A nondominated sorting particle swarm optimizer for multi-objective optimization[A]. Proceedings of Genetic and Evolutionary Computation Conference. Springer, 2003: 37-48P.
    [82] X. D. Li. Better spread and convergence particle swarm multi_objective optimization using the maxim in fitness function[A].Proceedings of Genetic and Evolutionary Computation Conference.Springer, 2004: 117-128P.
    [83] R. R. Carlo, C. N. Prospero. An effective use of crowding distance in multi-objective particle swarm optimization[A]. Proceedings of the Genetic and Evolutionary Computation.
    [84] J. Kennedy, R. C. Eberhart. A discrete binary version of the particle swarm optimization algorithm[A]. Proceedings of the World Multi-conference on Systemics Cybernetics and informatics[C].Caracas,Venezuela,1997:4104-4109P.
    [85]X.Hu,R.C.Eberhart,Y H.Shi.Swarm intelligence for permutation optimization:A case study of N-queens problem[A].Proceedings of the IEEE Swarm Intelligence Symposium[C].Indianapolis,Indiana,USA,2003:243-246P.
    [86]M.Clerc.Discrete particle swarm optimization,illustrated by traveling salesman problem[A].G.C.Onwubolu,B.V Babu.New Optimization in Engineering[M].Berlin,Springer-Verlag,2004:58-73P.
    [87]C.K.Mohan,B.AI-kazemi.Discrete particle swarm optimization.Proceedings of Workshop on Particle Swarm Optimization[C].Indianapolis,Indiana,USA,2001:81-86P.
    [88]Z.W.Wang,G L.Durst,R.C.Eberhart.Particle swarm optimization and neural network application for QSAR.Proc.IEEE Int Conf on Parallel and Distributed Processing.
    [89]王俊年,申群太,周少武,沈洪远.基于种群小生境微粒群算法的前向神经网络设计[J].控制与决策,2005,20(9):981-985页.
    [90]M.Omran.Particle swarm optimization methods for pattern recognition and image processing[D].Faculty of Engineering,Built Environment and Information Technology,University of Pretoria,2005.
    [91]M.Omran,A.P.Engelbrecht.Particle swarm optimization method for image clustering.International Journal of Pattern Recognition and Artificial Intelligence.2005,19(3):297-321P.
    [92]S.Kanaan,S.M.R.Slochanal,P Subbaraj,et al.Application of particle swarm optimization technique and it's variants to generation expansion planning problem[J].Electric Power System.2004,70(3):203-210P.
    [93]M.A.Abido.Optimal design of Dower system stability using particle swarm optimization[J]. IEEE Transactions on Energy Conversion. 2002, 17(3): 406-413P.
    [94] C. W. Reynolds, Flocks, herbs and schools:a distributed behavioral model. Computer graphics. 1987, 21(4):25-34P.
    [95] HeppnerF. U, Grenander. A. Stochastic nonlinear model for coordinated bird flocks. The Ubiquity of chaos, ed. S. Krasner.Washington DC: AAAS publications. 1990.
    [96] E. O. Wilson, Sociobiology: The new synthesis. Cambridge, MA:Belknap Press. 1975.
    
    [97] MAZZEO S, LOISEAU I. An Ant Colony Algorithm for the Capacitated Vehicle Routing[J]. Electronic Notes in Discrete Mathematics,2004, 18: 181-186P.
    
    [98] Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[C].IEEE International Conference on Evolutionary Computation, Anchorage,Alaska,May 4-9,1998:69-73P.
    
    [99] Shi Y, Eberhart R. Parameter Selection in Particle Swarm Optimization[C]. Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on Evolutionary Programming, New York, 1998. 591-600P.
    
    [100] Kennedy, J. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm optimization performance.Proceedings of the 1999 Congress on Evolutionary Computation,1999(3), 1931-1938. Washington DC, IEEE, Piscataway, NJ, USA.
    [101] Carlisle A.Dozier G. An Off-The-Shelf PS0[C]. In Proceedings of the Particle Swarm Optimization Workshop, 2001. 1—6P Indianapolis,Indiana, USA.
    
    [102] YONG-LING Z., LONG-HUA M., LI-YAN Z.. On the convergence analysis and parameter selection in particle swarm optimization.Proceedings of the and International Conference on Machine Learning and Cybernetics, Vol 3, 1802-1807P, Xi'an,China, Institute of Electrical and Electronics Engineers Inc.
    [103]Kennedy J,Eberhart R.C.A discrete binary version of the particle swarm algoritbm.Proc.1997 Conf.on Systems,Man,and Cybernetics,4104- 4109P.Piscataway,NJ:IEEE Service Center.
    [104]张丽平.粒子群优化算法的理论及实践[D].浙江大学博士论文.2005:20-24页.
    [105]王雪飞,王芳,邱玉辉.一种具有动态拓扑结构的粒子群算法研究[J].计算机科学.2007,34(3).205-207,233页.
    [106]王俊年,申群太,沈洪远,周鲜成.一种基于聚类的小生境微粒群算法[J].信息与控制.2005,12.680-864,689页.
    [107]SCHOONDERWOERD R,HOLLAND O,BRUTEN J.Ant-like Agents for Load Balancing in Telecommunications Networks[C].Proceedings of the First International Conference on Autonomous Agents.ACM Press,1997:209-216P.
    [108]J.Kennedy.The behavior of particle,in Proc.7th Annu.conf.Evol.Program.1999.San Diego.
    [109]E.Ozcan,C.K.Mohan.Analysis of a simple particle swarm optimization system.Intelligent Engineering Systems Through Artificial Neural Networks.1998,8:253-258P.
    [110]E.Ozcan,C.K.Mohan.Particle swarm optimization:surfing the waves,in Proceedings of the 1999 IEEE Congress on Evolutionary Computation..Picataway,NJ.
    [111]L.C.Trelea,The particle swarm optimization algorithm:convergence analysis and parameter selection.Inf.Process.lett.2003,85:317-325P.
    [112]Visakan Kadirkamanathan,Kirusnapillai Selvarajah,and Peter J.Fleming.Stability analysis of the particle dynamics in particle swarm optimizer.IEEE Transaction on evolutionsry computation.2006,10(3):245-255P.
    [113]金欣磊:马龙华;吴铁军等.基于随机过程的PSO收敛性分析[J].自动 化学报,2007.12:P1263-1289页.
    [114]Bose R C,Bush K A.Orthogonal arrays of strength two and three.Ann Math Statist,1952,23:508-524P.
    [115]Fang Y.Relationships between uniform design and orthogonal design[C].rhe 3rd International Chinese Statistical Association Statistical Conference.Beijing,1995.
    [116]方开泰.均匀设计--数论方法在试验设计的应用[J].应用数学学报,1980,(04).
    [117]方开泰.均匀试验设计的理论、方法和应用-历史回顾[J].数理统计与管理,2004,23(3):69-80页.
    [118]何大阔,王福利,张春梅.基于均匀设计的遗传算法参数设定[J].东北大学学报(自然科学版),2003,(05).
    [119]邹亮,汪国强.均匀试验设计在遗传算法中的应用[J].华南理工大学学报(自然科学版),2003,(05).
    [120]黄永青,梁昌勇,张祥德.基于均匀设计的蚁群算法参数设定[J].控制与决策,2006,21(1):93-96页。
    [121]刘宏达,李殿璞,马忠丽.基于多种群搜索策略的粒子群算法的舰船消磁优化.仪器仪表学报.2006,27(6S).
    [122]Liu hongda,Ma zhongli,Lan hai.OPTIMIZATION OF VESSEL DEGAUSSING SYSTEM BASED ON POLY-POPULATION PARTICLE SWARM ALGORITHM.6th international Marine Electro technology Conference,IMECE 2006,11.
    [123]高尚,陈建忠.基于均匀设计的粒子群优化算法参数设定[J].石油化工高等学校学报,2007,20(3):12-15页.
    [124]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001:89-105页.
    [125]任露泉.试验优化设计与分析[M].北京:高等教育出版社,2003:191-204页.
    [126]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994:30-45页.
    [127]蒋声,陈瑞琛.拉丁方型均匀设计[J].高校应用数学学报A辑(中文版),1987,(04).
    [128]Fang,K T,Shi C X,Pan iX.Uniform designs based on Latin squares [J].Statistica Sinica,1999,9:905-912P.
    [129]覃红,熊明.混水平的均匀设计的构造[J].应用数学学报,2005,28(4):89-100页.
    [130]Qin H,Zhang S,Fang K T.CONSTRUCTING UNIFORM DESIGNS WITH TWO-OR THREE-LEVEL.Acta Mathematic Scientia,2006,26B(3):451-459P.
    [131]Fang K T,Ma C X,Winker P.Centered L2-discrepancy of random sampling and Latin hypercube design,and construction of uniform design[J].Math Computation,2002,(71):275-296P.
    [132]李晓爱,张素玲,庞善起.基于粒子群算法的均匀设计表设计[J].统计与决策,2007,(8):132-133页.
    [133]张礼兵,程吉林,金菊良,蒋晓红.基于整数编码遗传算法的均匀设计表构造[J].系统工程理论与实践,2005,(12):57-61,82页.
    [134]http://www.math.hkbu.edu.hk/UniformDesign/
    [135]彭宇,彭喜云,刘兆庆.微粒群算法的参数效能的统计分析[J].电子学报,2004,32(2):209-213页.
    [136]Maurice Clerc.Confinements and Biases in Particle Swarm Optimization.2006,http://clerc.maurice.free.fr/pso/
    [137]许丽艳,沈继红,毕晓君.基于空间收缩的新颖粒子群优化算法[J].哈尔滨工程大学学报,2006,V27(s):542-546页.
    [138]薛明志,左秀会,钟伟才,刘静.正交微粒群算法[J].系统仿真学报,2007,17(12):2908-2911页.
    [139]赵曙光,焦李成,王宇平,杨万海.基于均匀设计的多目标自适应遗传算法及应用[J].电子学报,2004,(10).
    [140]巩敦卫,孙晓燕.变搜索区域多种群遗传算法[J].控制理论与应用,2006,23(2):256-260页.
    [141]石临篙.用于处理等式约束的网格法[[J].石油大学学报(自然科学版),1999,23(3):91-93页.
    [142]Olafsson S,Shi L.An integrated framework for deterministic and stochastic optimization[A].In Proceedings of the 1997 Winter Simulation Conference[C],1997,pp:358-365P.
    [143]Zeng Sanyou,Kang Lishan,Ping Lixin.A new method of evolutionary algorithm for mixed-integer Nonlinear optimization problem[J].Wuhan University,2000,46(5B),554-558P.
    [144]王涛,李歧强.基于空间收缩的并行演化算法[[J],中国工程科学,2003,5(3):57-61页.
    [145]杨维.现代优化算法及其应用研究[D].山东大学硕士学位论文,2004,5.
    [146]Takahashi K,Yamada T.Application of an immune feedback mechanism to control systems[J].JSME International Journal,Series C,1998,41(2):184-191P.
    [147]丁永生,任立红.一种新颖的模糊自调整免疫反馈控制系统[J].控制与决策,2000,15(4):443-446页.
    [148]杨盐生,贾欣乐。不确定系统的鲁棒控制及其应用[M].大连海事大学出版社,2003.1-30页
    [149]马壮.模糊控制及其在船舶自动舵中应用研究[D].东南大学博士学位论文,2000.54-70页.
    [150]Harris C J,Billngs S A.Self-Tuning and Adaptive Control Theory and Applications.Peter Peregrinus,Ltd,1981.
    [151]Sperry E.Directional stability of automatically steered bodies.Journal of American Society of Naval Engineers,1922,42(1):2-13P.
    [152]Mort N.and Linkens D A.Self-Tuning Controllers for Surface Ship Course Track-Keeping.Proceedings,Symposium on Ship Steering Automatic Control.25-27 1980,Genoa,225-243P.
    [153]Zuidweg J K.Optimal and Sub-optimal Feed forward in Automatic Track keeping systems,Proceedings,6t' Ship Control Systems Symposium,26-30 Oct 1981,Ottawa.
    [154]黄继起.自适应控制理论及其在船舶系统中的应用.国防工业出版社.1992.4:168-169P.
    [155]Sugimoto A.A new autopilot system with condition adaptivity.Proceedings 5th Ship Control Systems Symposium,Annapolis,Maryland,USA,1978,105-111P.
    [156]Merlo P,Tiano i.Experiments about computer controller ship steering.Semana International Sobre la Automatic en la Marina,Barcelona,Spain,1975,134-140P.
    [157]Motora S.On the automatic steering andyawing of ships in rough seas.Journal Society of Naval Architects(Japan),1953,12(2):94-113P.
    [158]Akaika H.Fitting autoregressive models for prediction.Ann Inst Ststist Math(Tokyo),1969,21(3):243-253P.
    [159]Lim C C.iutopilot for ship control.Proceedings IEE(part-D),1983,130(2):147-158P.
    [160]Messer A C.Introduction to robust ship track-keeping control design.Trans Inst MC,1993,15(3):104-110P.
    [161]Papoulias F A.Path control of surface ship using sliding modes.Journal of Ship Research,1992,36(2):141-153P.
    [162]Brown W.Factors to consider in developing a knowledge-based autopilot expert system for ship aneuvering simulation.In:Proceedings of the 14th Ship Technology and Research(STAR)Symposium,SNAME,New Orleans,USA,1989,S51-11P.
    [163]Sutton R.A design study of a self-organizing fuzzy autopilot for ship control.Proc Instn Mech Engrs(pt.Ⅰ),1991,20(5):35-47P.
    [164]Hearn G E.Comparison of SISO neural control strategies for ship track keeping.IEE Proc-Control Theory Appl,1997,144(2):153-165P.
    [165]Liu Hongda,Ma Zhongli.Design of ship FNN autopilot based on niche immune genetic algorithm.Dongnan Daxue Xuebao./Journal of Southeast University,v 36,n SUPPL.,July,2006,190-193P.
    [166]刘宏达,李殿璞,马忠丽.一种新型的智能船舶自动舵的设计[J].仪器仪表学报.2006,voL 27,6(S).
    [167]Moradi M.H,Katebi M.R,redictive PID control for ship autopilot design.Control Applications in Marine Systems 2001(CAMS 2001)Proceedings volume from the IFAC Conference,2002,375-800P.
    [168]刘宏达,李殿璞,马忠丽.基于粒子群优化的船舶PID自动舵的改进[J].东南大学学报.2006.36(7S):197-200P.
    [169]刘宏达,李殿璞,马忠丽.一种新型船舶航向智能PID控制器优化设计[J].船舶工程.2007.8(4).
    [170]周佩芬译.舰船的消磁方法[M].水雷战与舰船防护,1995,4.
    [171]周耀忠,郭成豹,唐申生.基于Matlab优化工具箱和VB语言的消磁电流决策[J].海军工程大学学报,2004,12(6).
    [172]唐申生,周耀忠,庄清华.大型舰船分区消磁理论研究[J].海军工程大学学报,2003,15(2).
    [173]郭成豹,张晓锋,肖昌汉等.采用随机微粒群算法的舰船消磁系统优化调整[J].哈尔滨工程大学学报,2005,26(10).
    [174]王功明.舰船固定绕组消磁方法的应用[J].沪东中华技术情报,2001(3):33-35页.
    [175]Kim,E.R.,Kim,G.C.,Son,W.D.,Choi,T.I.,Kim,D.Y.Optimal degaussing techniques and magnetic measurement system.Proceedings of the 1997 International Conference on Marine Electromagnetic,dun 23-26 1997,London,UK.
    [176]Dallet,J.P.Presentation of a magnetic degaussing systems software study for ship.Proceedings of the 1997 International Conference on Marine Electromagnetic,Jun 23-26 1997,London,UK.
    [177]Madrid,Melcon.Using genetic algorithms for compensating the local magnetic perturbation of a ship in the earth's magnetic field.Microwave and Optical Technology Letters,November,2005,47(3):281-287.
    [178]刘宏达,李殿璞,马忠丽.基于多种群搜索策略的粒子群算法的舰船消磁优化.仪器仪表学报.2006,27(6S):861-863页.
    [179]杨秀霞张晓锋张毅.免疫遗传算法在舰船电力系统供电恢复中的应用研究[J].中国电机工程学报,2004,24(9):80-85页.
    [180]Lu Fang,Liu Hongda,Lan Hai.Power Flow Methods for Network Reconfiguration in shipboard Power System.6th International Marine Electrotechnology Conference,IMECE 2006,11.
    [181]张毅杨秀霞.舰船电力系统网络重构研究综述[J].电工技术学报,2005,20(8):1-6页.
    [182]H.Zhang,K.L.Butler.Simulation of ungrounded shipboard distribution systems in Pspice.Midwest Symposium on Circuits and Systems,1998,8:58-62P.
    [183]A.T.Adediran,H.Xiao,K.L.Butler.Fault studies of a U.S.naval shipboard power system.Thirty-second Annual North American Power Symposium,2000,10:18-25P.
    [184]A.T.Adediran,H.Xiao,K.L.Butler.The modeling and performance testing of a shipboard power system.33rd annual Frontiers of Power Conference,2000,10:VI1-VI9.
    [185]刘金波.船舶电力系统暂态稳定性分析.哈尔滨工程大学,2002:25-25页.
    [186]庄劲武.舰艇电力系统稳态参数计算方法的研究,海军工程大学学报,20005:P20-24页.
    [187]Bulter K L,Sarma N D.R,Prasad V R.A new method of network reconfiguration for service restoration in shipboard power systems.Proc.1999 IEEE Power Engineering Society Transmission and Distribution Conference,1999:658-662P.
    [188]Bulter K L,Sarma N D R,Prasad V R.Network reconfiguration for service restoration in shipboard power distribution systems. IEEE Transactions on Power System,2001,16(4):653-661P.
    [189]Bulter K L,Sarma N D R.General reconfiguration methodology for AC radial shipboard power systems.IEEE 2000 Power Engineering Society Winter Meeting,2000,2:1226-1230P.
    [190]杨秀霞,张晓锋,张毅,陈迎春.基于启发式遗传算法的舰船电力系统网络重构研究.中国电机工程学报,2003,23(10):42-46页.
    [191]Bulter K L,Sarma N O R.General reconfiguration methodology for AC radial shipboard power systems.IEEE 2000 Power Engineering Society Winter Meeting,2000,2:1226-1230P.
    [192]Srivastava Sanjeev K,Butler-Purry Karen L,Sarma N DR.Shipboard power restored for active duty.IEEE Computer Applications in Power,2002,15(3):16-23P.
    [193]Momoh J A,Zhu J Z,Kaddah S S.Optimal load shedding study of naval-ship power system using the Everett optimization technique.Electric Power Systems Research,2002,60:P145-152P.
    [194]杨秀霞,张晓锋,张毅.基于加速遗传算法的舰船电力系统故障恢复[J].电工技术学报,2005,20(5):53-57P.
    [195]Yang Xiuxia,Zhang Yi.Study of shipboard power system intelligent network reconfiguration.6th International Conference on Intelligent Systems Design and Applications,2006.
    [196]何芳,蔡兴国.基于改进遗传算法的舰船电力系统网络重构[J].电工技术学报,2006,21(9):25-30页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700