大气常压等离子体弧清洗理论与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为现代工业生产中的重要环节,清洗技术在各种金属制品表面处理过程中,扮演着极为重要的角色。清洗技术的选择和清洗工艺质量的好坏不仅涉及能源节约、技术安全、环境保护等重大问题,还直接影响到产品的性能和质量。与传统清洗技术和其它非直接接触干法清洗工艺相比,大气常压等离子体弧清洗作为一种新兴清洗技术,在满足金属零件清洗的需要,代表清洗技术高效、无污染、低能耗等发展趋势的同时,又具有自身的特点和优势,越来越受到国内外学者的高度重视。虽然目前已经就等离子体产生方式、气体种类的选择、清洗质量的评价等方面取得了一定成果,然而,由于大气常压等离子体弧清洗是一个多理论、多学科的交叉领域,涉及到复杂的热物理、化学反应作用过程,因而迫切需要对其清洗机理等关键问题进行深入研究。
     本文针对基体表面污染物种类以及分布方式的不同,分别对斑状颗粒污染物和层状致密污染物清洗时的能量耦合机制进行了研究。在分析颗粒污染物的粘结力、致密污染物的层裂应变基础上,利用传热学理论和有限元法分别建立了大气常压等离子体弧与上述待清洗工件间的三维热力耦合模型,并对界面清洗力和清洗应变等能量耦合作用进行了有限元分析,进而揭示了弧功率、扫描速度、基体厚度、污染物厚度等工艺参量对界面温度、界面清洗力、清洗应变的影响规律,从而为大气常压等离子体弧清洗过程中实验参量的合理选择提供了依据。
     利用导热微分方程和阿伦尼乌斯定律,针对厚度方向清洗界面移动、计算区域变化、边界条件非线性的难题,本文建立了大气常压等离子体弧清洗反应动力学模型并确定了频率因子、活化能等反应动力学参数,从而揭示了清洗百分比随清洗时间、金属零件表面氛围温度的变化规律,并进行了表面水滴接触角测量、X射线光电子能谱分析等相关实验验证。结果表明,工件表面污染物的清洗百分比随大气常压等离子体弧清洗时间的增大而增大,直至该污染物被彻底清除;此外,清洗对象等离子体弧热流作用侧的表面氛围温度对清洗百分比有着重要影响,清洗百分比随氛围温度的增加而增加。
     本文针对大气常压等离子体弧的能量分布显著影响清洗质量的特点,以及直接测量难以获得电流密度分布、温度分布等弧特性的问题,在建立流体动力学方程、MaXwell方程的基础上,通过有限元分析的顺序耦合法、物理环境法,研究了等离子体弧特性分布情况并分析了弧电流、气体流量、喷嘴悬距等工艺参量对等离子体弧特性的影响规律。通过建立基于CCD图像采集和等离子体弧光谱诊断技术的实验验证系统,对相同工艺参量作用下的数值仿真结果和光谱诊断结果进行了比较,其结果较好地验证了该方法的有效性。
     针对气体放电的雪崩效应、自磁压缩导致的等离子体弧能量集中在较小区域内以及热流密度分布存在较大梯度变化的问题,本文在构建基于外加横向交变磁约束的大气常压等离子体弧清洗能量控制装置基础上,相继建立了等离子体弧摆动幅度模型和热流密度分布数学模型;分析了励磁强度、工作电流、气体流量、喷嘴悬距、励磁波形等工艺参量对横向交变磁场作用下的等离子体弧摆动幅度和热流密度分布的影响规律,并进行了相应清洗实验验证。结果表明,横向交变磁场能有效控制等离子体弧的形态和热流密度分布,从而在保证清洗质量的同时,显著提高清洗效率。此外,弧电流和气流量越大,摆动幅度越小、内部梯度和中心处的热流密度越大;增大喷嘴悬距,则摆动幅度增大、而中心处的热流密度和内部热流梯度减小。
     本文针对大气常压等离子体弧清洗过程中工艺参数众多,不同工艺参数对清洗质量的影响程度不同以及有些参数之间存在交互性、相关性的问题,在大量清洗实验的基础上,借助主成分分析法和最小二乘支持向量机技术,建立了以表面水滴接触角为评价指标的清洗质量预测模型。在此基础上,利用人工鱼群算法对给定范围下的工艺参数组合进行了优化选择,并与正交试验极差分析法获得的较优参数组合进行了比较。结果表明,基于PCA-SVM的清洗质量预测模型的最大相对误差和MAPE误差分别为3.05%和2.605%;将优选后的工艺参数组合进行大气常压等离子体弧清洗实验,则能够明显降低水滴接触角值,即提高清洗质量。
Metal parts are widely used in aircraft, automobiles, ship manufacturing, and etc. Their quality and reliability are determined by the countermeasures of each link in parts processing. As an indispensable link in modern industrial production, cleaning technology plays an important role on the treatment process of metal surface. Besides it can reflect the quality management level of an enterprise, the choice of cleaning methods and the control of cleaning quality not only are involved in energy conservation, technical safety, environmental protection and other major issues, but also have a direct impact on product performance and quality. As a new cleaning technology, atmospheric pressure plasma arc (APPA) cleaning can meet needs of metal parts cleaning and development trend of cleaning technology, such as high-performance, non-polluting, low energy consumption and etc. Furthermore, compared with traditional, other non-direct contact and dry-cleaning technology, APPA has attracted increasing attention of domestic and foreign scholars. Although some achievement have been achieved in a few aspects such as generation methods of plasma, choice of working gas and evaluation methods of cleaning quality, there still exist some problems including cleaning mechanism that are required further theoretical and methodological researches, due to APPA cleaning being a multidisciplinary research field, which merged the thermo-physical effect and chemical reaction.
     According to substrate surface for the types of pollutants, as well as the characteristics of distribution, a three-dimensional coupled thermo-mechanical model about APPA acting on the cleaned metal parts has been established, by virtue of the theory of heat transfer and finite element method. In this thesis, Energy coupling mechanism of APPA cleaning speckle particle pollutants and layered dense pollutants have been studied respectively. Moreover, the effect of process parameters such as APPA power, scanning speed, substrate thickness and contaminant thickness on the interface temperature, interface cleaning force and cleaning strain has been revealed, so as to provide theoretical basis for the choice of process parameters during atmospheric pressure plasma arc cleaning metal parts.
     According to the mobile cleaning interface, changeful calculation region and non-linear boundary conditions along the thickness direction, in this thesis, a mathematical model of reactive kinetics in the metal surface contaminant cleaning using APPA has been developed, by means of thermal conduction differential equation and Arrhenius equation. Afterwards, reactive kinetics parameters such as activation energy and pre-exponential factor are calculated. On this basis, the intrinsic relationship between contaminant removal percentages, removal rate and influencing factors such as cleaning time and ambient temperature of APPA cleaning are revealed and validated with related experiments results. The results indicated that contaminant removal percentages increase with cleaning time increasing until the contaminant is drastically cleaned by APPA. Furthermore, the ambient temperature of APPA on the contaminant surface affects the removal percentages strongly. The removal percentages increase with the increase of the ambient temperature. To avoid the damage of metal substrate surface because of higher temperature and ensure the removal rate of the contaminant, the appropriate temperature which lies between the contaminant decomposition temperature and damage temperature of metal substrate.
     According to the fact that energy distribution of APPA having a significant effect on cleaning quality and arc properties including current density distribution and temperature distribution being difficult to achieved by direct measurement methods, a three-dimensional axisymmetric mathematical model, including the influence of the swirl exiting in the plasma torch, has been developed to describe the heat transfer and fluid flow within a combined plasma arc with magneto-hydrodynamics equations and Maxwell equations. In this model, a mapping method and a meshing method of variable step-size are adopted to mesh the calculation domain and to improve the results precision. To overcome a problem from the coexistence of non-transferred arc and transfer arc and the coupling between electric, magnetic, heat flow and fluid flow phenomena in the combined plasma arc, a sequential coupling method and a physical environment approach are introduced into the finite element analysis on jet characteristics of the combined plasma arc. Furthermore, the jet characteristics of combined plasma arc such as temperature, velocity, current density and electromagnetic force are studied; the effects of working current, gas flow and the distance from the nozzle outlet to the anode on the distributions of temperature, velocity and current density are also revealed. Compared with the collection and diagnosis on the combined plasma arc by CCD, the results show that the simulated value appears to be in good agreement with measured value under the conditions of the same process parameters.
     According to the problem that the energy distribution of plasma arc being limited in smaller region and the temperature gradient of plasma arc having more variation in the arc column owing to the avalanche effect of gas discharge and the constraint of plasma arc by its own magnetic field, an external transverse alternating magnetic field is applied to APPA to create a plasma for cleaning a large metal surface. On the basis, two mathematical models are developed to describe the oscillating amplitude of the plasma arc root along the metal surface and the heat flux density distribution of plasma arc on the metal surface, respectively. The behavior of plasma arc under the external transverse triangular alternating magnetic field imposed perpendicular to the plasma current is discussed, and the effect of process parameters such as working gas flow rate, arc current, magnetic flux density and the distance from the nozzle outlet to the anode workpiece on the form and heat flux distribution of plasma arc are also revealed and validated with related experiments results. The results show that it is feasible to control the shape and heat flux density of APPA with the external transverse alternating magnetic field, which can expand the region of plasma arc thermal treatment and flatten the heat flux density upon the workpiece, so as to ensure APPA cleaning quality and to simultaneously improve the cleaning efficiency of APPA cleaning. Furthermore, the oscillating amplitude of plasma arc increases and the heat flux density gradient upon the workpiece decrease with the magnetic flux density enhancing. However, an overly strong magnetic field results in the plasma arc unstable. Under the same magnetic flux density, less gas flow rate and arc current, more distance from the nozzle outlet to the anode cause the oscillating amplitude to increase. Contrarily, the more gas flow rate and arc current, the more heat flux density peak increase. Moreover, more distance from nozzle outlet to workpiece descends the heat flux density peak.
     According to the fact that APPA cleaning being a complicated and non-linear process, cleaning quality being influenced by process parameters and the interaction of different parameters being complex, based on many experiments on APPA cleaning, an intelligent predictive model of the non-linear relationship between cleaning quality (water contact angle of cleaned surface) and process parameters is established with the research of Least Squares Support Vector Machines (LS-SVM) and Principal Component Analysis (PCA). Afterwards, Artificial Fish Swarm Algorithm (AFSA) is introduced to optimize established control model of cleaning quality and to obtain the optimum process parameters under a certain range of these parameters. The results indicate that it is feasible to apply PCA-SVM and AFSA in forecasting the cleaning quality and determining the process parameters of APPA cleaning. The maximum relative error and MAPE error are 3.05% and 2.605%, respectively. It is obvious to reduce the water contact angle of cleaned surface and to improve cleaning quality of APPA cleaning with above optimum process parameters.
引文
[1]魏竹波,周继维,等.金属清洗技术[M].北京:化学工业出版社,2007.
    [2]李金桂,郑家燊,等.表面工程技术和缓释剂[M].北京:中国石化出版社,2007.
    [3]英格索兰中国投资有限公司.喷丸清理与空压机的选用[J].中国修船,2005,4:43-44.
    [4]栾伟玲,涂善东.喷丸表面改性技术的研究进展[J].中国机械工程,2005,16(15):1405-1409.
    [5]Kittisupakorn P,Kaewpradit P.Integrated data reconciliation with generic model control for the steel pickling process[J].Korean Journal of Chemical Engineering,2003,20(6):985-991.
    [6]Daosud W,Thitiyasook P,Arpornwichanop P,et al.Neural network inverse model based controller for the control of a steel pickling process[J].Computers and Chemical Engineering,2005,29(10):2049-2264.
    [7]Mabrouki T,Raissi K,Cornier A.Numerical simulation and experimental study of the ineraction between a pure high-velocity water jet and targets:contribution to investigate the de-coating process[J].Wear,2000,239:260-273.
    [8]Tark Mabrouki,Kadour Raissi.Stripping processing modeling:interaction between a moving water jet and coated target[J].International Journal of Machine Tools and Manufacture,2002,42(11):1247-1258.
    [9]Sami B,Awad.Aqueous ultrasonic cleaning and corrosion protection of steel components [J].Metal Finishing,2004,102(9):56-61.
    [10]Bretz N,Strobel J,Kaltenbacher M,et al.Numerical simulation of ultrasonic waves in cavitating fluids with special consideration of ultrasonic cleaning[J].Ultrasonics Symposium,2005,1:703-706.
    [11]Elbing F,Anagreh N,Dorn L,et al.Dry ice blasteing as pretreatment of aluminum surfaces to improve the adhesive strength of aluminum bonding joints[J].International Journal of Adhesion and Adhesives,2003,23(1):69-79.
    [12]王斌.我国轮胎模具制造和情绪技术概况[J].轮胎工业,2007,27(12):727-730.
    [13]陈菊芳,张永康,等.短脉冲激光清洗细微颗粒的研究进展[J].激光技术,2007,31(3):301-305.
    [14]张魁武.物体表面的激光清洗技术[J].产品与技术,2007,3:84-89.
    [15]周桂莲,赵海霞.激光清洗轮胎模具新工艺[J].特种橡胶制品,2003,24(5):39-41.
    [16]徐军,孙振永,等.激光除锈过稃的实时监测技术研究[J].光子学报,2002,3l(9):1090-1092.
    [17]宋峰,邹万芳,等.激光清洗的其它应用[J].清洗世界,2006,22(3):38-41.
    [18]谭荣清,郑光,等.激光除漆对基材力学性能的影响[J].激光杂志,2005,26(6):83-84.
    [19]Mihai Stafe,Constantin Negutu,Ion M.Popescu.Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime[J].Applied Surface Science,2007,253:6353-6358.
    [20]Zhou X,Imasaki K,Furukawa H,et al.Estimation of laser ablation surface cleaning efficiency[J].The International Journal of Advanced Manufacturing Technology,2002,19:642-645.
    [21]N.N.Nedialkov,P.A.Atanasov,S.Amoruso,et al.Laser ablation of metals by femto second pulses:Theoretical and experimental study[J].Applied Surface Science,2007,253:7761-7766.
    [22]Hsin Tsun Hsu,Jehnming Lin.Thermal-mechanical analysis of the surface waves in laser cleaning[J].International Journal of Machine Tools & Manufacture,2005,45:979-985.
    [23]Pandora Psyllaki,Roland Oltra.Preliminary study on the laser cleaning of stainless steels after high temperature oxidation[J].Materials Science and Engieering,2000,A282:145-152.
    [24]Zhou X,Imasaki K,Furukawa H,et al.Simulation study and experiment on laser-ablation surface cleaning[J].Optics & Laser Technology,2001,33:189-194.
    [25]张塍.等离子清洗的应用与技术研究[J].电子工业专用设备,2006,137:21-27.
    [26]李德元,赵文珍,董晓强等.等离子技术在材料加工中的应用[M].北京:机械工业出版社,2005.
    [27]过增元,赵文华.电弧和热等离子体[M].北京:科学出版社,1986.
    [28]Kersten H,Rohde D,Steffen H,et al.On the determination of energy fluxes at plasma surface process[J].Appled Physics A,2001,72:531-740.
    [29]S.A.Nair,K.Yan,A.J.M.Pemen,et al.A high-temperature pulsed corona plasma system for fuel gas cleaning[J].Journal of Electrostatics,2004,61:I17-127.
    [30]Yousefi HR,Ghoranneviss M,Tehrani AR,et al.Investigation of glow discharge plasma for surface modification of poloypropylene[J].Surface and Interface Analysis,2003,35(12):1015-1017.
    [31]Chuan Li,J.H.Hsieh,Jui-Ching Cheng.Modeling and parameter analysis of plasma cleaning[J].Surface & Coatings Technology,2006,200(10):3370-3375.
    [32]Rudolf Thyen,Kartin H,Niklas K,et al.Cleaning of silicon and steel surface using Dielectric Barrier Discharges[J].Plasmas and Polymers,2000,5(2):91-102.
    [33]Winter R,Korzec D Engemann.Large area plasma cleaning with 26" microwave slot antenna plasma source SLAN Ⅱ[J].Surface and Coatings Technology,1997,93:134-141.
    [34]Kendall J.Hollis,Richard G.Castro,et al.The removal of co-deposited carbon deuterium films from stainless steel and tungsten by transferred-arc cleaning[J].Fusion Engineering and Design,2001,55:437-447.
    [35]Zhanbo Yu,Z.G.Wang,K.Yamazaki,et al.Surface finishing of die and tool steels via plasma-based electron beam irradiation[J].Journal of Materials Processing Technology,2006,180:246-252.
    [36]龙乐.等离子体清洗及其在电子封装中的应用[J].电子与封装,2008,8(4):12-15.
    [37] Wood L, Fairfield C, Wang K. Plasma cleaning of chip scale packages for improvement of wire bond strength, Intsym on Electronic Materials & Packaging [C]. HongKong, China, 2000.
    [38] D. F. Okane, K. L. Mittal. Plasma cleaning metal surface [J]. Journal vacuum Science and Technology, 1974, 11(3):567-569.
    [39] Richard A.Rosenberg, James A. Smith, Daniel J.Wallance. Plasma cleaning of beamline optical components: Contamination and gas composition effects [J]. Review of Scientific Instruments, 1992, 63(1):1486-1489.
    [40] J. H. Hsieh, L H. Fong, S. Yi, et al. Plasma cleaning of copper leadframe with Ar and Ar/H_2 gases [J]. Surface and Coatings Technology, 1999, 112:245-249.
    [41] C. Lee, R. Gopalakrishnan, K. Nyunt, et al. Plasma cleaning of plastic ball grid array package [J]. Microelectronics Reliability, 1999, 39:97-105.
    [42] A. Belkind, N. Plainfield, S. Zarrabian. Plasma cleaning of metals: lubricant oil removal [J]. Metal Finishing, 1996, 94(77):19-22.
    [43] Masaya Sugimoto, Koichi Takeda. Surface variation caused by vacuum arc cleaning of organic contaminant [J]. Thin Solid Films, 2006, 506-507:337-341.
    [44] L. Carrino, G.Napolitano, L. Sorrentino. Correlation of wettability and superficial cleaning of 2024 aluminium alloy with air cold plasma treatment time [J]. The International Journal of Advanced Manufacturing Technology, 2005, 26(9-10):1433-3015.
    
    [45] 杨建生.等离子清洗工艺对pbga 组装可靠性的影响 [J].电子与封装, 2007,7 (1): 14-35.
    
    [46] Kiyoto Inomata, Hideomi Koinuma, Yoshiyuki Oikawa, et al. Open air photoresist ashing by a cold plasma torch: Catalytic effect of cathode material [J]. Applied Physics Letters, 1995, 66(17):2188-2190.
    [47] Park J, Henins I, Herrmann H. W, et al. An atmospheric pressure plasma source [J]. Applied Physics Letters, 2000, 76(3):288-290.
    [48] Selwyn G. S, Herrmann H. W, Park J, et al. Materials processing using an atmospheric pressure, RF-generated plasma source [J]. Contributions to Plasma Physics, 2001, 41(6):610-619.
    [49] Tu V.J, Jeong J. Y, Schuze A, et al. Tantalum etching with a nonthermal atmospheric pressure plasma [J]. Journal vacuum Science Technology A, 2000, 18(6):2799-2805.
    [50] Chaudhary Khaliq, Inomata Kiyoto, Yoshimoto Mamoru, et al. Open-air silicon etching by H_2-He-CH_4 flowing cold plasma [J]. Materials Letters, 2003, 57(22-23):3406-3411.
    [51] Hiroyuki Yoshiki, Kazutake Taniguchi, Yasuhiro Horiike. Localized removal of a photoresist by atmospheric pressure micro-plasma jet using RF corona discharge [J]. Japanese Journal of Applied Physics, 2003, 42:L342-L345.
    [52] E. S.Senokosov, A.E. Senokosov. Plasma electric-arc cleaning of metal products [J]. Metallurgist, 2005, 49(3-4):117-122.
    [53]A.P.Glinov,A.E.Poltanov,Yu.G.Degtev,et al.The possibility of using rail-gun arcs for cleaning metal surfaces[J].High Temperature,2004,42(4):635-639.
    [54]Dong H.Shin,Chan U.Bang,Jong K.Kim,et al.Modification of metal surfaces by microwave plasma at atmospheric pressure[J],Surface & Coatings Technology,2007,201:4939-4942.
    [55]小赫伯特·S·古德,琼·A·尼尔森,拉里·E·尼奇.钛和钛合金的等离子体除锈皮:中国,97192426.0[P].1997,01,20.
    [56]In S.Choi,Seok W.Hwang,Jong C.Park.Application of medium frenquency atmospheric plasma on continuous aluminum wire cleaning for magnet wire manufacturing[J].Surface and Coatings Technology,2001,142-144:300-305.
    [57]Jung G.Kang,Hyoung S.Kim,Sung W.Ahn,et al.Development of the RF plasma source at atmospheric pressure[J].Surface and Coatings Technology,2002,171(1-3):144-148.
    [58]Yoon-Kee Kim,Marko Eichler,Claus-Peter Klages.Effects of discharge pulsing on the cleaning of surfaces using a dielectric barrier discharge at atmospheric pressure[J].Surface and Coatings Technology,2003,171:321-327.
    [59]Kazutoshi Kiyokawa,Akihiko Itou,Hiroyuki Matsuoka.Surface treatment of steel using non-equilibrium plasma at atmospheric pressure[J].Thin Solid Films,1999,345:119-123.
    [60]W.J.Liu,Y.C.Lan,Y.C.Chen,et al.Study of photo-resistance and polyimide strip by atmospheric pressure plasma technology[J].Surface and Coatings Technology,2007,201:6530-6535.
    [613 Shen Tang,Oh-June Kwon,Na Lu,et al.Surface characteristics of AISI 304L stainless steel after an atmospheric pressure plasma treatment[3].Surface & Coatings Technology,2005,195:298-306.
    [62]Eung Suok Lee,Jai Hyuk Choi,Hong Koo Balk.Surface cleaning of indium tin oxide by atmospheric air plasma treatment with steady-state airflow for orgnic light emitting diodes[J].Surface and Coatings Technology,2007,201:4973-4978.
    [63]Jungo Toshifuii,Takashi Katsumata,Hirofumi Takikawa,et al.Cold arc-plasma jet under atmospheric pressure for surface modification[J].Surface and Coatings Technology,2003,171:302-306.
    [64]李海江,王守国,赵玲利,等.常压射频低温冷等离子体清洗光刻胶研究[J].半导体技术,2004,29(12):26-29.
    [65]Changquan Wang,Xiangning He.Polyproylene surface modification model in atmospheric pressure dielectric barrier discharge[J].Surface and Coatings Technology,2006,201:3377-3384.
    [66]Shin Chun Hsu,Jehnming Lin.Removal mechanisms of micro-scale particles by surface wave in laser cleaning[J].Optics & Laser Technology,2006,38:544-551.
    [67]宋峰,邹万芳,田彬,等.一维热应力模型在调Q短脉冲激光除漆中的应用[J].中国激光,2007,34(11):1578-1581.
    [68]Y.F.Lu,W.D.Song,B.W.Ang,et al.A thoretical model for laser removal of particles from solid surfaces[J].Applied Physics A,1997,65:9-13.
    [69]Yong Feng Lu,Wen Dong Song,Teck Seng Low.Laser cleaning of micro-particles from a solid surface:theory and applications.Materials Chemistry and Physics,1998,54:181-185.
    [70]X.Zhou,K.Imasaki,H.Furukawa,et al.Simulation study and experiment on laser ablation surface cleaning[J].Optics & Laser Technology,2001,33:189-194.
    [71]李艳强,吴超,阳富强.微颗粒在表面粘附的力学模型[J].环境科学与技术,2008,3l(1):8-11.
    [72]陶文铨.传热学[M].西安:西北工业大学出版社,2006.
    [73]姜任秋.热传导、质扩散与动量传递中的瞬态冲击效应[M].北京:科学出版社,1997.
    [74]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998.
    [75]机械工程材料性能数据手册[M].北京:机械工业出版社,1995.
    [76]Wenbin Wu,Wenji Xu,Zhongying Wang,et al.Analysis of edge effects on flexible forming of sheet metal using plasma arc[J].International Journal of Manufacturing Technology and Management,2008,13:2-4.
    [77]W.J.Xu,J.C.Fang,X.Y.Wang,et al.A numerical simulation of temperature field in plasma-arc forming of sheet metal[J].Journal of Materials Processing Technology,2005,164-165:1644-1649.
    [78]郑少华,姜奉华.试验设计与数据处理[M].北京:中国建材工业出版社,2004.
    [79]Maribel de la Garza,Afredo Artigas,Alberto Monsalve,et al.Modeling the spalling of oxide scales during hot rolling of steel strip[J].Ocidation of Metals,2008,70:3-4.
    [80]M.Krzyanowski,W.Yang,C.M.Sellars,et al.Analysis of mechanical descaling:modeling and experimental approach[J].Materials Science and Technology,2003,19:109-116.
    [81]M.Krzyanowski,J.H.Beynon.Finite element model of steel oxide failure duing tensile testing under hot rolling conditions[J].Materials Science and Technology,1999,15:1191-2000.
    [82]R.Y.Chen,W.Y.D.Yeun.Review of the high-temperature oxidation of iron and carbon steels in air or oxygen[J].Oxidation of Metals,2003,59:5-6.
    [83]Martin Torres,Rafael Colas.A model for heat conduction through the oxide layer of steel during hot rolling[J].Journal of Materials Processing Technology,2000,105:258-263.
    [84]D.Korzec,J.Engemann.Large area lubricant removal by use of capacitively coupled RF and slot antenna microwave plasma source[J].Surface and Coatings Technology,1997,89:165-176.
    [85]许越.化学反应动力学[M].北京:化学工业出版社,2005.
    [86]陈钟秀.化工热力学[M].北京:化学工业出版社,2001.
    [87]袁用文,李爱民,张天仪.超薄型钢结构防火涂料的热解动力学研究[J].安全与环境学报,2006,6(5):104-107.
    [88]赖艳华,马春元,施明恒.辐射加热条件下生物质燃料热解过程的传热传质[J].太阳能学报,2006,27(7):661-664.
    [89]W.J.Xu,J.C.Fang,X.Y.Wang.A numerical simulation of temperature field in plasma-arc forming of sheet metal[J],Journal of Materials Processing Technology,2005,164:1644-1649.
    [90]曾好平.熔射成形骤冷熔滴生长特性基础研究[D].辽宁:大连理工大学机械工程学院,2007.
    [91]吴兆春.固体烧蚀率与表面加热功率关系的探讨[J].应用激光,2003,23(5):282-286.
    [92]Ozisik.M.N.热传导[M].北京:高等教育出版社,1983.
    [93]靳慧斌.城市固体废物中可燃物的热解特性及反应动力学研究[D].河北:河北工业大学,1998.
    [94]H.X.Wang,K.Cheng,X.Chen,et al.Three-dimensional modeling of heat transfer and fluid flow in laminar-plasma material re-melting processing[J].International Journal of Heat and Mass Transfer,2006,49:2254-2264.
    [95]K.C.Hsu,E.Pfender.Two-temperature modeling of the free-burning,high-intensity arc [J].Journal of Applied Physics,1983,54:4359-4366.
    [96]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [97]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2005.
    [98]R.Westhoff,J.Szekely.A model of fluid,heat flow,and electromagnetic phenomena in a nontransferred arc plasma torch[J].Journal of Applied Physics,1991,70(7):3455-3466.
    [99]W.H.Kim,H.G.Fan,S.J.Na.A mathematical model of gas tungsten arc welding considering the cathode and the free surface of the weld pool[J].Metallurgical and Materials Transactions B,1997,28B:679-686.
    [100]P.F.Mendez,M.A.Ramirez,G.Trapaga,et al.Order-of-magnitude scaling of the cathode region in an axisymmetric transferred electric arc[J].Metallurgical and Materials Transactions B,2001,32B:547-554.
    [101]H.X.Wang,X.Chen,K.Cheng,et al.Modeling study on the characteristics of laminar and turbulent argon plasma jets impinging normally upon a flat plate in ambient air [J].International Journal of Heat and Mass Transfer,2007,50:734-745.
    [102]Y.Gao,L.T.An,C.Q.Sun,et al.Effect of anode arc root position on the behavior of the DC non-transferred plasma jet at field free region[J].Plasma Chemistry and Plasma Processing,2005,25(3):215-226.
    [103]芦凤桂.TIG焊接电弧与熔池动态交互作用三维数值模拟[D].上海:上海交通大学,2004.
    [104]R.T.Choo,J.Szekely,R.C.Westhoff.On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles:Part Ⅰ.Modeling the welding arc[J].Metallurgical and Materials Transactions B,1992,23B:347-369.
    [105]F.G.Lu,X.H.Tang,H.L.Yu,et al.Numerical simulation on interaction between TIG welding arc and weld pool[J].Computational Materials Science,2006,35:458-465.
    [108]Q.B.Fan,L.Wang,F.C.Wang.Modeling influence of basic operation parameters on plasma jet[J].Journal of Materials Processing Technology,2008,198:207-212.
    [107]F.L.Yin,S.S.Sun,C.L.Yu,et al.Computational simulation for the constricted flow of argon plasma arc[J].Computational Materials Science,2007,40:389-394.
    [108]赵华夏,焦向东.输油管TIG焊接电弧温度的光谱诊断[J].焊接技术,2006,35(6):55-57.
    [109]Toru Iwao,Hirokazu Miyazaki,Takayuki Ishida,et al.Proposal of treatment for hazardous wastes using the highly concentrated radiation from torch plasma[J].ISIJ International,2000,40(3):275-279.
    [110]J.P.Xu,J.C.Fang,Z.G.Li.Plasma jet imaging by CCD technology in rapid mold manufacturing[J].Journal of Materials Processing Technology,2002,129:250-254.
    [111]李志刚.等离子体弧图像采集及温度场研究[D].辽宁:大连理工大学,2007.
    [112]董华军,廖敏夫,邹积岩,等.真空开关电弧图像采集及处理过程[J].电工技术学报,2007,22(8):82-84.
    [113]徐文骥.等离子熔射成形法制造零件技术的基础研究[D].辽宁:大连理工大学,2000.
    [114]朱丹平,邵华,吴毅雄.电弧等离子体光谱诊断中的Abel反变换的实现[J].上海交通大学学报,2004,38(11):1954-1956.
    [115]Yosuke Yamamoto,Kazuhiko Iwai,Shigeo Asai.Plasma behavior under imposition of alternating magnetic field perpendicular or parallel to the plasma arc current[J].ISIJ International,2007,47(7):960-964.
    [116]K.Takeda,Y.Nakamura.The 6th International Conference on Gas Discharge and Their Applications[C].Edinburgh,1980.
    [117]D.B.Sobyanin,B.G.Gavrilov,I.M.Podgorny.Laboratory investigation of plasma jet interaction with transverse magnetic field[J].Advanced Space Research,2002,29(9):1345-1349.
    [118]A.Zhainakov,R.M.Urusov,T.E.Urusova.Numerical simulation of gasdynamic flows formed by an electric arc in an external transverse magnetic field[J].High Temperature,2002,40(2):171-175.
    [119]徐文骥,郭彦肖,宋文庆,等.磁控等离子体弧柔性成形试验研究[J].机械科学与技术,2007,26(3):387-390.
    [120]R.N.S.Fassani,O.V.Trevisan.Analytical modeling of multi-pass welding processing with distributed heat source[J].Journal Brazilian Society of Mechanical Sciences Engineering,2003,25(3):302-305.
    [121]Afshin Bapari,Abbas Najafizadeh,Mohamamd Moazeny.Prediction of hot flow stress of CrMoV steel using artificial neural network(ANN)[J].ISIJ International,2007,47(8):1126-1130.
    [122]Fatih Altun,Ozgur Kisi,Kamil Aydin.Predicting the compressive strength of steel fiber added lightweight concrete using neural network[J].Computational Materials Science,2008,42:259-265.
    [123]Nello Cristianini,John Shawe-Taylor.支持向量机导论[M].李国正,王猛,曾华军译.北京:电子工业出版社,2004.
    [124]王桂兰,易善军,张海鸥.基于主成分分析法的等离子熔射层质量预测[J].机械科学与技术,2006,25(12):1387-1390.
    [125]杨海澜,吴毅雄.焊接质量控制的主成分分析人工神经网络[J].上海交通大学学报,2003,37(10):1536-1539.
    [126]D.An,K.W.Tang.Pseudo principal components analysis for feature extraction and pattern recognition of time-series data[C].Intelligent Signal Processing and Communication Systems,2004.
    [127]崔伟东,周志华,李星.支持向量机研究[J].计算机工程与应用,2001,1:58-61.
    [128]吴德会.基于最小支持向量机的铣削加工表面粗糙度预测模型[J].中国机械工程,2007,18(7):838-841.
    [129]D.F.Shi,Nabil.N.Gindy.Tool wear predictive model based on least squres support vector machines[J].Mechanical Systems and Signal Processing,2007,21:1799-1814.
    [130]S.W.Fei,Y.Sun.Forecasting dissolved gases content in power transformer oil based on support vector machine with genetic algorithm[J].Electric Power Systems Research,2008,78:507-514.
    [131]舒服华.基于LSSVM和AFSA的摩擦焊接工艺参数优化[J].焊接学报,2008,29(12):104-108.
    [132]李晓磊,路飞,田国会,等.组合优化问题的人工鱼群算法应用[J].山东大学学报,2004,34(5):64-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700