超小型无人直升机飞行姿态的鲁棒控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超小型无人直升机具有成本低、体积小、携带方便、起飞着陆场地小、可以滞空飞行等特点,使其在军用和民用领域都有着广阔的应用前景。超小型无人直升机是一个多变量、非线性、强耦合的动力学系统,稳定性差,容易受到风等外力的干扰。飞行控制系统是超小型无人直升机实现自主飞行、提升应用价值的最为核心的一项技术,而飞行姿态控制又是其中的关键。鲁棒控制对多变量控制系统和存在干扰情况的控制系统具有优势,因此对超小型无人直升机飞行姿态进行鲁棒控制的研究,具有重要的理论意义和应用价值。
     本论文在分析了国内外对超小型无人直升机飞控系统研究现状的基础上,归纳了超小型无人直升机飞控系统的结构和特点。根据研究背景的需要,提出了进行超小型无人直升机飞控系统的研究目标,规划了为实现研究目标而需要进行的研究内容。
     本论文研究首先从实际需求出发,基于模块化的思想提出了超小型无人直升机姿态控制的总体方案,并对超小型无人直升机系统的传感器、控制器和通讯系统等进行了选型。
     超小型无人直升机飞行运动数学模型是设计控制律的基础,飞行品质的好坏也严重依赖于数学模型建立的精确与否。在建模方面,本文建立了超小型无人直升机的机体刚体动力学方程和空气动力学模型,同时对主桨和贝尔-希勒翼进行了研究,在结构分析的基础上,基于小干扰情况下的合理假设,通过把非线性模型在悬停点附近线性化,得到用物理参数描述的线性模型,从而确定了具有物理意义的超小型无人直升机姿态模型的结构。
     对模型中存在的未知参数,本文采用指定状态变量的子空间辨识方法,在开环系统的子空间辨识算法的基础上,结合主元分析法,通过正交子空间投影的闭环子空间辨识方法,进行系统辨识,从而获得系统的主要结构参数,并估算出这些参数的误差范围。然后将所得模型的预测数据与飞行数据进行了比较。为了子空间系统辨识的需要,本文将超小型无人直升机姿态模型进行了离散化处理,得到了离散化的模型结构。对于试验数据,进行了野值剔除、插值、滤波、平滑等数据处理,以使得数据更精确可靠。
     在控制系统设计中采用的模型与实际控制对象存在着一定的差异,即存在着模型不确定性。同时,控制系统的运行也受到周围环境和有关条件的制约。这就要求超小型无人直升机飞控系统具有良好的处理模型不确定性及外界扰动的能力,即具有鲁棒性。针对通过辨识得到的系统模型,对于小干扰的情况,本文推导了离散系统不确定性具有块对角结构的鲁棒保性能控制律设计方法,并以超小型无人直升机为对象,设计了一个鲁棒保性能控制器,使得闭环系统对所有允许的不确定性渐近稳定,并且闭环性能指标不超过某个确定的上界。对于较大干扰的情况,本文推导了离散系统不确定性具有块对角结构的鲁棒方差控制律设计方法和控制能量具有上界的鲁棒方差控制律设计方法,并以超小型无人直升机为对象,设计了一个控制能量具有上界的鲁棒方差控制器,使得系统在有外部干扰的情况下具有良好的稳态性能和良好的瞬态性能,并且其输入能量不大于确定的上界。然后,分别对保性能控制系统和鲁棒方差控制系统的最坏情况进行了定义,并对最坏情况下的仿真进行了理论推导和仿真。
     在上述研究的基础上,本论文对超小型无人直升机飞控系统硬件、飞控系统软件和地面监控站进行了研究和设计。系统硬件方面,在任务分解和模块化设计思想的基础上,主要设计了传感器模块、模式切换与安全保障模块、主控模块;飞控系统软件方面主要着眼于任务分解、任务调度和通讯协议方面的研究;在地面监控站方面,在分析其功能需求的基础上,着重于采用组件化的编程方法。
     最后,通过超小型无人直升机系统完成姿态控制飞行实验(直升机系统稳定性最差的飞行状态),验证了所设计的超小型无人直升机飞行姿态鲁棒控制系统的性能。通过分析试验数据验证了超小型无人直升机系统姿态控制算法的可行性。
Subminiature Unmanned Helicopter(SUH) has the advantage of the low cost、the small volume、the convenience for transportation、the small land for flying-off or landfall and hang in the small space. So it has the widely purpose in the military and civil fields. The dynamics of a SUH has the character of multivariable,nonlinear and strong coupling. So the SUH can be interfered with wind easily and hard to keep stable. The Flight Control System (FCS) is the pivotal part to realize autonomous flight and promote the practicability of the SUH and the attitude control is the key in the FCS. Robust control theory is one of the popular areas in the field of control engineering to deal with multivariable system and to improve the anti-noise ability. So the research of the robust attitude control for the SUH is very valuable.
     Foremost, clued by some overseas successful SUHs, the state-of-the-art of SUHs was studied, the frameworks and the characters of the FCSs were concluded and analyzed, and then the goal and the contents of the research were decided.
     From the view of the actual requirement, the whole scheme of system was designed on the thought of modularization, and the sensors、the microchip and data linker of FCS were chosen.
     The flight motion model of the SUH is the precondition of flight control laws design and the flight quality is also depending on the model. For the model of the SUH, the geostatic equation and aerodynamics equation was set up. At the same time, the main blade and the bell-hiller flybar were studied. Based on the above research and reasonable assumption,through the linearization of the nonlinear dynamics, the linear time-invariant attitude dynamics with physical parameters was obtained.
     To the unknown parameters of the above attitude model, a subspace based state space system identification method based on principal component analysis was carried out,which can identify the state space model of a plant with white noise and controller through orthogonal projection. And the range of the error of the parameters was also been estimated. Then the valid of the identified attitude model was testified. In order to apply the identification,the attitude model was been discretized firstly. Then the data processing of the flight data which to deal with the occasional bursts and outliers, missing data etc was processed to make sure that the data would be more reliable and correct.
     In general, the structure uncertainty or parameter uncertainty exist in almost systems for the tolerance between execution unit and control unit, and also the system was interfered with outer circumstances inevitably. So controller and analysis outcome of systems with precise mathematical models are always dissatisfied with project requirement. Aimed at the attitude model gotten form the identification, an approach for guaranteed cost control was theoretical derived for the system with the diagonally uncertainty for small noise circumstance,and the cost no more than a supremum. An approach for robust covariance control and another for which has limited input power was theoretical derived for the system with the diagonally uncertainty for noise circumstance which made the system has good steady performance and transient property. Then the worst instances were been defined for the guaranteed cost control and robust covariance control, and the simulation was theoretical derived and been done.
     On the basis of the above research, the hardware and software of the FCS and the Ground Control Station (GCS) was studied and developed then. With respect to the hardware of FCS, sensors module, remotely control/automatic control switch circuits and the main module were designed based on task sorting and the thought of modularization. With respect to the software of FCS, the task sorting, the task scheduling module and the communication protocols were designed. With respect to the GCS, founded on the analysis of the functional requirements of the GCS, the component programming method based on component object model was considered.
     Finally, the flight experiments are carried through by the autonomously hanging flight which is the worst flight state based on the FCS and GCS of this paper, the experiment results validate that the attitude is stable in flight under the action of FCS by analyzing the flight data.
引文
[1],刘歌群.小型无人机飞行控制器的硬件设计[J],计算机测量与控制, 2003; 2:144~146
    [2],邓寅喆.超小型旋翼无人驾驶直升机的研究现状[J],机电一体化, Vol.1,2004, pp.18~21
    [3],刘武发,蒋蓁,龚振邦.超小型固定翼飞行器飞控系统研究[J],郑州大学学报, 2003; 24(3):78~82
    [4],王昆玉.《直升机飞行控制系统》[M].北京:北京海洋出版社, 1991
    [5], E.N. Johnson, P.A. DeBitteto, C.A. Trott, and M.C. Bosse. The 1996 MIT/Boston University/Draper laboratory autonomous helicopter system[C]. 15th AIAA/IEEE Digital Avionics System Conference. 1. 1996
    [6], Johnson E, Debitetto P. Modeling and simulation for small autonomous helicopter development[C]. In Proceedings of the AIAA modeling and simulation technologies conference. Monterey. California. 1997:41~51
    [7], Christopher P. Sanders, Paul A. DeBitetto, Eric Feron, Hon Fai Vuong, Nancy Leveson. Hierarchical Control of Small Autonomous Helicopters[C]. Proceedings of the 37th IEEE Conference on Decision & Control. Tampa. Florida USA. 1998
    [8], Emilio Frazzoli, Munther A. Dahleh, Eric Feron. REAL-TIME MOTION PLANNING FOR AGILE AUTONOMOUS VEHICLES[C]. AIAA Journal of Guidance. Control and Dynamics. 2002:116~129
    [9], Emilio Frazzoli, Munther A. Dahleh, Eric Feron. A Hybrid Control Architecture for Aggressive Maneuvering of Autonomous Helicopters[C]. Proceedings of the 38’Conference on Decision & Control. Phoenix. Arizona USA. 1999
    [10], Nancy G. Leveson, Jon Damon Reese, Mats P.E. Heimdahl. SpecTRM: A CAD SYSTEM FOR DIGITAL AUTOMATION[C]. IEEE. 1998
    [11], E. Frazzoli. Robust Hybrid Control for Autonomous Vehicle Motion Planning[D]. PhD Thesis, MIT. 2001
    [12], Vladislav Gavrilets. Autonomous Aerobatic Maneuvering of Miniature Helicopters[D]. PhD thesis,MIT. 2003
    [13], V. Gavrilets, A. Shterenberg, M. A. Dahleh, E. Feron. AVIONICS SYSTEM FOR A SMALL UNMANNED HELICOPTER PERFORMING AGRESSIVE MANEUVERS[C]. Digital Avionics Systems Conference. Philadelphia. PA. 2000
    [14], K. Sprague, V. Gavrilets, D. Dugail, B. Mettler, E. Feron, I. Martinos. DESIGN AND APPLICATIONS OF AN AVIONICS SYSTEM FOR A MINIATURE ACROBATIC HELICOPTER[C]. Proceedings of the 20th Digital Avionics Systems Conference. Orlando. FL. 2001
    [15], V. Gavrilets, A. Shterenberg, I. Martinos, K. Sprague, M.A. Dahleh, E. Feron. Avionics System for Aggressive Maneuvers[C]. IEEE AESS Systems Mugutine,eprember 2001
    [16], Bernard Mettler, Mark B. Tischler, Takeo Kanade. System Identification Modeling of a Small-Scale Unmanned Rotorcraft for Control Design[J], Journal of the American Helicopter Society, Vol.47,No.1,2002,pp. 50~63
    [17], M. Piedmonte, Eric Feron. Aggressive Maneuvering of Autonomous Aerial Vehicles:A Human-Centered Approach[J], To appear in International Journal of Robotics Research, 2001
    [18], Bernard Mettler, Chris Dever,Eric Feron. Identification Modeling、Flying Qualities and Dynamic Scaling of Miniature Rotorcraft[C]. NATO SCI-120 Symposium. Berlin. Germany. 2002
    [19], V. Gavrilets, B. Mettler, E. Feron. Dynamic model for Xcell-60 helicopter in low advance ratio flight. Technical Report. MIT laboratory for Information and Decision Systems. December 2002,pp.2543
    [20], Tom Schouwenaars, Bernard Mettler, Eric Fern, Jonathan P. How. Robust Motion Planning Using a Maneuver Automaton with Built-in Uncertainties[C]. Proceedings of the American Control Conference Denver. Colorado. 2003
    [21], V.Gavrilets, I.Martinos, B.Mettler, E.Feron. Control Logic for Automated AerobaticFlight of a Miniature Helicopter[C]. Proceedings of the AIAA Guidance. Navigation and Control Conference. Monterey. CA. 2002
    [22], Gavrilets V., B.Mettler, E.Feron. Nonlinear Model for a Small-Size Acrobatic Helicopter[C]. Proceedings of the AIAA Guidance. Navigation and Control Conference. Montrel. Canada. 2001
    [23], V.Gavrilets, I.Martinos, B.Mettler, E.Feron. Flight Test and Simulation Results for an Autonomous Aerobatic Helicopter[C].0-7803-7367-7, IEEE. 2002
    [24], A. D. Kahn. The design and development of a modular avionics system [M].Master’s thesis,Georgia Institute of Technology,School of Aerospace Engineering, Atlanta,GA,Apr.2001
    [25], Proctor A., Kannan S., Raabe C., Christophersen H., and Johnson E. Development of an Autonomous Aerial Reconnaissance System at Georgia Tech[C]. Proceedings of the Association for Unmanned Vehicle Systems International Unmanned Systems Symposium & Exhibition. 2003
    [26], Joerg S. Dittrich. Design and Integration of an Unmanned Aerial Vehicle Navigation System[M].Master’s theis, Georgia Institute of Technology, School of Aerospace Engineering, Atlanta,GA,May, 2002
    [27], Eric N. Johnson, Sumit Mishra Flight simulation for the development of an experimental uav[C]. In AIAA Modeling and Simulation Technology Conference and Exhibit.number AIAA-2002-4975, Monterey. California,August 2002
    [28], Wills L., Kannan S., Sander S., Guler M., Heck B., Prasad J.V.R., Schrage D., Vachtsevanos G.. An Open Platform for Reconfigurable Control[J], IEEE Control Systems Magazine, 2001:49~64
    [29], A. Budiyono. Design and Development of Autonomous Uninhabited Air Vehicles at ITB: Challenges and Progress Status[C]. Aerospace Indonesia Meeting. Bandung. Indonesia. 2005
    [30], M. G. Perhinschi, J. V. R. Prasad. A simulation model of an autonomous helicopter. Georgia Tech
    [31], J. E. Corban, A. J. Calise, J. V. R. Prasad, J. Hur, and N. Kim. Flight evaluation of adaptive high bandwidth control methods or unmanned helicopters[C]. in Proceedings of the AIAA Guidance. avigation and Control. American Institute of Aeronautics and Astronautics. 2002
    [32], E. Johnson, D. P. Schrage. System integration and operation of a research unmanned aerial vehicle. Georgia Tech
    [33], E. Johnson and S. Fontaine. Use of flight simulation to complement flight testing of low-cost UAVs[C]. AIAA Modeling and Simulation Technologies Conference. 2001
    [34], N. Hovakimyan, N. Kim, and A. J. Calise. Adaptive output feedback for high-bandwidth control of an unmanned helicopter[C]. AIAA Guidance. Navigation and Control Conference. AIAA-2000-4058,2000
    [35], E. Johnson and S. Kanna. Adaptive flight control for an autonomous unmanned helicopter[C]. Proceedings of the AIAA Guidance. Navigation and Control Conference. 2002
    [36], J. Ditrich and E. Johnson. Multi-sensor navigation system for an autonomous helicopter[C]. Digital Avionics System Conference. 2002
    [37], E. Johnson, S. Fontaine, and A. Kahn. Minimum complexity uninhabited air vehicle guidance and flight control system. Georgia Institute of Technology.
    [38], Kannan S., Johnson E. Adaptive Trajectory based Flight Control for Autonomous Helicopters[C]. Proceedings of the 21st Digital Avionics Systems Conference. 2002
    [39], http://robotics.eecs.berkeley.edu/bear/people.htm
    [40], http://www.rose-hulman.edu/arc/index.htm
    [41], O. Amidi, T. Kanade, J. R. Miller. Autonomous helicopter research at carnegie mellon robotics institute[C]. Proceedings of Heli Japan’98. 1998
    [42], O. Amidi, T. Kanade, R. Miller. Vision-based autonomous helicopter research at carnegie mellon robotics institute[C]. Proceedings Heli Japan’98. Gifu. Japan. 1998
    [43], R. Miller, O. Amidi. 3-D site mapping with the CMU autonomous helicopter[C]. Proceedings of 5th International Conference on Intelligent Autonomous Systems,june,1998
    [44], B. Mettler, T. Kanade,M. B. Tischler. System identification modeling of a model-scale helicopter. Tech. Rep.CMU-RI-TR-00-03, Carnegie Mellon Robotics Institute,Pittsburgh,PA,2000
    [45], B. F. Mettler, M. B. Tischler, T. Kanade. System identification of small-size unmanned helicopter dynamics[C]. 55th forum of the American Helicopter Society. Montreal. Canada. 1999
    [46], http://sun-valley.stanford.edu/~heli/
    [47], Joerg S. Dittrich. MUTLI-SENSOR NAVIGATION SYSTEM FOR AN AUTONOMOUS HELICOPTER[C]. Georgia Institute of Technology. Atlanta. Georgia. IEEE. 2002
    [48], Simon Fraser University Aerial Robotics Group“Automated Helicopter System Integration”Competition Paper Entry 2004 International Aerial Robotics Competition
    [49], http://pdv.cs.tu-berlin.de/MARVIN/
    [50], MAVIN Technology university Berlins Flying Robot for IARC Millennial Event. Technology
    [51],韩建斌.无人直升机飞行控制系统设计报告.清华大学计算机系
    [52], http://www.china.com/military/~
    [53], Autonomous Air Vehicle Implementation Into The 2004 International Aerial Robotics Competition Adam Felske,David Muncaster DeVry Institute of Technology Calgray Alberta,2004
    [54], Design and Development of outh Dakata chool of Mines and Technology Aerial Robotic Recomnnaissance ystem.Jason Howe, outh Dakota chool of Mines and Technology Unmanned Aerial Vehicle Team Rapid City, outh Dakota,2003
    [55], http://www.abc.net.au/science/news/stories/s337568.htm
    [56],宋子善,沈为群.无人直升机综合控制系统设计[J],北京航空航天大学学报, 1999;25(3):280~283
    [57],沈俊,傅立敏,范士杰. CFD在汽车空气动力学设计中的应用[J],汽车技术,Vol.10,2000; 10:1~4
    [58],孙杰,林宗坚,崔红霞.无人机低空遥感监测系统[J],遥感信息, Vol.1,2003,pp.25~27
    [59],苏昀,张晓林.无人直升机遥控系统关键技术研究[J],遥测遥控, Vol.6,2002,pp.:53~58
    [60],姜立中.二通道航模遥控发射接收装置电路分析[J],电子世界, Vol.8,2000,pp.49~51
    [61],张浩.如何选择非易失性SRAM[J],电子技术,Vol.10, 1998,pp.41~42
    [62], B Mettler.《Identification Modeling and characteristics of miniature rotorcraft》[M]. American: Kulwer Acadmic Publishers, 2003
    [63], John C. Morris, Michiel van Nieuwstadt, Pascale Bendotti. Identification and Control of a Model Helicopter In Hover [C]. Proceedings of the American Control Conference . (S0743-1619),Vol.2,No.29,1994,pp.1238~1242
    [64], David Hyunchul Shim. Control System Design for Rotorcraft-based Unmanned Aerial Vehices using Time-domain System Identification [C]. Proceeding of the 2000 IEEE international Conference On Control Applications. 2000;3(23):808~813
    [65], Seiji Hashimoto. System Identification Experiments on a Large-scale Unmanned Helicopter for Autonomous Flight[C]. Proceedings of the 2000 IEEE international Conference On Control Applications(S1085-1992),Vol.12,No.2,2000,pp.850~854
    [66], Byeong Kim. Design of 6-DOF Attitude Controller of Hovering Model Helicopter[C]. The 30th Annual conference of the IEEE Industrial Society (S0278-0046), Vol.1, No.12,2004,pp.104~110
    [67], Kim S K, Tilbury D M. Mathematical modeling and experimental identification of a model helicopter [J], Journal of robotic systems, (S0741-2223), Vol.21,No.3,2004,pp.95~116
    [68], Kim S K, Tilbury D M. Mathematical Modeling and Experimental Identification of an Unmanned Helicopter Robot with Flybar Dynamics[J], Journal of Robotic Systems (S0741-2223),Vol.91,No.3,2004,pp.95~116
    [69], Lee E, shim H, Park H, Lee K. Design of hovering attitude controller for a model helicopter [C]. In Proceedings of society of instrument and control engineers. 1993:1385~1389
    [70], Wireman M, Geering H Test bench for rotorcraft hover control[J], AIAA journal of Guidance control and dynamics(S0731-5090),Vol.17,No.4,1994,pp.729~736
    [71],陈丽,龚振邦,刘亮.超小型旋翼机系统的输出跟踪控制器设计[J],系统仿真学报, Vol.18,No.2,2006,pp.500~503
    [72],高同跃,龚振邦,罗均,冯伟.滞空状态下超小型旋翼机系统的姿态模型辨识[J],系统仿真学报, Vol.20,No.1,2008,pp.7~10
    [73],邓正隆.《惯性技术》[M].哈尔滨:哈尔滨工业大学出版社, 2006
    [74],高正.《直升机飞行动力学》[M].北京:科学出版社, 2003
    [75],陈皓生.微型直升机动力学建模的研究现状[J],飞行力学, Vol.21,No.3,2003,pp.1~4
    [76], Prouty R. W.《直升机性能及稳定性和操纵性》[M].北京:航空工业出版社, 1990
    [77],陈皓生.悬停状态下微型直升机航向模型的系统辨识[J],清华大学学报(自然科学版)Vol.43,No.2,2003,pp.184~187
    [78],宋彦国,张呈林.直升机模糊飞控系统的现状与发展[J],直升机技术, Vol.1,2002,pp.41~45
    [79],宋彦国,张呈林.直升机内回路姿态模糊控制[J],航空学报, Vol.4,2003,pp.365~369
    [80], Douglas C. Watson, William S. Hindson. In-Flight Simlation Investigation of Rotorcarft Pitch-Roll Cross Coupling[C]. NASA Technical Memorandum 101059.Dec,1988
    [81], C. L. Blanken, H.-J. Pausder,C. J. Ockier. An Investigation of the Effects of Pitch-Roll (De) Coupling on Helicopter Handling Qualities[C]. NASA Technical Memorandum 110349.May 1995
    [82], Sung K Kim. Modeling, identification, and trajectory planning for a model-scale helicopter[D]. A dissertation for degree of Doctor of Philosophy in The University of Michigan
    [83], Colin Rhys,Theodore. Helicopter flight dynamics simulation with refined aerodynamic modeling[D]. A dissertation for degree of Doctor of Philosophy in The Univesity ofMaryland, College.
    [84], Peter V, Bart D. N4SID: Subspace algorithms for the identification of combined deterministic stochastic system[J], Automatica, Vol.30,No.1,1994,pp.75~93
    [85],潘立登,潘仰东.系统辨识与建模[M].北京:化学工业出版社, 2004
    [86],马艳,曾庆福,李志舜.子空间辨识方法的改进[J],推进技术,Vol.22,No.4,2004,pp.319~321
    [87], Tohru Katayama, Hidetoshi Kawauchi, Giorgio Picci. Subspace identification of closed loop systems by the orthogonal decomposition method[J], Automatica, Vol.41,No.5,2005,pp.863~872
    [88], Ivan Markovsky, Jan C. Willems, Paolo Rapisarda, Bart L.M, De Moor. Algorithms for deterministic balanced subspace identification[J], Automatica,Vol.41,No.5, 2005,pp.755~766
    [89], Seth L. Lacy, Dennis S. Bernstein. Subspace Identification With Guaranteed Stability Using Constrained Optimization[J], IEEE Transactions on Automatic Control, Vol.48,No.7,2003
    [90],薛定宇,陈阳泉.《控制数学问题的MATLAB求解》[M].北京:清华大学出版社, 2007
    [91],薛定宇.《控制系统计算机辅助设计——MATLAB语言与应用》[M]. (第2版).北京:清华大学出版社, 2006
    [92], Pascale Bendotti, John C. Morris. Robust Hover Control for a Model Helicopter [C]. Proceedings of the American Control Conference. 1995:682~687
    [93],郑大钟.《线性系统理论》[M].北京:清华大学出版社, 2002
    [94], Chi-Tsong Chen.《LINEAR SYSTEM THEORY AND DESIGN》[M]. New York: Oxford University Press, 1999
    [95],聂云姬.多变量闭环系统辨识算法的研究[D]. [硕士论文]北京:北京化工大学, 2002
    [96], Jin Wang, S.Joe Qin. A new subspace identification approach based on principal component analysis[J], Journal of Process Control,Vol.12,No.8 ,2002pp.841~855
    [97], Hiroshi Oku, Takao Fujii. Direct subspace model identification of LTI systemsoperating in closed-loop[C]. 43rd IEEE Conference on Decision and Control, 2004,pp.14~17
    [98], Peter Van Overschee, Bart De Moor. A unifying theorem for three subspace system identification algorithms[J], Automatica, 1995;31(12):1853~1864
    [99],张贤达.《矩阵分析与应用》[M].北京:清华大学出版社, 2004
    [100], Biao Huang, Steven X. Ding, S. Joe Qin. Closed-loop subspace identification: an orthogonal projection approach[J], Journal of Process Control,Vol.15,No.1,2005, pp.53~66
    [101], P. Van Overschee, B. De Moor. N4SIDaubspace algorithm for identification of combined deterministic-stochastic systems[J], Automatica,Vol.30,No.1, 1994
    [102], P. VAN Overschee, B. De Moor.《SUBSPACE IDENTIFICATION FOR LINEAR SYSTME——Theory-Implementation-Applications》[M]. KLUWER ACADEMIC PUBLISHERS, 1996
    [103], Alessandro Chiuso, Giorgio Picci. PREDICTION ERROR VS SUBSPACE METHODS IN CLOSED LOOP IDENTIFICATION, 2005
    [104],杨华,李少远.一种完全数据驱动的子空间辨识与鲁棒预测控制器设计[J],控制理论与应用, Vol.24,No.5,2007,pp.732~736
    [105], VAN DEN BOOM T J J, HAVERKAMP B R J. Towards a state-space polytopic uncertainty description using subspace model identification techniques[J], International Journal of Control,Vol.76,No.15, 2003,pp.1570~1583
    [106], Lennart Ljung.《System Identification Toolbox——For use with MATLAB》[M]. 2005
    [107],豆尚成.超小型旋翼机机电控制系统分析与仿真[D]. [硕士论文]上海:上海大学, 2005
    [108],付梦印,邓志红,张继伟.《Kalman滤波理论及其在导航系统中的应用》[M].北京:科学出版社, 2003
    [109],俞立.《鲁棒控制——线性矩阵不等式处理方法》[M].北京:清华大学出版社, 2002
    [110], Dan Simon.《Optimal State Estimation——Kalman, H∞,and Nonlinear Approaches》[M]. USA:A JOHN WILEY & SONS, INC., PUBLICATION, 2006
    [111], X.Shen, L.Deng. Discrete H∞Filter design with application to speech enhancem[C]. IEEE International Conference on Acoustics. Speech and Signal Processing. 1995,pp.1504~1507
    [112], X.Shen, L.Deng. Game theory approach to discrete H∞filter design[J], IEEE Transactions on Signal Processing, 1997,pp.1092~1095
    [113], Babak Hasssibi, Ali H. Sayed,Thomas Kailath. Linear Estimation in Krein Spaces-Part I:Theory[J], IEEE Trans. Autom. Control,Vol.41,No.1,1996,pp.18~33
    [114], Babak Hasssibi, Ali H. Sayed, Thomas Kailath. Linear Estimation in Krein Spaces-Part II:Applications[J], IEEE Trans. Autom. Control, Vol.41,No.1,1996,pp.34~49
    [115],高同跃.超小型无人直升机飞控系统及自主滞空飞行的研究[D]. [博士论文]上海:上海大学, 2008
    [116],吴敏,桂卫华,何勇.《现代鲁棒控制》[M].长沙:中南大学出版社, 2006
    [117],梅生伟,申铁龙,刘康志.《现代鲁棒控制理论与应用》[M].北京:清华大学出版社, 2003
    [118], Kemin Zhou, John C. Doyle, Keith Glover.《ROBUST AND OPTIMAL CONTROL》[M]. New Jersey: PRENTICE HALL, 1998
    [119], Kemin Zhou, John C. Doyle.《ESSENTIALS OF ROBUST CONTROL》[M]. New Jersey: PRENTICE HALL, 1998
    [120], Roger A. Horn,Charles R. Johnson.《MATRIX ANALYSIS》[M]. New York: Cambridge University Press, 1985
    [121], Stephen Boyd, Laurent El Ghaoui, Eric Feron, Venkataramanan Balakrishnan.《Linear Matrix Inequalities in System and Control Theory》[M]. Pennsylvania:Society for Industrial and Applied Mathematics, 1994
    [122],薛安克.《鲁棒最优控制理论与应用》[M].北京:科学出版社, 2008
    [123],褚健,俞立,苏宏业.《鲁棒控制理论与应用》[M].杭州:浙江大学出版社, 2000
    [124], Kosmidou O I, Abou-Kandil H, Bertrand P. A game theoretic approach for guaranteed cost control[C]. Proceedings of 1991 European Control Conference. Grendble. France.1991:2220~2225
    [125], Gary Balas, Richard Chiang, Andy Packard, Michael Safonov. Robust Control Toolbox——For Use with MATLAB (User’s Guide Version 3). 2004
    [126], D.W. Gu, P. Hr. Petkov, M. M. Konstantinov.《Robust Control Design with MATLAB》[M]. London:Springer-Verlag London Limited, 2005
    [127],史忠科,吴方向,王蓓,阮洪宁.《鲁棒控制理论》[M].北京:国防工业出版社, 2003
    [128],罗沛,裴海龙.基于AVR单片机的空中机器人伺服系统[J],计算机工程与应用, Vol.22,2006,pp.210~213
    [129], V. Gavrilets, E. Frazzoli, B. Mettler, M. Piedmonte, E. Feron. Aggressive maneuvering of small autonomous helicopters a human-centered approach[C]. International Journal of Robotics Research. 2001:795~807
    [130], Martinos, I. System Integration and Part Design for a Small Autonomous Helicopter[D]. M.S.thesis, Tufts University, 2001
    [131], E. Johnson, S. Fontaine, A. Kahn. Minimum complexity uninhabited air vehicle guidance and flight control system. Georgia Institute of Technology, 2002
    [132],王德宇,王建东,樊玮虹.基于单片机μPSD3234A的舵机控制系统[J],微处理机, Vol.10,No.5,2006,pp.126~128
    [133],邓寅喆,刘亮,龚振邦.基于倾角传感器和角速率陀螺的超小型无人直升机姿态控制器[J],机电一体化,Vol.4, 2004,pp.47~50
    [134], Aaron D. Kahn. The Design and Development of a Modular Avionics System[D]. [硕士论文]Georgia Institute of Technology, 2001
    [135],高同跃,龚振邦,罗均,冯伟.一种超小型无人机舵机控制系统的设计[J],计算机测量与控制, Vol.8,2007,pp.1006~1007
    [136],饶进军.超小型无人定翼机飞控系统研究与设计[D]. [博士论文]上海:上海大学, 2007
    [137], David E.Simon,陈向群(译).《嵌入式系统软件教程》[M].北京:机械工业出版社, 2006
    [138],付丽,刘卫国,伊强.单片机控制的多路舵机用PWM波产生方法[J],微特电机, Vol.2,2006,pp.28~29
    [139], Liusha, ragunathan rajkumar. Priority inheritance protocols:an approach to realtime synchronization[J], IEEE transactions on computer, Vol.39,No.9, 1993,pp.1175~1179
    [140],刘怀,胡继峰.实时系统的多任务调度[J],计算机工程,Vol.28,No.3, 2002,pp.6~9
    [141],王铁勇,吴盘龙,刘贞报.在单片机中嵌入操作系统的利弊[J],今日电子, Vol.9,2002,pp.8~9.
    [142], Grappel R.D. Open system protocols for aviation data link application[C]. in Proc. of the 19th Digital Avioncis Systems Conferences.Vol.2, 2000,pp.7E3/1~7E3/6
    [143],李芸.面向无人机的空地数据链系统研究[D]. [硕士论文]西安:西北工业大学, 2005
    [144], C. Marcu, Gh. Lazea, R. Robotin. An OpenGL Application for Industrial Robots Simu-lation[C]. in 2006 IEEE Int. Conf. on Automation. Quality and Testing. Robotics. May 2006pp.254~259
    [145], Fu Zhanping, Di Yazhou, Shang Xiliang, Qiu Zhi. Flight course replay and simulation base on OpenGL[C]. in 2002 IEEE Region 10 Conference on Computers. Communications. Control and Power Engineering,Vol.3, 2002,pp.1757~1760
    [146], Kober F., Lemos F.A.B. On use of OpenGL technology to support a power system CAD[C]. in IEEE Power Systems Conference and Exposition. 2004, Vol.2,pp.995~999
    [147], Wright R.《OpenGL superbible》[M]. Waite Group Press, 2001
    [148], Simon Robinson,Burt Harvey.《C#高级编程》[M].北京:清华大学出版社, 2002
    [149],刘善伍.不确定采样系统鲁棒稳定性分析与鲁棒控制[D]. [硕士论文]哈尔滨:哈尔滨理工大学, 2006
    [150],张森,张正亮.《MATLAB仿真技术与实例应用教程》[M].北京:机械工业出版社, 2004
    [151],黄忠霖.《控制系统MATLAB计算及仿真》[M].北京:国防工业出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700