高炉风口温度场和应力场的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风口是高炉上损坏频率较高的部件,它承受着高速煤粉的磨蚀,高温炉气的冲刷和炉料的撞击。目前国内高炉风口大多由纯铜制造,其平均使用寿命仅有2~3个月。频繁地更换风口使高炉运行的稳定性降低、产量减少、工人的劳动强度增大。研究提高风口使用寿命的途径有很大的实际意义。
     本文用计算机模拟的方法研究了高炉风口的温度场和应力场。模拟了纯铜高炉风口的瞬态温度场和应力场,研究了杂质含量及水垢厚度对高炉风口稳态温度场及应力场的影响,并对带有陶瓷层、镍合金层的铜风口稳态温度场及应力场进行了数值模拟。
     研究结果表明:没有水垢和杂质的水冷铜风口中温度和应力分布比较均匀,最高温度为255℃,最大应力为43.7MPa,均低于许用值。风口材质中含有杂质元素时,风口的最高温度和最大应力有所提高,但幅度不大。因此,制造铜风口时不必刻意要求铜的纯度。风口水冷内腔形成水垢后,风口的最高温度和最大应力明显提高。当水垢厚度超过0.16mm时,其最高温度超过许用温度。因此,设法防止铜风口水冷内腔形成水垢是提高风口寿命的重要途径。风口前端和侧面均采用陶瓷涂层时,在风口前端,陶瓷与铜的结合面处应力较大,仅0.1mm厚的涂层应力就达190MPa,高于许用应力,将产生开裂现象。风口前端采用镍合金涂层,侧面采用陶瓷涂层时,风口内的最高温度和最大应力均较小。涂层厚度小于0.5mm时,铜风口基体、镍合金、陶瓷、铜-镍合金结合面、铜-陶瓷结合面的最高温度和最大应力均小于许用值。工厂实际使用表明风口的使用寿命得到显著提高。
Tuyere which is an important part of the blast furnace is often destructed by the formidable working conditions, such as abrasion form coal dust with high rate and erosion from burner gas with high temperature. At the present, domestic tuyeres are made of pure copper, and their lives are only 2-3 months. If tuyeres are changed frequently, the stability of the blast will be cost; the production of the blast will be reduced; the working strength of workers will be increased. Studying the means of improving the service life of tuyere is actual significance.
     In this paper, it studied the temperature field and the stress field of tuyere using the numerical simulation method, and simulated transient temperature field and stress field of the Cu-tuyere, the temperature field and the stress field of the Cu-tuyere with different incrustation scale thickness and impurity, and the temperature field and the stress field of the Cu-tuyere with ceramics、nickel alloy layers.
     The simulation results indicate that the temperature distribution and the stress distribution are very homogeneous in the Cu-tuyere without incrustation scale and impurity. The highest temperature is 255℃, and its maximal stress is 43.7MPa, both of them are under the promised values. The highest temperature and the maximal stress are little increased in the Cu-tuyere with impurity, so it needn't to require purity of Cu when made tuyere. When formatting incrustation scale, the highest temperature and the maximal stress are wide-range raised in tuyere. The highest temperature of copper tuyere is above the promised values when the thickness of incrustation scale is above 0.16mm. As result of that preventing incrustation scale formation is the important method of improving life of tuyere. As the ceramic layer on tuyere front and its flank, the stress of the Cu-ceramic joint on tuyere front is maximal, the stress of 0.1mm ceramic layer is 190MPa, above the promised values, will produce split. As the nickel alloy layer on tuyere front and the ceramic layer on its flank, the highest temperatures and the maximal stress are both lower. When the layers is under 0.5mm, the highest temperatures and the maximal stresses of the base of the Cu-tuyere, nickel alloy, ceramic, the Cu-nickel alloy joint, the Cu-ceramic joint are both under the promised values. The trial use in factory shows that the service life of tuyere was improved obviously.
引文
[1]西安冶金建筑学院炼铁教研室编.小高炉炼铁技术.西安:陕西人民出版社,1978.
    [2]刘青.高炉风口破损机理及寿命探讨.钢铁研究,1998,12(6):11-15.
    [3]梁南山.减少高炉风渣口烧损的实践.湖南冶金,2003,31(6):30-32.
    [4]John G, Mathieson, John S, Truelove. Toward an understanding of coal combustion in blast furnace tuyere injection. Fuel, 2005, (84):1229-1237.
    [5]Chingwen Chen. Numerical analysis for the multi-phase flow of pulverized coal injection inside blast furnace tuyere. Applied Mathematical Modelling, 2005,6(29):871-884.
    [6]金明珠,丛日东.凌钢高炉风口攻关实践.冶金设备,2004,(4):61-62.
    [7]康文进.减少煤粉对风口磨损的研究.包头:1995年炼铁学术年会论文集,1995:286-288.
    [8]于仁波.高炉风口小套的研制.山东冶金,2002,24(6):72.
    [9]Albana M P, Scian A N, Pereira E. Inside formation of sialon carbide based refractory microstructure and mechanical strength. Silicate Industries, 1997, 62(5-6):119-128.
    [10]Huang X.Y. Application of compound hearth with self-baking carbon block and ceramic brick work in large scale BF. Iron making, 1991, (Supple):40.
    [11]韩庆,王颖生.首钢炼铁厂减少风口损坏的实践.钢铁,2002,37(4):16-19.
    [12]刘达伦,鲁德昌,龚文渠.重钢高炉低压水双室风口新技术开发应用.四川冶金,2000,7(5):10-11.
    [13]李瑛.高炉风口水冷内腔的改进设计及应用.安徽冶金科技职业学院学报,2005,15(2):17-18.
    [14]宋怀凤,董见军,陈学英等.使用折流式风口小套的生产实践.河北冶金,2000,(2):38-40.
    [15]靳巍,邵德军.W型新结构风口的研制.山东冶金,1996,18(6):58-62.
    [16]侯向东.提高风口使用寿命的探讨.科技情报开发与经济,2001,11(6):139,140.
    [17]李东旭.贯流式风口在北钢3号高炉的应用实践.本溪冶金高等专科学校学报,2004,6(2):10-11.
    [18]程正东.高炉喷煤支管喷吹状态监控系统.钢铁,2000,14(3):6-8.
    [19]Oberle T.L. Properties influencing wear of metals. Metals, 1951, (3):59-62.
    [20]郭国林,段满意,李亚江.高炉铜质风口套亚音速喷涂层的性能分析.山东交通学院学报,2004,12(4):35-38.
    [21]杨军,符寒光.高炉风口表面处理工艺的研究和应用.中国表面工程,2000,22(4):36-38.
    [22]J M Guilemany, J M Miguel, S Vizacaion et al. Role of three-body abrasion wear in the sliding wear behavior of WC-Co coatings obtained by thermal spraying. Surface and Coatings Technology, 2001,35(140):141-146.
    [23]李建明.磨损金属学.北京:冶金工业出版社,1996.
    [24]曾畅梅.等离子喷涂技术在高炉风、渣口上的应用.炼铁,1984,8(4):82-83.
    [25]张全,鄂加强,谢铠等.高炉风口多股流喷吹粉煤与空气流动数值模拟.中国矿业大学学报,2001,30(5):453-457.
    [26]丁玉龙,杨天钧,苍大强.煤粉喷吹使高炉风口磨损的预测模型.北京科技大学学报,1994,16(2):112-117.
    [27]邹祖桥,孙学信,邱纪华等.高炉风口内煤粉颗粒轨迹的数学模拟.钢铁,2000,35(3):9-11.
    [28]Ludama K C. Mechanism-based modeling of friction and wear. Wear, 1996,6(2):1-7.
    [29]肖江成,梁南山.涟钢2200m~3高炉风口磨损频繁的原因与对策.炼铁,2005,24(2):28-30.
    [30]黄晓煜,廖相巍.风口热障涂层长寿作用效果研究.钢铁,2005,40(10):18-20.
    [31]王久志,吴炽,阎政国.高炉风口回旋区测温技术研究.炼铁,1995,14(2):13-16.
    [32]姜赤军,刘恒权.新型高炉风口的设计.鞍钢技术,2003,1:11-13.
    [33]Chen L., Xie T.H. Technical development of BF tuyeres described by the Patents, 2001,23(2): 11-15.
    [34]Belle W, Marijnissen G. Van lie shout. Surface and Coatings Technology, 1999, 34(4): 61-67.
    [35]Koichi Shinohara, hidemi Akizuki. Design and performance of new, long life blast furnace at mizushima works. Iron & Steel engr, 1998,65(10):26-28.
    [36]冯改山.性能渐变材料原理及其应用于耐火材料的技术可能性.耐火材料,1994,28(5):300-303.
    [37]中岛龙一.杜续恩译.利用人工智能的高炉操作管理专家系统的开发和应用.国外钢铁,1998, (12):19.
    [38]秦民生,杨天钧.炼铁过程的解析与模拟.北京:冶金工业出版社,1991.
    [39]田村健二.高炉崩坏周期微粉炭多量吹过影响.CAMPISIJ,1994,7(5):960.
    [40]符寒光.提高高炉风口使用寿命研究的进展.中国冶金,1998,3:25-28.
    [41]杜鹤桂.国外高炉炼铁技术的进步.炼铁,1999,18(1):1-5.
    [42]大中逸雄.计算机传热凝固解析入门.北京:机械工业出版社,1988.
    [43]李应有.高炉风口梯度涂层材料的设计及应用:(博士学位论文).钢铁研究总院,1997.
    [44]田荣璋,王祝堂主编.铜合金及其加工手册.长沙:中南大学出版社,2002.
    [45]王海军主编.热喷涂技术问答.北京:国防工业出版社,2006.
    [46]龚江宏著.陶瓷材料断裂力学.北京:国防工业出版社,2001.
    [47]唐群,楚建新,张晓勇.陶瓷-金属连接中的残余应力.电子工艺技术,2001,22(4):166-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700