几类不确定系统的稳定性与镇定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几乎所有的实际系统都存在着不确定性.这种不确定性可能来源于系统建模误差、时变参数、量测噪声和外部扰动等.通常设计是基于一个确定的系统模型,而实际系统与这个模型有偏差.因此,使针对确定性系统设计的控制律满足不确定或者时变的实际系统的需要,是一个值得研究的课题.此类研究通常包含两个方面:一、估计一个控制律的鲁棒性,二、寻找鲁棒性较强的控制律的特征.本论文将围绕这两方面的问题展开研究.
     Lyapunov稳定性理论是本学位论文用到的主要工具.应用Lyapunov理论主要难点在于一、如何构造系统的Lyapunov函数或泛函;二、如何估计所构造的Lyapunov函数或泛函的时间导数.本论文从这两方面着手,研究了几类不确定系统的鲁棒控制问题.主要内容可以分为两个部分:第二章为第一部分,第三、四、五章构成了第二部分.在第一部分,利用控制Lyapunov函数(CLF)研究了一组不确定非线性系统的同时镇定问题.在第二部分,基于Lyapunov-Krasovskii泛函和参数依赖Lyapunov函数,分别研究了不确定区间时滞系统和凸多胞体不确定离散系统的鲁棒控制问题.现谨将各章的主要内容及研究结果概述如下:
     第一章为绪论部分.首先综述了不确定系统鲁棒控制研究的一些进展,简要介绍了同时镇定,参数系统和不确定时滞系统的研究中常用的一些方法及其局限性.接着介绍了本论文讨论的几类不确定系统模型以及用到的数学工具.最后概述了本论文的主要工作
     第二章研究一组不确定非线性系统的同时镇定问题.首先研究了单输入仿射非线性系统,利用CLF给出了其同时镇定反馈律存在的一个充分条件.随后将所得的结果推广到带有不确定参数和有Brunovsky标准型结构的多输入非线性系统.最后作为应用,研究了一组混沌控制系统的同时镇定问题,以此来说明设计方案的有效性.
     第三章研究不确定离散区间时滞系统的时滞相关稳定性判据及其镇定设计问题.主要讨论了3种不确定性:凸多胞体不确定性,线性分式范数有界不确定性,以及非线性扰动引起的不确定性.通过构造新的Lyapunov-Krasovskii泛函,并利用建立的有限和不等式来估计所构造泛函导数的上界,有效地降低了现有文献中相关结论的保守性.此外,基于稳定性判据还给出了这类系统的状态反馈和时滞状态反馈两种控制设计,并利用数值例子进行了仿真.
     第四章分析了一类带有非线性扰动的连续区间时滞系统的时滞相关稳定性.引入了一种新的估计所构造Lyapunov-Krasovskii泛函的时间导数上界的方法.在该方法中,保留了一些有用的时间导数项,可以有效地降低已有文献中时滞相关稳定性判据的一些保守性.数值例子说明了本章中所用方法的优越性.
     第五章研究了一类凸多胞体不确定性线性离散系统的鲁棒稳定性及其镇定.基于描述系统变换,对标称的离散线性系统,给出了其渐近稳定性的一个充要条件.在该条件中,系统矩阵和Lyapunov矩阵的乘积项分离,因而它可以很方便的应用于凸多胞体不确定离散系统的稳定性分析及其镇定设计.
     第六章总结了本文论研究的主要内容和结论,并给出若干值得进一步研究的问题.
     本文主要创新点概括如下:
     ①对一组具有Brunovsky标准型结构的不确定非线性系统,给出了其共同CLF的构造算法.基于该CLF,分别建立了单输入和多输入情形下的系统的同时镇定控制策略.所得结果简化和推广了Wu关于同时镇定的工作.
     ②为获得保守性更小的区间时滞系统的稳定性判据,构造了一个Lyapunov-Krasovskii泛函,该泛函充分考虑了区间时滞的信息.给出了新的估计所构造泛函时间导数上界的方法,并建立了新的区间时滞相关稳定性判据.在标称离散系统情形下,从理论上证明了所得判据较已有相关结论的计算复杂度和保守性低.
     ③利用描述系统方法对凸多胞体不确定离散系统进行了分析和设计.所得结果结合Cao和Lin (2004)的关于连续系统部分的结论,建立了一个求解凸多胞体不确定线性系统分析与综合问题的框架.
Uncertainty exists in almost all real systems. It may arise from the modeling error, the measure noise, the varying parameters and environmental disturbance. However, the design always depends on a certain system. A gap then appears. It is necessary for us to study how to make a control law which is designed based on a certain system meets the requirement of an uncertain or time-varying real system. The investigation consists of two aspects. The first one is to estimate the roust margin of a control law. The second is to find the characters of the better robust control law. This thesis will deal with the two problems.
     The main tool used in this thesis is the Lyapunov stability theory. Generally, there are two critical problems in the applications of the Lyapunov theory:one is how to construct a Lyapunov function or functional for the system under consideration, another is how to estimate the time derivative of the constructed Lyapunov function or functional along with the system solution. This thesis studies the robust control of kinds of uncertain systems by using the Lyapunov theory. It consists of two parts. Chapter 2 is the first part and the second part contains Chapters 3,4 and 5. The first part considers the simultaneous stabilization problem of uncertain nonlinear systems by using the control Lyapunov function (CLF). The second part considers the robust control problem of kinds of uncertain time-delay systems and polytopic-type linear discrete-time systems based on the Lyapunov-Krasovskii functional and the parameter dependent Lyapunov function, respectively. The contents and results of the thesis are as follows.
     Chapter I is an introduction. It firstly sums up the progress of robust control of kinds of uncertain systems. Some methods employed in simultaneous stabilization, robust control of parameter systems and uncertain time-delay systems, and their limitation are briefly introduced. Consequently, we present several system models discussed in this thesis and the used mathematical lemmas. At last, we briefly sum up the main work of this thesis.
     Chapter 2 studies the simultaneous stabilization problem of a collection of uncertain nonlinear systems. Firstly, we consider the single-input affine nonlinear systems. A suffi- cient condition for the simultaneous stabilization of these systems is proposed by using the CLF. The obtained results are then extended to the single-input and multi-input nonlinear systems with uncertain parameters, respectively. At the end of this chapter, the simultane-ous stabilization of unified chaotic systems is considered. Numerical examples are provided to illustrate the effectiveness of the proposed scheme.
     Chapter 3 studies uncertain discrete-time systems with interval time-varying delay. Un-certainties considered are polytopic-type uncertainty, linear fractal norm-bounded uncer-tainty, and quadratic nonlinear perturbations. An appreciate Lyapunov-Krasovskii func-tional is constructed, and a sum of finite inequalities is applied to estimate the time deriva-tive of the functional. Delay-range-dependent stability criteria are developed in terms of LMIs. It is shown by simulation that the proposed criteria can provide less conservatism than some existing ones. Moreover, based on the criteria, we also design the state feedback and time-delayed feedback to stabilize the system, respectively.
     Chapter 4 analyzes the stability of uncertain continuous-time systems which have inter-val time-varying delay and nonlinear perturbations. In the estimation of the time derivative of the constructed Lyapunov-Krassivskii functional, some useful terms are reserved such that the estimation holds less conservatism. The effectiveness of the proposed approach is demonstrated by numerical examples.
     Chapter 5 considers the robust stability and stabilization for a class of discrete-time polytypic linear systems. A sufficient and necessary condition for the stability of nominal system is presented by using the descriptor system transformation. This condition can be easily adapted in controller synthesis since it separates the design of Lyapunov function and the control law.
     In Chapter 6 the topics of this thesis are summarized and the problems for further study are presented.
     The main contributions of this thesis are as follows:
     ①For a collection of nonlinear uncertain systems which have the Brunovsky canonical form, a systematic algorithm is proposed to construct the common CLF. Based on the CLF, simultaneous stabilization feedback is presented for the cases of single-input and multi-input, respectively. The results simplify and generalize the corresponding works of Wu (2005,2009).
     ②To reduce the conservatism of the reported delay-range-dependent stability criteria for uncertain interval time-delay systems, a Lyapunov-Krasovskii functional which includes the information of the range of time delay is presented, and the upper bound of the time derivative of the constructed functional is estimated by a new approach. New delay-range-dependent stability criteria are proposed. In the case of nominal discrete time-delay systems, we prove that the obtained result is less conservative than some existing criteria.
     ③Descriptor model transformation is employed in the robust stability analysis and control design of polytopic-type discrete-time linear systems. The developed result can be viewed as a discrete-time counterpart of the continuous-time results proposed by Cao and Lin in 2004.
引文
[1]俞立.鲁棒控制—线性矩阵不等式处理方法.北京:清华大学出版社,2002
    [2]苏宏业,褚健,鲁仁全等.不确定时滞系统的鲁棒控制理论.北京:科学出版社,2007
    [3]吴敏,何勇.时滞系统鲁棒控制—自由权矩阵方法.北京:科学出版社,2008
    [4]贾英民.鲁棒H∞控制.北京:科学出版社,2007
    [5]杨盐生.不确定系统的鲁棒控制及其应用.北京:科学出版社,2004
    [6]G. Leitmann. Guaranteed asymptotic stability for some linear systems with bounded uncer-tainties. ASME J Dynamic Syst, Meas Control.1979,101(3):212-216
    [7]B.R. Barmish. Necessary and sufficient conditions for quadratic stabilizability of an uncertain systems. J Optim Theory Appl.1985,46(4):399-408
    [8]B.R. Barmish. Stabilization of uncertian system via linear control. IEEE Trans Automat Control.1984,28:848-850
    [9]S.C. Tsay. Robust control for linear uncertain systems via linear quadratic state feedback. Syst Control Lett.1990,15:190-205
    [10]B.R. Barmish. A generalization of Kharitonov's four polynomial concept for stability problem with linearly dependent coefficient perturbations. IEEE Trans Automat Control.1989, 34:157-165
    [11]P.P. Kharitonov, I.R. Petersen, K. Zhou. Robust stabilization of uncertian linear sys-tems:quadratic stabilizabity and H∞ control theory. IEEE Trans Automat Control.1990, 35(3):356-361
    [12]L.H. Xie, C.E. Souza. Robust H∞ control for linear system with norm-bounded time-varying uncertainty. IEEE Trans Automat Control.1992,38(7):1188-1191
    [13]S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. Philadelphia:PA:SIAM,1994
    [14]J. Bernussou M.C. de Oliveira, J.C. Geromel. A new discrete-time robust stability condition. Syst Control Lett.1999,37(4):261-265
    [15]E. Fridman. New Lyapunov-Krasovskii functional for stability of linear retarded and neu-tral type systems. Syst Control Lett.2001,43:309-319
    [16]E. Fridman. New bounded real lemma representations for time-delay systems and their applications. IEEE Trans Automat Control.2001,46(12):1973-1979
    [17]E. Fridman, U. Shaked. A descriptor system approach to H∞ control of linear time-delay systems. IEEE Trans Automat Control.2002,47:253-270
    [18]Y. He, M. Wu, J. She, G. Liu. Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Syst Control Lett.2004,51:57-65
    [19]Y. He, M. Wu, J. She, G. Liu. Parameter-dependent Lyapunov functional for stability of time-delay systems withpolytopic-type uncertainties. IEEE Trans Automat Control.2004, 49:828-832
    [20]S. Xu, P.V. Dooren, R. Stefan, J. Lam. Robust stability and stabilization for singular systems with state delay and parameter uncertainty. IEEE Trans Automat Control.2002,47(7):1122-1128
    [21]S. Xu, J. Lam, D. Hoc, Y. Zou. Delay-dependent exponential stability for a class of neural networks with time delays. J Comput Appl Math.2005,183:16-28
    [22]H. Wang, Z.Z. Han, Q.Y. Xie, W. Zhang. Sliging mode conrol for chaotic systems based on LMI. Commun Nonlinear Sci Numer Simu.2009,14(4):1410-1417
    [23]岳东,彭晨,Qinglong Han.网络控制系统的分析与综合.北京:科学出版社,2007
    [24]M. Krstic, H. Dong. Stabilization of Nonlinear Uncertain System. New York:Springer,1998
    [25]冯纯伯,费树岷.非线性系控制系统的分析与设计.北京:电子工业出版社,1998
    [26]程代展.非线性系统的几何理论.北京:科学出版社,1988
    [27]A. Isidori. Nonlinear Control Systems,3rd Ed. New York:Springer-Verlag,1995
    [28]洪奕光,程代展.非线性系统的分析与控制.北京:科学出版社,2005
    [29]Z. Artstein. Stabilization with relaxed control. Nonlinear Analysis:Theory, Methods and Appl.1983,7:1163-1173
    [30]E.D. Sontag. A Lyapunov-like characterization of asymptotic controllability. SIAM J Control Optim.1983,21:462-471
    [31]P.V. Kokotovic, M. Arcak. Constructive nonlinear control:a historical perspective. Auto-matica.2001,37(5):637-662
    [32]V. Blondel. Simultaneous Stabilization of Linear Systems. New York:Springer-Verlag,1994
    [33]B. Ho-Mock-Qai, D.P. Dayawansa. Simultaneous stabilization of linear and nonlinear systems by means of nonlinear state feedback. SIAM J Control Optim.1999,37:1701-1725
    [34]J.L. Wu. Simultaneous stabilization for a collection of single-input nonlinear systems. IEEE Trans Automat Control.2005,50:328-337
    [35]Y.Y. Cao, Y.X. Sun, J. Lam. Simultaneous stabilization via static output feedback and state Feedback. IEEE Trans Automat Control.1999,44:1277-1282
    [36]G.D. Howitt, R. Luus. Simultaneous stabilization of linear single-input systems by linear state feedback control. Int J Control.1991,54:1015-1039
    [37]D.E. Miller, T. Chen. Simultaneous stabilization with near-optimal H∞ performance. IEEE Trans Automat Control.2002,47:1986-1998
    [38]D.E. Miller, M. Rossi. Simultaneous stabilization with near-optimal LQR performance. IEEE Trans Automat Control.2001,46:1543-1555
    [39]W.E. Schmitendorf, C.C. Hollot. Simultaneous stabilization via linear state feedback control. IEEE Trans Automat Control.1989,34(9):1001-1005
    [40]P.T. Kabamba, C. Yang. Simulaneous controller design for linear time-invariant systems. IEEE Trans Automat Control.1991,36(1):106-110
    [41]M. Paskota, V. Sreeram, K.L. Teo et al. Optimal simultaneous stabilization of linear single input systems via linear state feedback control. Int J Control.1994,60:483-493
    [42]I.R. Petersen. A procedure for simultaneous stabilizing a collection of single input linear systems using nonlinear state feedback control. Automatica.1987,20:33-40
    [43]V. Blodel, J. Tsitsikils. NP-hardness of some linear control design problems. SIAM J Control Optim.1997,35(6):2118-2127
    [44]Y.Z. Wang, G. Feng, D.Z. Cheng. Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems. Automatica.2007,43:403-415
    [45]J.L. Wu. Simultaneous stabilization for a collection of single-input nonlinear systems in canonical form. Asian J Control.2009, 11(3):295-301
    [46]王玉振.广义Hamilton控制系统理论—实现、控制与应用.北京:科学出版社,2007
    [47]F. Hoppensteadt. Stability in systems with parameter. J Math Anal Appl.1967,18:129-134
    [48]M. Kelemen. A stability property. IEEE Trans Automat Control.1986,31:766-768
    [49]D. Lawrence, W. Rugh. On a stability theorem of nonlinear systems with slowly varying inputs. IEEE Trans Automat Control.1990,35(7):860-864
    [50]M. Khalil, P.V. Kokotovic. On stability properties of nonlinear systems with slowly varying inputs. IEEE Trans Automat Control.1991,36(2):229
    [51]H. Chang, H. Shim, J. Seo. Control of immune response of HIV infection model by geadual reduction of drug dose. IEEE Conf Dec Control.2004:1048-1054
    [52]W. Haddad, V. Chellaboinaand E. August. Stability and dissipativity theory for biological and physiological systems. IEEE Conf Dec Control.2001:442-458
    [53]H. Shim, H. Chang, J. Seo. Non-vanishing basin attraction with respect to parametric vari-ation and center manifold. IEEE Conf Dec Control.2004:14-17
    [54]H. Shim, H.J. Nam. A simple condition for checking Non-vanishing basin of attration stability for a class of positive nonlinear systems. IEEE Conf Dec Control.2005:5456-5461
    [55]P.D. Leanhear, D. Aeyels. Stability results for some classes of cooperative systems. IEEE Conf Dec Control.2000:2965-2970
    [56]D. Angeli, E.D. Sontag. Monotone control systems. IEEE Trans Automat Control.2003:1684-1698
    [57]蔡秀珊,韩正之,寇春海.带不确定参数的多变量非线性系统的半全局实用镇定.自动化学报.2004,30(6):1021-1026
    [58]秦元勋,刘永清,王联.带有时滞的动力系统的运动稳定性.北京:科学出版社,1989
    [59]J.Hale, S.M.V. Lunel. Introduction of functional differential equations. New York:Springer-Verlag,1993
    [60]K. Gu, V. Kharitonov, J. Chen. Stability of time-delay systems. Boston:Birkhauser,2003
    [61]S.I. Niculescu. Delay effects on stability:A roubst control approach. London:Springer-Verlag,2001
    [62]曹永岩,孙优贤.不确定状态滞后系统时滞相关鲁棒H∞控制.自动化学报.1999,25(2):230-235
    [63]F. Liao, J.L. Wang, G.H. Yang. Reliable robust flight tracking control:an LMI approach. IEEE Trans Control Syst Tech.2002,10(1):76-89
    [64]L. Yu, J. Chu. An LMI approach to guaranteed cost control of linear uncertain time-delay systems. Automatica.1999,35(6):1155-1160
    [65]W.H. Chen, Z.H. Guan, X. Lu. Delay-dependent output feedback guaranteed cost control for uncertain time-delay systems. Automatica.2004,40(7):1362-1366
    [66]W.H. Chen, Z.H. Guan, X. Lu. Delay-dependent exponential stability of uncertain stochastic systems with multiple delays:an LMI approach. Syst Control Lett.2005,54:547-555
    [67]K. Gu. Discretized LMI set in the stability problem for linear uncertian time-delay systems. Int J Control.1997,68(4):923-934
    [68]K. Gu. A generalized discretization scheme of Lyapunov functional in the stability problem of linear uncertian time-delay systems. Int J Robust Nonlinear Control.1999,9(1):1-4
    [69]K. Gu. A further refinement of discretized Lyapunov functional menthod for the stability of time-delay systems. Int J Control.2001,74(10):967-976
    [70]Q.L. Han, K. Gu. On robust stabiliity of time-delay systems with norm-bounded uncertainty. IEEE Trans Automat Control.2001,46(9):1426-1431
    [71]E. Fridman. Descriptor discretized Lyapunov functional method:analysis and design. IEEE Trans Automat Control.2006,51(5):890-897
    [72]E. Fridman, U. Shaked. Delay-dependent stability and H∞ control:constant and time-varying delays. Int J Control.2003,76:48-60
    [73]K. Gu. An integral inequality in the stability problem of time-delay systems. Proc IEEE Conf Dec Control. Australia 2000, (Sydney):2805-2810
    [74]K. Gu, S.I. Niculescu. Further remarks on ddditional dynamics in various model transfor-mations of linear delay systems. IEEE Trans Automat Control.2001,46(3):497-500
    [75]P.G. Park. A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Trans Automat Control.1999,44:876-877
    [76]Y.S. Moon, P.G. Park, W.H. Kwon, Y.S. Lee. Delay-dependent robust stabilization of un-certain state-delayed systems. Int J Control.2001,74:1447-1455
    [77]H. Gao, C. Wang. Comments and further results on'A descriptor system approach to H∞ control of linear time-delay systems'. IEEE Trans Automat Control.2003,48(3):520-525
    [78]S. Xu, P.V. Dooren, R. Stefan, J. Lam. Simplified descriptor system approach to delay-dependent stability and performance analyses for time-delay systems. IEE Proc Control Theory Appl.2005,152(2):147-151
    [79]Q.L. Han. Robust stability of uncertain delay-differential systems of neutral type. Automat-ica.2002,38(4):718-723
    [80]Q.L. Han. Stability criteria for a class of linear neutral systems with time-varying discrete and distributed delays. IMA J Math, Control, Info.2003,20(4):371-386
    [81]S.I. Niculescu. Optimizing model transformations in delay-dependent analysis of neutral systems:A control-based approach. Nonlinear Analysis.2001,47(8):5378-5390
    [82]S.I. Niculescu. On delay-dependent stability under model transformations of some neutral linear systems. Int J Control.2001,74(6):608-617
    [83]M. Wu, Y. He, J.H. She, G.P. Liu. Delay-dependet criteria for robust stability of time-vary ing systems. Automatica.2004,40:1201-1209
    [84]Y. He, Q. Wang, C. Lin, M. Wu. Delay-range-dependent stability for systems with time-varying delay. Automatica.2007,43:371-376
    [85]X. Jiang, Q. Han. New stability criteria uncertain linear systems with interval time-varying delay. Automatica.2008,44:2680-2685
    [86]H. Gao, T. Chen. New results on stability of discrete-time systems with time-varying state delay. IEEE Trans Automat Control.2007,52:328-334
    [87]H. Shao. Improved delay-dependent stability criteria for systems with a delay varying in a range. Automatica.2008,44:3215-3218
    [88]E. Fridman, U. Shaked. An improved stabilization method for linear time-delay systems. IEEE Trans Automat Control.2002,47:1931-1937
    [89]J.L. Wu. Robust stabilization for single-input polytopic nonlinear systems. IEEE Trans Automat Control.2006,51(9):1492-1496
    [90]X. Zhang, M. Wu, J. She, Y. He. Delay-dependent stabilization of linar systems with time-varying state and input delays. Automatica.2005,41:1405-1412
    [91]J. Dong, G.H. Yang. Static output feedback control synthesis for linear systems with time-invariant parametric uncertainties. IEEE Trans Automat Control.2007,52(10):1930-1936
    [92]Y. He, M. Wu, J. She, G. Liu. Output feedback stabilization for a discrete-time system with a time-varying delay. IEEE Trans Automat Control.2008,53:2372-2377
    [93]E.D. Sontag. A "universal" constructive of Artstein's theorem on nonlinear stabilization. Syst Control Lett.1989,12:542-550
    [94]R.A. Freeman, P.V. Kokotovic. Robust Control of Nonlinear Systems. Boston:Birkhauser, 1996
    [95]R.A. Freeman, P.V. Kokotovic. Inverse optimality in robust stabilization. SIAM J Control and Optimization.1996,34(4):1365-1391
    [96]E.D. Sontag, Y. Wang. New characterizations of input-to-state stability. IEEE Trans Au-tomat Control.1996,41(9):1283-1294
    [97]E.D. Sontag, Y. Wang. Lyapunov characterizations of input to output stability. SIAM J Control Optim.2000,39(1):226-249
    [98]D. Liberzon, E.D. Sontag, Y. Wang. Universal construction of feedback laws achieving ISS and integral-ISS disturbance attenuation. Syst Control Lett.2002,46(2):111-127
    [99]E.D. Sontag, Y. Wang. Output-to-State stability and detectability of nonlinear system. Syst Control Lett.1997,29(5):279-290
    [100]B. Hamzi, L. Praly. Ignored input dynamics and a new characterization of control lyapunov function. Automatica.2001,37(6):831-841
    [101]Y. Lin, E.D. Sontag. Control Lyapunov universal formulas for restricted input. Control theory and advanced technology.1995,10(4):1-22
    [102]Y. Lin, E.D. Sontag. A universal formula for stabilization with bounded control. Syst Control Lett.1991,16(5):393-397
    [103]M. Krstic, P.V. Kokotovic. Control lyapunov function for adaptive nonlinear stabilization. Syst Control Lett.1995,26(1):17-21
    [104]P. Ogren, M. Egerstedt, X.M. Hu. A control lyapunov function approach to multi-agent coordination. IEEE Trans Robot Automat.2002,18(5):846-851
    [105]H.F. Sun, J. Zhao. Control Lyapunov functions for switched control systems. Proc Amer Conf Control.2001, (Arlington):1890-1891
    [106]J. Tsinias. The concept of 'exponential ISS'for stochastic systems and applications to feed-back stabilization. Syst Control Lett.1999,36:221-229
    [107]X.S. Cai, Z.Z. Han, X. Wang. An analysis and design method for systems with structural uncertainty. Int J Control.2006,79:1647-1653
    [108]S. Battilotti. Robust stabilization of nonlinear systems with pointwise norm-bounded un-certainties:a control lyapunov function approach. IEEE Trans Automat Control.1999, 44(1):3-16
    [109]M. Krstic, Z.H. Li. Inverse optimal design of input-to-state stabilizing nonlinear control. IEEE Trans Automat Control.1998,43(3):336-350.
    [110]E.D. Sontag. Mathematical Control Theory:Deterministic Finite Dimensional Systems,2nd Ed. New York:Springer,1998
    [111]B. Hamzi. Some results on inverse optimality based design. Sys Control Lett.2001,43(4):239-246
    [112]E.D. Sontag. Smooth stabilization implies coprime factorization. IEEE Trans Automat Control.1989,34(4):435-443
    [113]R.A. Freeman, J.A. Primbs. Control Lyapunov function:New ideas from an old sourse. Proc IEEE Conf Dec Control.1996:4:3926-3931
    [114]X.S. Cai, Z.Z. Han. Universal construction of control Lyapunov functions of linear systems. Latin Am Appl Res.2006,36:15-22
    [115]Z. Pan, T. Basar. Backstepping controller design for nonlinear stochastic system under a risk-sensitive cost criterion. SIAM J Control Optim.1999,37(3):957-995
    [116]F. Mazenc, A. Iggidr. Backstepping with bounded feedbacks. Syst Control Lett.2004, 51(2):235-245
    [117]R. Sepulchre, M. Jankovic, P.V. Kokotovic. Integrator forwarding:a new recursive nonlinear robuse design. Automatica.1997,33(5):979-984
    [118]F. Mazenc, M. Malisoff. Control-Lyapunov functions for systems satisfying the conditions of the Jurdjevic-Quinn Theorem. Proc 44th IEEE Conf Dec Control. Dec.2005, (Spain):4724-4729
    [119]X.S. Cai, Z.Z. Han. Inverse optimal control of nonlinear systems with structural uncertainty. IEE Proc Control Theory Appl.2005,152:79-83
    [120]R. Saeks, J. Murray. Fractional representation, algebraic geometry, and the simultaneous stabilization problem. IEEE Trans Automat Control.1982,27:895-903
    [121]M. Vidyasagar, N. Viswanadham. Algebraic design techniques for reliable stabilization. IEEE Trans Automat Control.1982,27:1085-1095
    [122]Y.Y. Cao, J. Lam. A computational methods for simultaneous LQ optimal control design via piecewise constant output feedback. IEEE Trans Syst Man Cybern B:Cybern.2001, 36:836-842
    [123]J. Xu, L. Xie, Y. Wang. Simultaneous stabilization and robust control for polynomial non-linear systems using SOS. Proc Amer Control Conf. New York 2007:5384-5389
    [124]J.H. Zhong, D.Z. Cheng. Simultaneous stabilization for a collection of multi-input nonlinear systems. J Grad School Chinese Acad Sci.2006,23:447-456
    [125]蔡秀珊,韩正之,陈奕梅.反馈可线性化系统全局跟踪控制器的设计.系统工程与电子技术.2005,27(7):1271-1274
    [126]H.K. Khalil, F. Esfandiari. Semiglobal stabilization of a class of nonlinear systems using output feedback. IEEE Trans Automat Control.1993,38:1412-1415
    [127]O. Seungrohk, H.K. Khalil. Output feedback stabilization using variable structure control. Int J Control.1995,62(4):831-848
    [128]A. Vanecek, S. Celikovsky. Control Systems:From Linear Analysis to Synthesis of Chaos. London:Prentice-Hall,1996
    [129]E.N. Sanchez, J.P. Perez, M. Martinez, G. Chen. Chaos stabilization:an inverse optimal control approach. Latin Am Appl Res.2002,32:111-114
    [130]M.Y. Chen, Z.Z. Han. Controlling and synchronizing chaotic Genesio system via nonlinear feedback control. Chaos, Solitons and Fractals.2003,17:709-716
    [131]王划,韩正之,章伟,谢七月.具有不确定参数的Liu混沌系统的同步.物理学报.2008,57(5):2779-2783
    [132]J.H. Lu, G.R. Chen, D.Z. Cheng, S. Celikovsky. Bridge the gap between the Lorenz and the Chen system. Int J Bifurcation and Chaos.2002,12:2917-2926
    [133]G. Chen, T. Ueta. Yet another chaotic attractor. Int J Bifurcation and Chaos.1999,9:1465-1466
    [134]H. Wang, Z.Z. Han, W. Zhang, Q.Y. Xie. Synchronization of unified chaotic systems with uncertain parameters based on the CLF. Nonlinear Analysis:Real World Applications.2009, 10(5):715-722
    [135]H. Wang, Z.Z. Han, Q.Y. Xie, W. Zhang. Finite-time synchronization of unified chaotic sys-tems with uncertain parameters based on CLF. Nonlinear Analysis:Real World Applications. 2009,10(5):2842-2849
    [136]H.K. Chen, C.I. Lee. Anti-control of chaos in rigid body motion. Chaos, Solitons and Fractals.2004,21:957-965
    [137]S. Xu, J. Lam. A survey of linear matrix inequality techniques in stability analysis of delay systems. Int J Syst Sci.2008,39:1095-1113
    [138]Q.L. Han. Absolute stability of time-delay systems with sector-bounded nonlinearity. Auto-matica.2005,41:2172-2176
    [139]C. Peng, Y. Tian. Improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay. IET Control Theory Appl.2008,2:752-761
    [140]T. Li, L. Guo, Y. Zhang. Delay-range-dependent robust stability and stabilization for uncer-tain systems with time-varying delay. Int J Robust Nonlinear Control.2008,18:1372-1387
    [141]H. Shao. New delay-dependent stability criteria for systems with interval delay. Automatica. 2009,45:744-749
    [142]H. Gao, J. Lam, C. Wang, Y. Wang. Delay dependent output feedback stabilization of discrete-time systems with time-varying state delay. IEE Proc Control Theory Appl.2004, 151:691-698
    [143]E. Fridman, U. Shaked. Stability and guaranteed cost control of uncertain discrete delay systems. Int J Control.2005,78:235-246
    [144]B. Zhang, S. Xu, Y. Zou. Improved stability criterion and its applications in delayed controller design for discrete-time systems. Automatica.2008,44:2963-2967
    [145]X. Liu, R. Marin, M. Wu, M. Tang. Delay-dependent robust stabilization of discrete-time systems with time-varying delay. IEE Proc Control Theory Appl.2006,152:147-151
    [146]E.K. Boukas. State feedback stabilization of nonlinear discrete-time systems with time-varying time delay. Nonlinear Analysis.2007,66:1341-1350
    [147]Z. Zuo, J. Wang, L. Huang. Robust stabilization for nonlinear discrete-time systems. Int J Control.2004,77:384-388
    [148]X. Zhu, G. Yang. Jensen integral inequality approach to stability analysis of continuous-time systems with time-varying delay. IET Control Theory Appl.2008,2:524-534
    [149]S. Xu, J. Lam. On equivalence and efficiency of certain stability criteria for time-delay systems. IEEE Trans Automat Control.2007,52(1):95-101
    [150]S. Xu, J. Lam. Improved delay-dependent stability criteria for time-delay systems. IEEE Trans Automat Control.2005,50(3):384-387
    [151]X.L. Jiang, D.L. Tan, Y.C. Wang. An LMI approoach to stability of systems with severe time-delay. IEEE Trans Automat Control.2004,49(7):1192-1195
    [152]Y.S. Lee, Y.S. Moon, W.H. Kwon, P.G. Park. Delay-dependent robust H∞ control for uncertain systems with a state-delay. Automatica.2004,40(7):65-72
    [153]E. Suplin, E. Fridman, U. Shaked. A projection approach to H∞ control of time-delay sys-tems. Proc 43rd IEEE Conf Dec Control. Dec.2004, (Atlantis):4548-4553
    [154]X. Jiang, Q. Han, X. Yu. Stability criteria for linear discrete-time systems with interval-like time-varying delay. Proc Amer Control Conf.2005:2817-2822
    [155]H. Gao, T. Chen, J. Lam. A new delay system approach to network-based control. Automat-ica.2008,44:39-52
    [156]W. Zhang, M. Branicky, S. Phillips. Stability of networked control systems. IEEE Control Syst Mag.2001,2:84-99
    [157]X. Jiang, Q.L. Han. Delay-dependent robust stability for uncertain linear systems with interval time-varying delay. Automatica.2006,42:1059-1065
    [158]H. Gao, T. Chen, J. Lams. A new delay system approach to network-based control. Auto-matica.2008,44:39-52
    [159]T. Li, L. Guo, L. Wu. Simplified approach to the asymptotical stability of linear systems with interval time-varying delay. IET Control Theory Appl.2009,3(2):252-260
    [160]D. Yue, E. Tian, Y. Zhang. A piecewise analysis method to stability analysis of linear con-tinuous/discrete systems with time-varying delay. Int J Robust Nonlinear Control.2009, 19:1493-1518
    [161]Y.Y. Cao, J. Lam. Computation of robust stability bounds for time-delay systems with nonlinear time-varying perturbation. Int J Syst Sci.2000,31:350-365
    [162]Z. Zuo, Y. Wang. New stability criterion for a class of linear systems with time-varying delay and nonlinear perturbations. IEE Proc Control Theory Appl.2006,153:623-626
    [163]C. Peng, Y. Tian. Delay-dependent roubst stabiity criteria for uncertain systems with interval time-varying delay. J Comput Appl Math.2008,214:480-494
    [164]Q.L. Han. Robust stability for a class of linear systems with time-varying delay and nonlinear perturbations. Comput Math Appl.2004,47:1201-1209
    [165]P.G. Park, J.W. Ko. Stability and robust stability for systems with a time-varying delay. Automatica.2007,43:1855-1858
    [166]P. Apkarian, H.D. Tuan, J. Bernussou. Continuous-time analysis, eigenstructure assignment, and H2 synthesis with enhanced linear matrix inequalities (LMI) characterizations. IEEE Trans Automat Control.2001,46:1941-1946
    [167]D. Ramos, P. Peres. A LMI condition for the robust stability of uncertain continuous-time linear systems. IEEE Trans Automat Control.2002,47(4):675-678
    [168]E. Feron, P. Apkarian, P. Gahinet. Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions. IEEE Trans Automat Control.1996,41 (7):1041-1046
    [169]J. Daafouz, J. Bernussou. Parameter dependent Lyapunov functions for discrete-time systems with time-varying parametric uncertainties. Syst Control Lett.2001,43:355-359
    [170]P. Gahinet, P. Apkarian, M. Chilali. Affine parameter-dependent Lyapunov functions and real parametric uncertainty. IEEE Trans Automat Control.1996,41(3):436-442
    [171]Y.Y. Cao, Z.L. Lin. A descriptor system approach to robust stability analysis and controller synthesis. IEEE Trans Automat Control.2004,49:2081-2084
    [172]Y.M. Jia. Alternative proofs for improved LMI representation for the analysis and the design of continuous-time systems with polytopic-type uncertainty:A predictive approach. IEEE Trans Automat Control.2003,48(8):1413-1416
    [173]H. Gao, P. Shi, J. Wang. Parameter-dependent robust stability of uncertain time-delay sys-tems. J Comput Appl Math.2007,206:366-373
    [174]D. Ramos, P. Peres. A less conservative LMI condition for the robust stability of discrete-time uncertain systems. Syst Control Lett.2001,43:371-378
    [175]M. Jankovic. Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems. IEEE Trans Automat Control.2001,46:1048-1060
    [176]M. Jankovic. Extension of control Lyapunov functions to time-delay systems. Proc 44th IEEE Conf Dec Control. Dec.2000, (Australia):4403-4408

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700