催化共振散射光谱法测定α-淀粉酶、过氧化氢和葡萄糖
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:绪论
     介绍了共振散射技术理论。综述了近年来共振散射技术在分析化学中的应用,介绍了α-淀粉酶、过氧化氢和葡萄糖的分析进展。
     第二部分:可溶性淀粉的共振散射光谱研究及其在α-淀粉酶活力测定中的应用
     在0.8mg/ml聚丙烯酰胺(PAM)存在条件下,可获得较稳定的平均粒径为317nm的淀粉微粒。它在423nm处有一较强的共振散射峰。在50℃,pH为5.3的磷酸盐缓冲溶液中,淀粉微粒被α-淀粉酶(α-amylase,AMS)催化水解成小分子,导致423nm处共振散射峰强度降低。在选定条件下,AMS酶活力浓度在0.00835~0.501μg/ml(或0.00138-0.0827U/ml)范围内与共振散射强度降低值△I呈现良好的线性关系,其线性回归方程为△I=155C+13,相关系数R=0.9857。本法应用于人体唾液α-淀粉酶活力测定,结果满意。
     第三部分:HRP酶催化-阳离子表面活性剂缔合微粒共振散射光谱法测定痕量过氧化氢
     在醋酸缓冲溶液中,辣根过氧化物酶(HRP)可以催化H2O2与过量的I-反应生成I3-,I3-分别与阳离子表面活性剂TDMBA、DDAC、CTAB、ODC、CPCM、DPC和TBAB等形成缔合物微粒TDMBA-I3、DDAC-I3、CTAB-I3、ODC-I3、CPCM-I3、DPC-I3和TBAB-I3,该缔合物微粒均在460nm处有一个共振散射峰。过氧化氢的浓度在0.17~172.8、0.432~172.8、1.728~259.2、1.728~86.4、1.728~216、0.864~259.2和0.864~86.4×10-7mol/L范围内分别与各体系在460nm处的共振光谱强度呈线性关系。其检出限分别为0.086、0.34、1.72、0.46、0.36、0.64和0.44×10-7mol/L。本法应用于过氧化氢测定,结果满意。
     第四部分:双酶催化-阳离子表面活性剂缔合微粒共振散射光谱法测定痕量葡萄糖
     在醋酸缓冲溶液中,葡萄糖(G)在葡萄糖氧化酶(GOD)的作用下生成葡糖糖酸和H2O2,HRP可以催化H2O2与过量的I-反应生成I3-,I3-分别与阳离子表面活性剂十四烷基苄基二甲基氯化铵(TDMBA)、氯代十六烷基吡啶(CPCM)和十二烷基苄基二甲基氯化铵(DDAC)形成缔合物微粒TDMBA-I3、CPCM-I3和DDAC-I3,该缔合物微粒分别在460nm、540nm和430nm处有一个共振散射峰。对于TDMBA、CPCM和DDAC体系,葡萄糖的浓度分别在0.2~20×10-7mol/L、0.2~60×10-7mol/L和0.2~40×10-7mol/L范围内与其在最强的共振散射峰处的共振散射强度呈线性关系,其检出限分别为0.0856×10-7mol/L、0.118×10-7mol/L和0.096×10-7mol/L。将TDMAB体系应用于人血清中葡萄糖的测定,结果满意。
Part I Introduction
     Summarized the application of resonance scattering technology in analytical chemistry. The application of resonance scattering technology in analytical chemistry in resent years was summarized. The analytical progress ofα-amylase, H2O2 and glucose were introduced. Two hundred and forty-three references were quoted.
     Part II Resonance scattering spectra of starch and its application to assay ofα-amylase activity
     In presence of 0.8mg/mL polyacrylamide(PAM), starch forms stable microparticles that the average diameter is about 317nm. It exhibits a strong resonance scattering peak at 423nm. In pH=5.3 phosphate buffer solution at 50℃, starch microparticles is catalyzed and hydrolysised into small molecules byα-amylase, which leads the resonance scattering intensity at 423nm to decrease greatly. Under proper experimental conditions, the decreased resonance scattering intensity is well linear to the concentration ofα-amylase in the range of 0.00835~0.501μg/ml (or 0.00138~0.0827U/ml), and the regression equation and the correlation coefficient are△I = 155C + 13 and 0.9857, respectively. The method is used to the determination ofα-amylase activity in human saliva, with satisfactory results.
     Part III HRP catalytic resonance scattering spectral determination of trace hydrogen peroxide using cationic Surfactant association particle
     In acetic acid buffer solution, horseradish peroxidase (HRP) may catalyze H2O2 oxidation of excess I- to form I3-, the I3- combined with cationic surfactant (CS), such as tetradecyl dimethylbenzyl ammonium chloride (TDMAB), dodecyl dimethylbenzyl ammonium chloride(DDAC), cetyltrimethyl ammonium bromide (CTAB), dimethyl benzyl ammonium chloride(ODAC), cetylpyridinium chloride (CPCM), chlorinated dodecyl pyridine(DPC) and terabutyl ammonium iodide(TBAB) to produce association microparticles TDMBA-I3、D DAC-I3、CTAB-I3、ODC-I3、CPCM-I3、DPC-I3 and TBAB-I3, which exhibit the strongest resonance scattering peak at 460 nm, the hydrogen peroxide concentration in the range of 0.17~172.8、0.432~172.8、1.728~259.2、1.728~86.4、1.728~216、0.864~259.2 and 0.864~86.4×10-7mol?L-1, was linear to the intensity at 460 nm,with a detection limit of 0.086、0.34、1.72、0.46、0.36、0.64 and 0.44×10-7mol?L-1 respectively. The method is used to the determination of hydrogen peroxide in real samples, with satisfactory results.
     Part IV A highly sensitive and selective resonance scattering spectral probe for glucose based on GOD and HRP catalytic effects
     In acetic acid buffer solution, glucose (G) can be oxidized to gluconic acid and H2O2 in the presence of glucose oxidase (GOD). The H2O2 oxidized excess I- catalytically to form I3- in the presence of horseradish peroxidase (HRP). The I3- combined with cationic surfactant (CS) such as tetradecyl dimethylbenzyl ammonium chloride (TDMAB), cetylpyridinium chloride(CPCM) and dodecyl dimethylbenzyl ammonium chloride (DDAC) to produce TDMBA-I3, CPCM-I3 and DDAC-I3 association particles that exhibited the strongest resonance scattering (RS) peak at 460 nm, 540 nm and 430 nm, respectively. The G concentration in the range of 0.2~20×10-7 mol/L, 0.2~60×10-7 mol/L and 0.2~40×10-7 mol/L was linear to their RS intensity at the strongest RS wavelength, with a detection limit of 8.6×10-9 mol/L, 1.2×10-8 mol/L and 9.6×10-9 mol/L respectively. The TDMAB catalytic RS method was used to the determination of glucose in human serum, with satisfactory results.
引文
[1] 武建芳,郇宜贤.表面增强拉曼散射概述[J].光散射学报,1994,6(1):52.
    [2] S. G. Stanton, R. J. Decora. Chem. Phys [J],1981, 75: 5615.
    [3] C. Z. Huang,K. A. Li,S. Y. Tong. Determiantion of nucleic acids by a resonance light-scattering technique with α, β, γ, δ-tetrakis[4-(trimethylammoniumyl) pheny] porphine[J]. Anal. Chem,1996,68(13): 2259
    [4] V. Tan, D. J. Doyle. Comparison of the kinetic fibrinogen assay with the Von clauss method and the clot recovery method in plasma of patient with conditions affecting fibrinogen coagulability[J]. Am. Chin. Pathol, 1995: 104(4): 455-462.
    [5] 杨睿,刘绍璞. 某些分子光谱分析法测定蛋白质的进展[J]. 分析化学,2001, 29 (2): 232.
    [6] H. Q. Ma, K. A. Li, S. Y. Tong. Microdeermiantion of protein by resonance light scattering spectroscopy with bromophenol blue [J]. Anal. Biochem, 1996, 239: 86-91.
    [7] 张爱梅,藏运波. 吖啶红-SLS 体系共振瑞利散射法测定蛋白质[J]. 分析实验室,2005,24(7):44-47.
    [8] 张爱梅, 藏运波. 达旦黄-OP 体系共振瑞利散射法测定蛋白质[J]. 聊城大学学报,2004,17(4):38-40.
    [9] 冯素玲,王瑾, 樊静. 达旦黄-曲通 X-100 体系共振光散射法测定蛋白质[J]. 光谱学与光谱分析,2005,25(6):927-929.
    [10] 冯宁川,龚国权. 亮黄-曲通 X-100 体系共振瑞利散射法测定蛋白质[J]. 分析化学, 2002,30(4):425-427.
    [11] 李舒婷,蒙法艳,孔祥荣,李贞,陈韵,赵书林. 邻苯二酚紫共振散射法测定蛋白质含量.[J] 广西师范大学学报,2004,22(2):55-58.
    [12] 龙秀芬,刘绍璞. 磷锑钼蓝共振瑞利散射法测定蛋白质[J]. 西南师范大学学报,2000, 25(4):155-159.
    [13] 杨睿,刘绍璞,龙秀芬. 曲利本蓝-蛋白质体系的共振瑞利散射及其分析应用[J]. 西南师范大学学报,1999,2(2):179-182.
    [14] 刘晓辉,高俊杰,余萍. 偶氮胭脂红 B 与蛋白质的共振瑞利散射研究[J]. 沈阳理工大学学报, 2005,24(4):63-66.
    [15] 张红医,刘保生,张红蕾,赵勇. 酸性品红共振光散射法测定蛋白质[J]. 光谱学与光谱分析,2002,22(6):1054-1056.
    [16] 王晓霞,沈含熙,郝永梅. 苋菜红-蛋白质体系的共振光散射光谱研究及其分析应用[J]. 分析化学,2000,28(11):1388-1390.
    [17] 吴会灵,李文友,何锡文. 乙醇敏化钛黄与蛋白质作用的共振光散射光谱研究及其分析应用[J].化学学报,2002,60(10):1822-1827.
    [18] 赵霞,曹秋娥,李祖碧. 用共振光散射技术研究蛋白质与丽春红 2R 的相互作用[J]. 分析科学学报,2003,19(6):528-530.
    [19] C. Z. Huang, W. Lu, Y. F. Li, Y. M. Huang. On the factors affecting the enhanced resonance light scattering signals of the interactions between protein and multiply charged chromophores using water blue as an example [J]. Anal.Chim.Acta, 2006, 556: 467-475.
    [20] R. T. Liu, J. Yang, H. X. Wu, Z. J. Lan. Resonance double light scattering method for the determination of proteins with morin-CTMAB. Spectrochim [J].Acta Part A, 2002, 58: 3077-3083.
    [21] 刘绍璞,范莉,胡小莉,刘忠芳,陈粤华. 某些氨羧络合型染料与蛋白质相互作用的共振瑞利散射研究[J]. 化学学报,2004, 62(17):1635-1640.
    [22] 范莉,刘绍璞,龙秀芬,胡小莉. 某些变色酸双偶氮染料-蛋白质体系的共振瑞利散射及其分析应用[J]. 分析化学, 2002,30(1):81-85.
    [23] 高建华,李华岑,杨潞,王俊臣,龚雪云. 四磺基金属酞菁类染料共振光散射法测定人血清白蛋白[J]. 郑州大学学报,2004,36(1):82-91.
    [24] 李永新,张德兴,赵丹华,卓淑娟,朱昌青,王伦. 四磺基锰酞菁-蛋白质体系的共振瑞利散射行为及其分析应用[J]. 分析化学,2003,31(11):1372-1375.
    [25] 王永红, 黄承志, 李原芳. 萘铬绿与蛋白质作用的共振光散射光谱研究[J]. 西南师范大学学报, 2004, 29(3): 424-428.
    [26] 贾润萍,陈晓峰,董立军,李前锋,陈兴国,胡之德. 三溴偶氮胂共振光散射法定量测定蛋白质[J]. 兰州大学学报,2004, 40(3):38-42.
    [27] Z. X. Guo, H. X. Shen. Sensitive and simple determination of protein by resonance Rayleigh scattering with 4-azochromotropic acid phenylfluorone [J]. Anal. Chim. Acta,2000, 408: 177-182.
    [28] C. Z. Huang, Y. F. Li, P. Feng. Determination of proteins with α,β,γ,δ-tetrakis(4-sulfophenyl)porphine by measuring the enhanced resonance light scattering at the air/liquidinterface[J]. Anal. Chim. Acta, 2001, 443: 73-80.
    [29] 刘绍璞,范莉,龙秀芬,胡小莉. 偶氮氯膦 III 共振瑞利散射法测定蛋白质[J]. 西南师范大学学报,2001,26(3):293-296.
    [30] R. P. Jia, L. J. Dong, Q. F. Li, X. G. Chen, Z. D. Hu. A highly sensitive assay for protein with dibromochloro-arsenazo-Al3+ using resonance light scattering technique and its application[J]. Talanta, 2002, 57:693-700.
    [31] 阳睿,刘绍璞,黄承志. 铝(III)-铬天青 S-蛋白质体系共振瑞利散射法测定蛋白质[J]. 云南大学学报,2002,21:63-65.
    [32] Y. J. Chen, J. H. Yang, X. Wu. Resonance light scattering technique for the determination of protein with resorcinol yellow and OP [J]. Talanta, 2002, 58: 869-874.
    [33] 李树伟,李娜,赵凤林,李克安. 用铀试剂Ⅰ共振光散射法测定蛋白质的研究[J]. 光谱学与光谱分析,2002,22(4):619-622.
    [34] 李树伟,李娜,赵凤林,李克安. 用铬黑 T 作为共振光散射探针测定蛋白质[J]. 分析化学,2002,30(6): 732-735.
    [35] Y. Liu, J. H. Yang, S. F. Liu, X. Wu, B. Y. Su, T. Wu. Resonance light scattering technique for the determination of protein with rutin and cetylpyridine bromide system [J]. Spectrochim. Acta. Part A, 2005(61): 641-646.
    [36] 李振中,蒋治良,陈媛媛,孙双姣,周苏梅. 蛋白质-阳离子表面活性剂缔合微粒体系的光谱特性及分析应用[J]. 应用化学,2005, 22(12): 1304-1307.
    [37] 胡庆红,江波. 阴离子表面活性剂与蛋白质的共振瑞利散射及分析应用[J]. 分析化学,2003,31(9):1123-1126.
    [38] 江波,胡庆红. 十二烷基苯磺酸钠共振瑞利散射法测定蛋白质.[J] 分析实验室,2005,21(3):27-30.
    [39] X. F. Long, S. P. Liu, L. Long, Z. F. Liu, S. P. Bi. A study on the interaction of proteins with some heteropoly compounds and their analytical application by resonanceRayleigh scattering method[J]. Talanta, 2004, 63: 279-286.
    [40] 梁爱惠,邹节明,蒋治良,王力生,覃爱苗. 磷钼杂多酸与蛋白质相互作用的共振散射光谱研究[J]. 应用化学, 2002,19(8): 768-771.
    [41] Z. L.Jiang, Z. L. Peng, S. P. Liu. Resonance scattering spectral determination of HSA with a mew scattering enhanced reagent of K3[Fe(CN)6][J]. Chinese Journal of Chemistry, 2002, 20: 1566-1572.
    [42] 蒋治良,邹节明,王力生,覃爱苗. 蛋白质与三氯乙酸相互作用的共振散射光谱研究及分析应用[J]. 分析化学,2003,31(1):70-73.
    [43] 翟好英,蒋治良,章表明. 卤铂酸-人血清蛋白蛋白体系的瑞利散射光谱研究及分析应用[J]. 贵金属,2004,25(2):5-10.
    [44] L. Y. Wang, L. Wang, L. Dong, Y. L. Hu, T. T. Xia, C. Q. Zhu. Determination of γ-globulin at nanogram levels by its enhancement effect on the resonance light scattering of functionalized HgS nanoparticles [J]. Talanta, 2004, 62: 237-240.
    [45] L. Y. Wang, L. Wang, H. Q. Chen, L. Li, L.Dong, et al. Direct quantification of γ-globulin in human blood serum by resonance light scattering techniques without separation of human serum albumin. Analytica Chimica Acta,2003,493:179-184.
    [46] 陈粤华,刘忠芳,胡小莉,刘绍璞. 铬(VI)与蛋白质相互作用的共振瑞利散射光谱及其分析应用[J]. 分析化学, 2005,33(6):802-804.
    [47] 魏永巨,李克安,童沈阳.蛋白质-铬天 S 体系的弹性光散射及其初步分析应用[J].化学学报,1998, 56: 290-297.
    [48] 吴会灵,李文友,何锡文.依波西隆蓝与蛋白质作用的共振散射光谱及其分析应用 [J].分析化学, 2003,31(8): 889-991.
    [49] 冯宁川,龚国权.钍试剂 II 与蛋白质作用的共振光散射特征及微量蛋白质的光散射测定 [J].分析试验室, 2002, 21(1): 58-60.
    [50] D. J. Gao, Y. Tian, L. Ding, F. H. Liang, S. Y. Bi, Y. H. Chen, A. M. Yu, H. Q. Zhang. Determination of human complement factor C4 using resonance light-scatteringtechnique with sodium dodecylbenzene sulphonate probe[J]. Spectrochimica Acta PartA. Molecular and Biomoleclar Spectroscopy,2006,64(2):430-434.
    [51] Z. G. Chen, J. B. Liu, Y. L. Han. Rapid and sensitive determination of proteins by enhanced resonance light scattering spectroscopy of sodium lauroyl glutamate [J].Talanta,2007,71: 1246–1251.
    [52] L. Li, G. G. Song, G. G. Fang. Determination of bovine serum albumin by a resonance light-scattering technique with the mixed-complex La (Phth)(phen)3+[J]. Pharmaceutical and Biomedical Analysis, 2006,40:1198–1201.
    [53] 冯健,盛晴芳,李玲,宋功武. 3Fe(bpy)(phen)2+与牛血清白蛋白相互作用的共振散射光谱的研究[J].咸宁学院学报,2006,26(3):67-68.
    [54] Z. L. Jiang, S. J. Sun, A. H. Liang, C. J. Liu. A new immune resonance scattering spectral assay for trace fibrinogen with gold nanoparticle label[J]. Anal. Chim. Acta, 2006, 571: 200–205.
    [55] 马春琪,刘瑛,李克安,童沈阳. 瑞利光散射及其在生物化学分析中的应用研究[J]. 科学通报, 1999, 44(7): 682-690.
    [56] C. Z. Huang, Y. F. Li, X. D. Liu. Determination of nucileic acids at nanogram levelswith safranine T by a resonance light-scattering technique[J]. Anal.Chim. Acta,1998,375: 89-97.
    [57] Y. T. Wang, F. L. Zhao, K. A. Li, S. Y. Tong. Molecular spectroscopic study of DNA binding with meutral red and application to assay nucleic acids [J]. Anal. Chim. Acta, 1999, 396: 75-81.
    [58] 黄新华,李原芳,奉萍等. 小牛胸腺脱氧核糖核酸诱导中性红聚集的机理及其影响因素[J]. 分析化学,2000, 28(6): 682-686.
    [59] 向海艳,陈小明,李松青,夏殊,刘安喜. 枚苯胺共振光散射法测定 DNA[J]. 光谱学与光谱分析, 2001,21(6):697-800.
    [60] 黄新华,黄承志,黄玉明. 中性红用于痕量 DNA 测定[J]. 西南师范大学学报,2000,25(3): 273-276.
    [61] 向海艳,陈小明,李松青, 夏殊, 刘安喜. 亚甲基蓝共振光谱散射法测定脱氧核糖核酸[J]. 分析化学,2000,28(11): 1398-1401.
    [62] 李天剑,沈含熙. 乙基紫-脱氧核糖核酸共振发光体系的研究及其分析应用[J]. 高等学校化学学报,1998,19(10): 1570-1573.
    [63] 刘绍璞,龙秀芬,胡小莉,范莉. 核酸-某些碱性三苯甲烷染料体系的 RRS 及其分析应用[J].西南师范大学学报, 2001, 26(2): 164-169.
    [64] 刘晨,胡颧,陈小明. 结晶紫共振光散射法测定脱氧核糖核酸[J].分析试验室,2001, 20(2): 30-33.
    [65] Y. Liu, C. Q. Ma, K. A. Li, X. F. Chun, S. Y. Tong. Rayleigh light scattering studyon the reaction of nucleic acids and methyl violet[J]. Anal. Biochem,1999,268:187-192.
    [66] 万新军, 刘金水, 王伦. 吖啶橙共振光散射法测定脱氧核糖核酸[J]. 光谱学与光谱分析, 2005, 25(5): 754-756.
    [67] 刘晨,陈小明,向海艳,李松青,夏殊,刘安喜. 枚苯胺共振光散射法测定 DNA[J]. 光谱学与光谱分析,2001,21(5): 697-700.
    [68] 曾金祥, 陈小明, 蔡昌群, 罗和安. 碱性品红共振光散射法测定 DNA 研究[J]. 分析科学学报, 2005, 21(6): 664-666.
    [69] 达毛拉·杰力里,黄承志. 酚藏花红 DNA 作用的共振光散射特征及微量 DNA 的光散射测定[J]. 分析化学, 1999, 27(10): 1204-1207.
    [70] 黄承志,李原芳,李念兵等. 耐尔蓝硫酸盐在核酸分子表面的长距离组装及核酸的三波长共振光散射测定[J]. 分析化学,1999,27(11): 1241-1247.
    [71] 刘晨,陈小明. 灿烂甲酚蓝共振光谱散射法测定脱氧核糖核酸[J].分析化学,2001, 29(6): 685-688.
    [72] 向海艳,陈小明,周迪武. 副品红共振光散射法测定脱氧核糖核酸[J].光谱学与光谱分析,2002,22(6):1051-1053.
    [73] Y. Liu, Q. C. Ma, K. A. Li, T. S. Yang. Simple and sensitivity assay for nucleic acids by useof Rayleigh light scattering technique with rhoamine B[J]. Anal. Chim. Acta,1999,379: 39-44.
    [74] 俞英,黄发德.核酸与丁基罗丹明 B 体系的共振散射光谱[J].分析化学,2002,30(10): 1234-1236.
    [75] 吴会灵,李文友,何锡文,梁宏. 罗丹明 6G 与核酸作用的共振光散射光谱及其分析应用[J].分析科学学报,2002,18(2): 94-99.
    [76] 陈小兰,李东辉,朱庆枝, 杨黄浩, 郑洪, 许金钩.用四氨基铝酞菁共振光散射技术测定纳克级核酸[J]. 高等学校化学学报,2001,22(6): 901-904.
    [77] C. Z. Huang, K. A. Li, S. Y. Tong. Determination of nanograms of nucleic acids by therir enhancement effect on the resonance light scattering of the cobalt (II)/4[(5-chloro-2-pyridyl) zeo]-1,3-diaminobenzene complex [J]. Anal. Chem,1997,69(3): 514-521.
    [78] 黄新华,舒为群,李原芳, 黄承志. 溴代十六烷基三甲基铵敏化亮绿-脱氧核糖核酸作用的共振光散射增强研究[J]. 分析化学,2001,29(3): 271-275.
    [79] 陈宇春,徐昆,李原芳,黄承志. 阳离子表面活性剂存在下孔雀石绿与脱氧核糖核酸的作用及分析应用[J].西南师范大学学报,2002,27(4): 617-621.
    [80] 李玲,宋功武,方光荣等. 孔雀石绿在核酸表面分子的长距离组装及其共振光散射法测定脱氧核糖核酸[J]. 湖北大学学报, 2002,24 (3): 246-249.
    [81] 陈艳晶,杨景和,吴霞,徐颖绚. 间苯二酚黄-CTAB-核酸共振光散射体系的研究及应用[J].光谱实验室,2002,19(3): 299-302.
    [82] 王粤博,吴霞,杨景和,任学贞, 栾玉霞,孙姝娜. 间甲酚紫-DNA 体系共振光散射法测定 DNA[J]. 山东大学学报, 2002, 37(6): 537-543.
    [83] 刘绍璞,胡小莉,罗红群,范莉. 阳离子表面活性剂与核酸反应的共振 Rayleigh 散射及其分析应用[J]. 中国科学 B 辑,2002,32(l): 18-26.
    [84] 汪澜, 何瑜, 宋功武. 聚甲基丙稀酰氧乙基二甲基丁烷基溴化铵共振光散射法测定核酸[J]. 胶体与聚合物, 2005, 23(3): 43-45.
    [85] 贺小甦,何瑜,宋功武. 壳聚糖与 DNA 作用的共振光散射特征及微量 DNA 的光散射测定[J]. 胶体与聚合物, 2004, 23(4): 26-38.
    [86] 杨传孝,李原芳,奉萍, 黄承志. 铝离子与脱氧核糖核酸作用的共振光散射研究[J].分析化学,2002,30(4): 473-477.
    [87] Z. P. Li,K. A. Li,S. Y. Tong. Determination of nucleic acids in acidic medium by enhanced light scattering of large particles[J]. Talanta,2000,51(l): 63-70.
    [88] 刘晨,陈献桃,李松青,陈小明.小檗碱共振光散射法测定脱氧核糖核酸[J].分析化学, 2002,30(10):1218-1221.
    [89] 朱昌青,李东辉,郑洪等.核酸对氯化银胶体溶液共振光散射的猝灭作用及其应用[J]. 分析化学,2000,28(12): 1485-1488.
    [90] S. P. Liu, Z. Y. Zhang, H. Q. Luo. Resonance Rayleigh-scattering method for the determination of vitamin B1with methyl orange[J]. Anal. Sci, 2002, 18: 971-976.
    [91] 胡小莉,刘绍璞,罗红群. 曲利本红与氨基糖苷类抗生素相互作用的共振瑞利散射光谱及其分析应用[J]. 化学学报,2003,61:1287-1293.
    [92] 何佑秋,刘绍璞,刘忠芳,胡小莉,鲁群岷. 金纳米微粒作为探针共振瑞利散射光谱法测定卡那霉素[J]. 化学学报,2005,63(11):997-1002.
    [93] X. Q. Wei, Z. F. Liu, S. Q. Liu. Resonance Rayleigh scattering method for the determination of tetracycline antibiotics with uranyl acetate and water blue[J]. Anal. Biochem, 2005, 346: 330-332.
    [94] S. P. Liu, X. L. Hu, H. Q. Luo. Resonance Rayleigh scattering measurement of aminoglycoside antibiotics with Evans blue[J]. Anal. Sci, 2003, 19: 927-932.
    [95] S. P. Liu, X. L. Hu, N. B. Li. Resonance Rayleigh scattering method for the determination of aminoglycoside antibotics with trypan blue [J]. Anal. Lett, 2003, 36: 2805-2821.
    [96] G. Mie. Beitrage zur optik truber medien speziell kolloidaler metallosungen. Ann. Phys, 1908, 25: 377-445.
    [97] S. Z. Zhang, F. L. Zhao, K. A. Li, et al. A study on the interacting between concanavalin A and glycogen by light scattering technique and its analytical application [J]. Talanta, 2001,54:333-342.
    [98] 范莉,刘绍璞,杨大成. 测定新药雷洛昔芬的曲本红共振共振瑞利散射法[J]. 分析测试学报,2003,22(1): 27-30.
    [99] 彭敬东,刘绍璞,刘忠芳,石燕. 氯金酸-小檗碱离子缔合物体系的共振瑞利散射光谱研究及其分析应用[J]. 化学学报, 2005,63(8):745-751.
    [100] 孔玲,刘绍璞,周贤杰. 同多钼酸根共振瑞利散射光谱法测定盐酸小檗碱[J]. 西南师范大学学报,2003,28(2): 252-257.
    [101] 邹节明,潘宏程,蒋治良等. 盐酸小檗碱-十二烷基苯磺酸钠缔合微粒体系的共振散射光谱研究及其分析应用[J]. 分析化学,2003,31(11):1348-1351.
    [102] 王芬, 刘忠芳,刘绍璞. 某些蒽环类抗癌药物与刚果红相互作用的吸收、荧光和共振瑞利散射光谱研究[J]. 化学学报, 2005, 63(21): 1991-1998.
    [103] 蒋治良,邹明静,梁爱惠,沈星灿.硫酸软骨素-阳离子表面活性剂缔合物微粒体系的共振散射光谱研究及分析应用[J].化学学报,2006,64(2):111-116.
    [104] 刘绍璞,张筑元,胡小莉,刘忠芳,王芬.某些碱性吩嗪染料与肝素相互作用的共振瑞利散射光谱研究[J].分析化学,2005,33(7):989-992.
    [105] L. P. Wu, Y. F. Li, C. Z. Huang, Q. Zhang. Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles [J]. Anal. Chem., 2006, 78: 5570-5577.
    [106] R. F. Pasternack, C. Bustamante, P. J. Collings, A. Giannett, E. J. Gibbs. Porphin assemblies on DNA as studied by a resonance lightscattering technique [J]. Am. Chem. Soc., 1993, 115: 5393 - 5399.
    [107] S. P. Liu, H. Q. Luo, N. B. Li, et al. Resonance Rayleigh scattering study of the interaction of heparin with basic diphenyl naphthylmethane dyes [J]. Anal. Chem., 2001,73(16): 3907-3914.
    [108] 王照丽,李树伟,张万诚,谭舒敏. 共振散射法测定汞-硫氰酸盐-罗丹明 B 体系中的汞 [J]. 四川师范大学学报(自然科学版), 2002,25(3): 295-297.
    [109] S. P. Liu, Q. Liu, Z. F. Liu, M. Li, C. Z. Huang. Resonance Rayleigh scattering of chromium (VI)-iodide-basic triphenylmethane dye systems and their analytical application[J]. Anal. Chim. Acta, 1999, 379: 53-61.
    [110] Z. P. Wang, Y. H. Qian, G. S. Chen, K. L. Cheng. Studies on simultaneous fluorenscence spectrophotometric determination of ultratrace niobium(V), tantalum(V), and zirconium(IV) using partial least squares algorithm [J] . Microchem., 1998, 60: 271-281.
    [111] S. P. Liu, Z. F. Liu, H. Q. Luo. Resonance Rayleigh scattering method for the determination of trace amounts of cadmium with iodide-rhodamine dye systems [J]. Anal. Chim. Acta, 2000, 407: 255-260.
    [112] 刘绍璞,周光明,刘忠芳,李明. 共振瑞利散射法测定硫氰酸盐-碱性三苯甲烷染料体系中痕量钼 [J]. 高等学校化学学报, 1998, 19(7):1040-1044.
    [113] 刘绍璞,刘忠芳. 钼(V)- 硫氰酸盐-碱性三苯甲烷染料体系的二级散射光谱及其分析应用[J]. 西南师范大学学报(自然科学版), 1998,23(4): 412-417.
    [114] X. F. Long, S. P. Bi, H. Y. Ni, X. C. Tao. Resonance Rayleigh scattering determination of trace amount of Al in natural waters and biological samples based on the formation of an Al(Ⅲ)-morin-surfactantcomplex [J]. Anal. Chim. Acta, 2004, 59: 89-97.
    [115] Q. E. Cao, Y. K. Zhao, X. J. Yao, Z. D. Hu, Q. H. Xu. The synthesis and application of 1-(o-nitrophenyl)-3-(2-thiazolyl) triazene for the determination of palladium(II) by the resonance enhanced Rayleigh light scattering technique [J] . Spectrochim. Acta Part A, 2000, 56: 1319-1327.
    [116] 李怡,曹秋娥,丁中涛. 铑-钨酸盐-罗丹明 B 缔合体系的共振光散射现象及其应用[J]. 分析实验室,2004,23(11): 49-51.
    [117] 王丹,罗红群,李念兵,刘绍璞. 碘化物-甲基紫体系共振瑞利散射法测定痕量铅[J]. 西南师范大学学报(自然科学版), 2004,29(6):1005-1008.
    [118] 王丹,罗红群,李念兵. 碘化物-罗丹明 6G 体系共振瑞利散射法测定痕量铅[J]. 环境化学,2005,24(1):97-100.
    [119] 翟好英,蒋治良. Ag(I)-DDTC 螯合物微粒体系的光谱特性及其分析应用[J]. 应用化学,2005, 22(8): 852-856.
    [120] 蒋治良,杨明媚,莫琪. 微量银的光化学共振散射光谱分析[J]. 贵金属,2000,21(3):34-37.
    [121] 钟福新,蒋治良,李芳,李廷盛,梁宏. 银纳米粒子的光化学制备及共振散射光谱研究[J]. 光谱学与光谱分析,2000,20(5):724-726.
    [122] 翟好英. 金(III)-卤化物-吖啶红体系光谱特性及应用[J]. 广西师范大学学报(自然科学版), 2005,23(3):61-65.
    [123] Z. L. Jiang, Q. Y. Liu, S. P. Liu. Resonance scattering spectral analysis of chlorides based on the formation of (AgCl)nucleu(Ag)shell nanoparticle [J]. Spectrochim. Acta Part A, 2002, 58: 2759-2764.
    [124] A. H. Liang, Z. L. Jiang, B. M. Zhang, Q. Y. Liu, X. Lu. A new resonance scattering spectral method for the determiantion of trace amounts of iodate with rhodamine 6G [J]. Anal. Chim. Acta, 2005, 530: 131-134.
    [125] 蒋治良,刘庆业, 梁爱惠. 吖啶橙缔合微粒共振散射光谱法测定痕量 NO2 量[J]. 广西师范大学学报(自然科学版), 2004, 22(4): 57-60.
    [126] S. P. Liu, Z. F. Liu, C. Z. Huang. Resonance Rayleigh scattering for indirect determination of trace amounts of selenium (II) with iodide-basic triphenylmethane dyes systems [J]. Anal. Sci., 1998, 14: 799-802.
    [127] 蒋治良,李芳,梁宏. 磷钼杂多酸-罗丹明 S 体系的共振散射光谱研究[J]. 化学学报,2000,58(8):1059-1062.
    [128] 黄永炎,蒋治良. 砷钼杂多酸-罗丹明 B 三元离子缔合物的二级散射光谱研究[J]. 分析科学学报,2000,16(2):546.
    [129] 陈飒,刘绍璞,罗红群.乙基紫-阴离子表面活性剂体系的共振瑞利散射光谱及其分析应用.分析化学,2004,32(1):19-24.
    [130] Z. Yang, Z. F. Liu, S. P. Liu, H.Q. Luo, L. Kong. RRS method for the determination of cationic surfanctants with bromophenol blue[J]. Southwest Chian Normal University, 2004, 29(5): 773-779.
    [131] 石燕,刘忠芳,刘绍璞,胡小莉.卤离子与阳离子表面活性剂相互作用的共振瑞利散射光谱.西南师范大学学报, 2004, 29(1): 84-89.
    [132] S. P. Liu, S. Chen, Z. F. Liu, X. L.Hu, T. S. Li. Resonance Rayleigh scattering specteral of interaction of sodium carboxymethylcellulose with catiniac acridine dyes and their analytical applications. Anal. Chim. Acta, 2005, 535: 169-175.
    [133] 王明霞,刘忠芳,胡小莉,刘绍璞.阳离子表面活性剂与四苯硼钠反应的共振瑞利散射光谱及其分析应用[J].分析化学,2005,33(10):1427-143l.
    [134] 杨卓,刘忠芳,刘绍璞,罗红群,孔玲.溴酚蓝共振瑞利散射光谱法测定痕量阳离子表面活性剂[J].西南师范大学学报(自然科学版),2004,29(5):73-77.
    [135] 干宁,李天华,徐伟民,葛从新.Ca-槲皮素共振瑞利散射法测定废水中阳离子表面活性剂的含量[J].日用化学工业,2007,37(1):54-57.
    [136] Z. L. Jiang, Q .Y. Liu, S. P. Liu. Catalytic resonance scattering spectral method for the determination of trace amounts of Se[J].Talanta, 2002, 58:635-640.
    [137] Z. L. Jiang, G. X. Huang. Resonance scattering spectra of Micrococcus Lysodeikticus and its application to assay of lysozyme activity[J]. Clin. Chim.Acta,2007,376:136.
    [138] 蒋治良,刘绍璞,赵保刚,陈飒,李键.CoFe2O4 纳米粒子的共振散射光谱研究[J]. 光谱学与光谱分析,2002,22(4):615-618.
    [139] 刘庆业,蒋治良,蒙冕武.钯纳米微粒的微波高压液相合成及共振散射光谱研究[J]. 分析测试技术与仪器,2001,7(4):199-203.
    [140] 蒋治良,蒙冕武,刘绍璞.黄色硫化镉纳米粒子的共振瑞利散射光谱研究[J].分析化学, 2003,31(3):315-317.
    [141] 蒋治良,刘绍璞,刘庆业.碳纳米微粒的共振散射光谱研究[J].应用化学,2002,19(1): 22-25.
    [142] 刘绍璞,蒋治良,孔玲,刘芹.[HgX2]n 纳米微粒的吸收光谱、Rayleigh 散射和共振 Rayleigh 散射光谱.中国科学(B 辑),2002,32(6):554-560.
    [143] 蒋治良.纳米粒子与共振散射光谱学.桂林:广西师范大学出版社,2003,11-105.
    [144] 蒋治良,翟好英,张表明,刘庆业,李廷盛.液相卤化银纳米微粒的界面荧光和共振散射光谱特性.化学学报, 2004, 62(14): 1272-1276.
    [145] 凌绍明,蒋治良,闭献树,义祥辉. Ag/AgCl 纳米粒子的制备及其共振散射光谱研究.光谱学与光谱分析,2001,21(6):820-821.
    [146] Z. L. Jiang, Q. Y. Liu, S. P. Liu. Resonance scattering spectralanalysis of chlorides based on theformation of (AgCl)n(Ag)s nanoparticle and its nonlinear resonance scatteringstudy[J]. Spectrochim Acta A, 2002, 58: 2759-2759.
    [147] 蒋治良,冯忠伟,李廷盛,李芳等.金纳米粒子的共振散射技术[J].中国科学(B 辑), 2001, 31(2):183-188.
    [148] 蒋治良.液相金纳米粒子非线性光散射方程的研究.分析测试技术与仪器,2000,(6)4: 200-205.
    [149] 蒋治良,刘庆业,刘绍璞.金原子团簇的共振散射光强度函数研究.西南师范大学学报, 2001,26(2): 174-178.
    [150] 蒋治良,冯忠伟.液相金纳米粒子的分频和倍频散射光谱研究 [J].广西师范大学学报,2000,18(4):60-65.
    [151] 蒋治良,李芳,李廷盛,梁宏.共振散射光强度与金粒子粒径的关系[J].高等学校化学学报,2000,21(10):1488-1490.
    [152] 蒋治良,冯忠伟,刘庆业,蒋毅民,梁宏.金纳米粒子的非线性共振散射及光强度函数研究[J]. 无机化学学报, 2001, 17(3): 355-360.
    [153] 庞小兵,黄玉明,黄承志.流动注射与共振散射联用技术测定肝素.广西师范大学学报(自然科学版),21(2):84-85.
    [154] D. S. Riskey, M. A. Strege. Chiral Seperations of polar compounds by hydrophilic interaction chromatogrsphy with evaperative light scattering detection[J]. Anal. Chem., 2000, 72: 1726-1739.
    [155] B. Szostek, J. Zajac, J. A. Koropchak. Coupling condensation light scattering detection withcapillary electrophoresis using electrospray[J]. Anal. Chem., 1997, 69(15): 2955-2962.
    [156] 王楠,马荣山.耐高温 α-淀粉酶的研究进展[J].中国食品添加剂,2007(4):90-92.
    [157] 扬春生,宋乃国. 临床检验学[M].天津: 天津科学技术出版社.1997, 287-290.
    [158] 张晓洁,孟泽. 尿液中淀粉酶的提取及性质研究.临床检验志,1999,17(1):7-10.
    [159] 梅乐和. 现代酶工程[M]. 北京:化学工业出版社 2005,200-231.
    [160] M.Machius, N.Declerck, R. Huber. Activation of Bacillcus licheniformis alpha-amylase through a disorder->order transion of the substrate-binding site mediated by a calcium-sodium-calciu metal triad. Structure, 1998,6(3):281-92.
    [161] J. E. Nielsen, T. V. Borchert. Protein engineering of bacterial alpha-amylases.Biochim Biophys Acta,2000,1543(2):253-274.
    [162] J. F. Van Staden, L. V. Mulaudzi. Flow injection spectrophotometric assay of α-amylase activity. Anal. Chim. Acta,2000,421:19-25.
    [163] L. Zajoncova, M. Jilek, V. Beranova, P. Pec. A biosensor for the determination of α-amylase activity. Biosensors and Bioelectronics,2004,20:240-245.
    [164] G. Sslieri, G. Vinci, M. L. Antonelli. Microcalorimetric study of the enzymatic hydrolysis of starch: an α-amylase catalyzed reaction. Anal. Chim. Acta, 1995,300:287-292.
    [165] C. F. Gonzalez, J. I. Farina, L. I. C. Figueroa. A critical assessment of viscometric assay for measuring Saccharomycopsis fibuligera α-amylase activity on gelatinized cassava starch. Enzyme and Microbial Technology, 2002,30:169-175.
    [166] O. Tomankova, J. Kopecny. Prediction of feed protein degradation in the rumen with bromelain. Animal Feed Science and Technology,1995,53:71-80.
    [167] R. L. Bertholf, E. S. W. Deen, D. E. Bruns. Amylase in urine as measured by a single-step chromolytic method. Clin.Chem.,1988,34(4):754-757.
    [168] G. G. Gullbault, E. B. Rletz. Enzymatic,fluorometric assay of α-amylase in serum. Clin.Chem.,1978,22(10):1702-1704.
    [169] E. Svens, K. Kapyaho, P. Tanner, T. H. Weber. Immunocatalytic assay of pancreatic alpha-amylase in serum and urine with a specific monoclonal antibody. Clin. Chem.,1989,35(4):662-664.
    [170] E. S. Wlnn-Deen, H. David, E. Slgler, R. Chavez. Development of a direct assay forα-amylase. Clin. Chem.,1988,34(10):2005-2008.
    [171] M. Zaninotto, R. Bertorelle, S. Secchiero, M. Piebanl, A. Burllan. Assay of pancreaticamylase with use of monoclonal antibodies evaluated. Clin. Chem.,1988,34(12):2552-2555.
    [172] S. Hirolshl, S. Matsuyama, S. Kurooka, N. Sunahara, S. Lnoue, T. Lda. Differential assay of salivary and pancreatic α-amylase in serum and urine,with use of monoclonalantibody to human salivary amylase immobilized on bacterial cell wall. Clin. Chem.,1987,33(7):1235-1236.
    [173] M. Hofman, M. Shaffar. Fluorescence depolarization assay for quantifying α-amylase in serum and urine. Clin. Chem.,1985,31(9):1478-1480.
    [174] J. L. Mark. Oxyen Free Radicals Linded to Mang Disease. Scinece, 1978, 235: 529-531.
    [175] 栾国颜,高维平,姚平经.国内外过氧化氢生产与应用进展[J].化工科技市场,2005,28(1):15-l9.
    [176] 邓南圣,吴峰,田世忠.天然水中过氧化氢生成及其光化学反应的研究进展[J].环境科学进展,1997,5(6):1-9.
    [177] 彭琨,王洋,谭慧.食品中过氧化氢残留量的测定[J].粮油食品科技,2004,12(16):33-34.
    [178] 周丰举.环境中微量过氧化氢分析方法[J].黎明化工,1991,1(4):23-25.
    [179] 徐晓斌,王美蓉.大气降水中 H202 的测定方法[J].环境化学,1990,9(1):25-31.
    [180] 俞绍才.大气和降水中过氧化氢的测定方法[J].中国环境监测,1992,8(4):49-52.
    [181] 高甲友,秦希亚.流动注射一分光光度法测定痕量过氧化氢[J].化学试剂,1997,19(5):304-305.
    [182] 张国芳,陈洪渊.流动注射胶束电化学发光测定过氧化氢的研究[J].分析科学学报,2001,17(1):1-5.
    [183] R. Toniolo, P. Geatti, G. Bontempelli, G. Schiavon. Amperometric monitoring of hydrogen peroxide in workplace atmospheres by electrodes supported on ion-exchange membranes[J].Electroanal. Chem,2001,514:123-128.
    [184] P.Westbroek,E.Temmerman and P.Kiekens.Measurement and control of hydrogen peroxide concentration in alkaline solution by means of amperometric sensor system[J].Anal. Chim. Acta,1999,385:423-428
    [185] L.Campan ella,R.Rovemi,M.P.Sammartino, M.Tomassetti.Hydrogen peroxide determination in pharmaceutical formulations and cosmetics using a new catalase biosensor[J].Pharm. Biomed. Anal,1998,18:105-116.
    [186] K. Yamamoto, T. Ohgarn,M. Torimura, H. Kinoshita, K. Kano, T. Ikeda. Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilizedelectrode and its application to clinical chemistry[J]. Anal. Chim. Acta,2000,406(2):201-207.
    [187] 朱昌青,李东辉,郑洪等.利用四磺基锰酞菁催化酪氨酸与过氧化氢荧光反应测定环境水样中的过氧化氢[J].厦门大学学报(自然科学版),2001,40(1):68-73.
    [188] 李巍,苏维翰.自动荧光法测定大气及其降水中的过氧化氢[J].环境化学,1987,6(6):12.
    [189] Y. Z. Li, A. Townshend. Evaluation of the adsorptive immobilisation of horseradish peroxidase on PTFE tubing in flow systems for hydrogen peroxide determination usingfluorescence detection[J].Anal Chim. Acta,1998,359:149-156.
    [190] K. Kobayashi, S. Kawai. Enzymatic determination of hydrogen peroxide using gas chromatography[J].Chromatograph A,1982, 245(3):339-345.
    [191] S.Effkemann,U.Pinkernell , U.Karst.Peroxide analysis in laundry detergents using liquid chromatography[J].Anal. Chim. Acta,1998,363(1):97-103.
    [192] D. Janasek,U. Spoh. The analysis of hydrogen peroxide in acequieous solution[J]. Sensor and Actuators B,1998,51(1):107-113.
    [193] J. M. Lin, H. Arakawa, M. Yamada. Flow injection chemiluminescent determination of trace amounts of hydrogen peroxide in snow-water using KIO4-K2CO3 system[J]. Anal. Chim. Acta,1998,371:171-176.
    [194] G. Wang, J. J. Xu, H. Y. Chen, Z. H. Lu. Amperometric hydrogen peroide biosensor with sol-gel/chitosan network-like film as immoilization matrix. Biosensors and Bioelectronics, 2003,18:335-343.
    [195] S. Y. Xu, B. Peng, X. Z. Han. A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres. Biosensors and Bioelectronics, 2007,22:1807-1810.
    [196] F. Vianello, L. Zennaro, A. Rigo. A coulometric biosensor to determine hydrogen peroxide rsing a monomolecular layer of horseradish peroxidase immobilized on a glass surface. Biosensors and Bioelectronics, 2007,22:2694-2699.
    [197] S. Z. Zong, Y. Cao, Y. M. Zhou, H. X. Ju. Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix. Biosensors and Bioelectronics, 2007,22:1776-1782.
    [198] S. H. Chen, R. Yuan, Y. Chai, L. Y. Zhang, A. Wang, X. L. Li. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemogeobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Biosensors and Bioelectronics, 2007,22:1268-1274.
    [199] L. Gao, Q. M. Gao. Hemoglobin niobate composite based biosensor for efficient determination of hydrogen peroxede in a broad pH range. Biosensors and Bioelectronics, 2007,22:1454-1460.
    [200] S. Q. Liu, Z. H. Dai, H. Y. Chen, H. X. Ju. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosensors and Bioelectronics, 2004,19:963-969.
    [201] G. J. Zhou, G. Wang, J. J. Xu, H. Y. Chen. Reagentless chemiluminescence biosensorfor determination of hydrogen peroxide based on the immobilization of horseradish peroxidase on biocompatible chitosan membrane. Aensors and Actuators B, 2002,81:334-339.
    [202] A. Tahirovic, A. Copra, E. O. Miklicanin, K. Kalcher. A chemiluminescence sensor for the determination of hydrogen peroxide. Talanta, 2007,72:1378-1385.
    [203] X. W. Zheng, Z. H.Guo. Potentiometric determination of hydrogen peroxide at MnO2-doped carbon paste electrode. Talanta, 2000,50:1157-1162.
    [204] S. Campuzano, M. Pedrero, J. M. Pingarron. A peroxidase-tetrathiafulvalene biosensor based on self-assembled monolayer modified Au electrodes for the flow-injection determination of hydrogen peroxide. Talanta, 2005,66:1310-1319.
    [205] R. C. Matos, J. J. Pedrotti, L. Angnes. Flow-injection system with enzyme reactor fordifferential amperometrec determination of hydrogen peroxide in rainwater. Anal. Chim. Acta, 2001,441:73-79.
    [206] A. Oszwaldowsdi, R.. Lipka, M. Jarosz. Sensitive reversed-phase liquid chromatographic determination of hydrogen peroxide and glucose based on ternary vanadirm(V)-hydrogen peroxide-2-(5-bromo-2pyridylazo)-5diethylaminophenol system.. Anal. Chim. Acta,2000,421:35-43.
    [207] K. Zhang, L. Y. Mao, R. X. Cai. Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst. Talanta, 2000,51:179-186.
    [208] K. F. Fernandes, C. S. Lima, J. M. Lopes, C. H. Collins. Hydrogen peroxide detection system consisting of chemically immobilised peroxidase and spectrometer. Process Biochemistry, 2005,40:3441-3445.
    [209] Y. H. Lin, X. L. Cui, L. Y. Li. Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides. Electrochemistry Communications, 2005,7:166-172.
    [210] S. Svensson, A. C. Olin, M. Larstad, G. L. Lvist, K. Toren. Determination of hydrogen peroxide in exhaled breath condensate by flow injection analysis with fluorescencedetection[J]. Chromatography B, 2004,809:199-203
    [211] B. Tang, L. Zhang, K. H. Xu. FIA-near-infrared spectrofluorimetric trace determination of hydrogen peroxide using tricarchlorobocyanine dye (Cy.7Cl)and horseradish peroxidase(HRP). Talanta, 2006,68:876-882.
    [212] H. Q. Chen, H. P. Yu, Y. Y. Zhou, L.Wang. Fluorescent quenching method for determination of trace hydrogen peroxide in rain water. Spectrochinmica Acta Part A, 2007,67:683-686.
    [213] L. Marle, G. M. Greenway. Determination of hydrogen peroxide in rainwaterin a miniaturised analytical system. Anal. Chim. Acta, 2005,548:20-25.
    [214] Y. F. Hu, Z. J. Zhang, C. Y. Yang. The determination of hydrogen peroxide generated from cigarette smoke with an ultrasensitive and highly selective chemiluminescence method. Anal. Chim. Acta, DOI:10.1016/j.aca.2007.0&.018.
    [215] M. Katayama, Y. Matsuda, K. Kobayashi, S. Kaneko, H. Ishikawa. Simultaneous determination of glucose1,5-anhydro-D-glucitol and related sugar alcohols in serum by highperformance liquid chromatography with benzoic acid derivatization. Biomed. Chromatogr, 2006, 20:440-445.
    [216] 张树政.酶制剂工业[M].北京:科学出版社,1998, 671-692.
    [217] T. E. Barman. Enzyme HandbookI[M]. Berlin:Springer-Verlay,1969:ll2-ll3.
    [218] 杨惠英,李弘毅,刘建忠等.黑曲霉中提取葡萄糖氧化酶的探索葡萄糖氧化酶合成及其性质[J].中山大学学报(自然科学版),1998,37(5):49-52.
    [219] 吕进宏,黄涛,马立保.新型饲料添加剂-葡萄糖氧化酶[J].中国饲料,2004,(3):15-16.
    [220] 王树庆,刘秀华.葡萄糖氧化酶及其在食品工业上的应用[J].食品科技,2001,(3):30-31.
    [221] J. H. Yu, S. Q. Liu, H. X. Ju. Glucose sensor for flow injection analysis of serum glucose based on of glucose oxidase in titania sol-gel membrane. Biosensors and Bioelectronics,2003, 19:401-409.
    [222] X. Chu, D. X. Duan, G. L. Shen, R. Q. Yu. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles into covalently immobilized carbon nanotube electrode. Talanta, 2007, 71: 2040–2047.
    [223] S. Kalayci, G. Somer, G. Ekmekci. Preparation and application of a new glucose sensorbased on iodide ion selective electrode. Talanta, 2005,65:87-91.
    [224] S. Hrapovic, Y. Liu, K. B. Male, J. H. T. Luong. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem, 2004,76:1083-1088.
    [225] C. Z. Zhao, C. L.Shao, M. H. Li, K. Jiao. Flow-injection analysis of glucose withoutenzyme based on electrocatalytic oxidation of glucose at a nickel electrode. Talanta, 2007,71:1769-1773.
    [226] D. T. Bostick, D. M. Hercules. Quantitative determination of blood glucose using enzyme induced chemiluminescence of luminsl. Anal. Chem., 1975,47:446-451.
    [227] B. Li, Y. Z. He. Simultaneous determination of glucose, fructose and lactose in food samples using a continuous-flow chemiluminescence method with the aid of artificial neural networks. Luminescence, 2007, 22: 317–325.
    [228] C. Y. Wang, H. J. Huang. Flow injection analysis of glucose based on its inhibitionof electrochemiluminescence in a Ru(bpy)32+–tripropylamine system. Anal. Chim. Acta,2003,498:61–68.
    [229] C. A. Marquette, L. J. Blum. Self-containing reactant biochips for the electrochemiluminescent determination of glucose, lactate and choline. Sensors and Actuators B, 2003,90:112–117.
    [230] A. Economou, P. Panoutsou, D. G. Themelis. Enzymatic chemiluminescent assay of glucose by sequential-injection analysis with soluble enzyme and on-line sample dilution. Anal. Chim. Acta, 2006,572:140-147.
    [231] N. Piza, M. Miro, J. M. Estela, V. Cerda. Automated enzymatic assays in a renewable fashion using the multisyringe flow injection scheme with soluble enzymes. Anal.Chem, 2004, 76:773-780.
    [232] A. C. A. Oliveira, V. C. Assis, M. A. C. Matos, R. C. Matos. Flow-injection system with glucose oxidase immobilized on a tubular reactor for determination of glucosein blood samples. Anal. Chim. Acta, 2005,535:213-217.
    [233] C. G. Maria, A. Townsend. Sequential determination of glucose, fructose and sucrose by flow-injection analysis with immobilized enzyme reactors and spectrophotometric detection. Anal. Chem. Acta,1992,261:137-142.
    [234] P. S. Jensen, J. Bak, S. Ladefoged, S. A. Engels. Determination of urea, glucose, andphosphate in dialysate with Fourier transform infrared spectroscopy. Spectrochimica Acta Part A, 2004,60:899-905.
    [235] J. Y. Wang, Z. L. Zhao. Enzymatic determination of glucose by optical-fiber sensor sequential injection renewable surface spectrophotometry. Chemical Research in Chinese Universities, 2006,22(3):287-291.
    [236] C. P. Huang, S. W. Liu, T. M. Chen, Y. K. Li. A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots. Sensors and Actuators B, 2007,DOI:10.1016/j.snb.2007.08.021.
    [237] R. K. Shervedani, A. H. Mehrjardi, N. Zamiri. A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry, 2006,69:201–208.
    [238] L. Liu, J. F. Song, P. F. Yu, B. Cui. Voltammetric determination of glucose based onreduction of copper(II)–glucose complex at lanthanum hydroxide nanowire modified carbon paste electrodes. Talanta, 2007, 71:1842–1848.
    [239] H. S. M. Abd-Rabboh, M. E. Meyerhoff. Determination of glucose using a coupled-enzymatic reaction with new fluoride selective optical sensing polymeric film coated inmicrotiter plate wells. Talanta, 2007,72:1129-1133.
    [240] J. F. Sierra, J. Galban, J. R. Castillo. Determination of Glucose in Blood Based on the Intrinsic Fluorescence of Glucose. Anal. Chem., 1997,69:1471-1476.
    [241] 陈莉华,黄飞,刘六战,沈含熙. 吡罗红为底物的辣根过氧化物酶催化荧光反应测定葡萄糖.光谱与光谱学,2003,23(5):917-921.
    [242] Z. Jin, R. Chen, L. A. Colon. Determination of Glucose in Submicroliter Samples byCE-LIF Using Precolumn or On-Column Enzymatic Reactions. Anal. Chem, 1997,69:1326-1331.
    [243] Y. P. Zhou, J. H. Jiang, H. L. Wu, G. L. Shen, R. Q. Yu, Y. Ozaki. Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression[J]. Chemometrics, 2006,20:13-21.
    [1] 张晓洁,孟泽. 尿液中淀粉酶的提取及性质研究.临床检验志,1999,17(1):7-10.
    [2] 梅乐和,. 现代酶工程[M] 北京:化学工业出版社 2005,200-231.
    [3] J. F. Van Staden, L. V. Mulaudzi. Flow injection spectrophotometric assay of α-amylase activity. Anal. Chim. Acta,2000,421:19-25.
    [4] L. Zajoncova, M. Jilek, V. Beranova, P. Pec. A biosensor for the determination of α-amylase activity. Biosensors and Bioelectronics,2004,20:240-245.
    [5] G. Sslieri, G. Vinci, M. L. Antonelli. Microcalorimetric study of the enzymatic hydrolysis of starch: an α-amylase catalyzed reaction. Anal.Chim. Acta,1995,300:287-292.
    [6] C. F. Gonzalez, J. I. Farina, L. I. C. Figueroa. A critical assessment of viscometric assay for measuring Saccharomycopsis fibuligera α-amylase activity on gelatinized cassava starch. Enzyme and Microbial Technology, 2002,30:169-175.
    [7] M. Zaninotto, R. Bertorelle, S. Secchiero, M. Piebanl, A. Burllan. Assay of pancreatic amylase with use of monoclonal antibodies evaluated. Clin. Chem.,1988,34(12):2552-2555.
    [8] O. Tomankova, J. Kopecny. Prediction of feed protein degradation in the rumen with bromelain. Animal Feed Science and Technology,1995,53:71-80.
    [9] 谷物和谷物产品淀粉酶活性的测定——比色法. 中华人民共和国国家标准, GB 5521—89.
    [10] 王怀珠, 扬焕文, 郭红英. 烟叶烘烤中淀粉酶和淀粉磷酸化酶的活性测定. 河南农业科学,2006,5:32-34.
    [11] 张 雁 平 . 鸡 小 肠 食 糜 淀 粉 酶 活 性 测 定 条 件 的 探 讨 [J]. 青 海 畜 牧 兽 医 杂 志 , 2002,32(4):19-21.
    [12] 刘小丽,宋保军,侯睿林. 测定 α-淀粉酶活性的两种方法的比较研究. 农业科技与信息,2006,36-38.
    [13] R. L. Bertholf, E. S. W. Deen, D. E. Bruns. Amylase in urine as measured by a single-step chromolytic method. Clin.Chem.,1988,34(4):754-757.
    [14] G. G. Gullbault, E. B. Rletz. Enzymatic,fluorometric assay of α-amylase in serum. Clin. Chem.,1978,22(10):1702-1704.
    [15] E. Svens, K. Kapyaho, P. Tanner, T. H. Weber. Immunocatalytic assay of pancreatic alpha-amylase in serum and urine with a specific monoclonal antibody. Clin. Chem.,1989,35(4):662-664.
    [16] E. S. Wlnn-Deen, H. David, E. Slgler, R. Chavez. Development of a direct assay for α-amylase. Clin. Chem.,1988,34(10):2005-2008.
    [17] M. Zaninotto, R. Bertorelle, S. Secchiero, M. Piebanl, A. Burllan. Assay of pancreaticamylase with use of monoclonal antibodies evaluated. Clin. Chem.,1988,34(12):2552-2555.
    [18] S. Hirolshl, S. Matsuyama, S. Kurooka, N. Sunahara, S. Lnoue, T. Lda. Differential assayof salivary and pancreatic α-amylase in serum and urine,with use of monoclonal antibody to human salivary amylase immobilized on bacterial cell wall. Clin.Chem.,1987,33(7):1235-1236.
    [19] M. Hofman, M. Shaffar. Fluorescence depolarization assay for quantifying α-amylase in serum and urine. Clin, Chem.,1985,31(9):1478-1480.
    [20] S. P. Liu, R. Yang, H. Q. Luo, Z. F. Liu, Y. Shi. Resonance Rayleigh scattering spectra study of the interaction of protein with some isopoly acids. Chin J. Anal Chem.,2005,33(8):1125-1133.
    [21] C. Z. Huang, Y. F. Li, X. D. Liu. Determination of Nucleic Acids at Nanogram Levels with Safranine T by a Preresonance Light-Scattering Technique. Anal. Chim.Acta,1998,375:89-92.
    [22] C. Z. Huang, Y. D. Shi, R. L. Shu. Assembly of methylene blue on nucleic acid template as studied by resonance light-scattering technique and determination of nucleic acids at nanogram levels. Bull. Chem. Soc. Jpn,1999,72:1051-1057.
    [23] S. P. Liu, H. Q. Luo, N. B. Li, et al. Resonance Rayleigh scattering study of the interaction of heparin with some basic diphenyl napthylmethane dyes. Anal.Chem.,2001,73:3907-3914.
    [24] H. Q. Luo, S. P. Liu, Z. F. Liu, etal. Resonance Rayleigh scattering spectra for studying the interaction of heparin with some basic phenothiazine dyes and their analytical application. Anal.Chim.Acta,2001,449:261-270.
    [25] A. M. Zhang, Y. B. Zang. Determination of protein with acridine red by the resonance Rayleigh light scattering method using SLS as sensitizer. Chin J. Anal Lab, 2005,24(7):44-51.
    [26] C. X. Guo, H. X. Shen. Sensitive and simple determination of protein by resonance Rayleigh scattering with 4-azochromotropic acid phenylfluorone. Anal.Chin.Acta,2000,408:177-182.
    [27] S. P. Liu, Q. Liu, Z. F. Liu, M. Li, C. Z. Huang. Resonance Rayleigh scattering of chuomium(VI)-iodide-basic triohenylmethane dye systems and their analytical application. Anal. Chim. Acta,1999,379:53-61
    [28] Z. P. Wang, Y. H. Qian, G. S. Chen, K. L. Cheng. Studies on simultaneous fluorenscence spectuophotometric determination of ultratrace niobium(V),tantalum(V) and zirconium(IV)using partial least squares algorithm[J]. Microchem.,1998,60:271-281.
    [29] 刘绍璞,周光明,刘忠芳,李明. 共振瑞利散射法测定硫氰酸盐-碱性三苯甲烷染料体系中痕量钼.高等学校化学学报,1998,19(7):1040-1044.
    [30] 翟好英,蒋治良.Ag(Ⅰ)-DDTC 鳌合物微粒体系的光谱特性及其分析应用.应用化学,2005,22(8):852-856.
    [31] 蒋治良,杨明媚,莫琪.微量银的光化学共振散射光谱分析.贵金属,2000,21(3):34-37.
    [32] 钟福新, 蒋治良,李芳,李廷盛,梁宏.银纳米粒子的光化学制备及共振散射光谱研究. 光谱学与光谱分析,2000,20(5):724-726.
    [33] Z. L. Jiang, S. P. Liu, Q. Y. Liu. Catalytic reaction resonance scattering spectral method for the determination of trace amounts of Se.Talanta, 2002,58:635.
    [34] 蒋治良,潘宏程,袁伟恩. 铬天青 S-铝(III)-聚乙二醇 4000 体系的共振散射光谱及其应用[J].环境化学,2004,23(5):573-577.
    [35] 梁爱惠, 蒋治良,李振忠, 康彩艳. I3-丁基罗丹明 B 缔合微粒体系的光谱特性[J]. 应用化学,2004,21(12):1217-1220.
    [36] Z. L. Jiang,Q. Y. Liu,S. P. Liu. Resonance scattering spectral analysis of chlorides based on the formation of (AgCl)nucleu(Ag)shell nanoparticle. Spectrochim.Acta. Part A,2002,58:2759-2764.
    [37] A. H. Liang, Z. L. Jiang, B. M. Zhang, Q. Y. Liu, X. Lu. A new resonance scattering spectral method for the determination of trace amounts of iodate with rhodamine 6G. Anal. Chim. Acta,2005,530:130-134.
    [38] Z. L. Jiang, G. X. Huang. Resonance scattering spectra of micrococcus lysodeikticus and its application to assay of lysozyme activity. Clin. Chim. Acta, 2007,376:136-141.
    [39] 李芳,蒋治良,谌斌.淀粉的共振散射光谱研究.广西师范大学学报(自然科学版),2001,19(3):60-63.
    [40] 李娜,刘玮炜. 共振散射法测定环境水样中的不同形态的铬. 南昌大学学报(理科版),2006,30:1372-1373.
    [42] 扬春生,宋乃国. 临床检验学[M].天津: 天津科学技术出版社.1997, 287-290.
    [43] 张秀明, 李健斋, 魏明竟, 侯振江. 现代临床生化检验学[M]. 北京: 人民军医出版社. 2000,1324-1334.
    [1] J. L. Mark. Oxyen Free Radicals Linded to Mang Disease. Scinece,1978,235:529-531.
    [2] G. Wang, J. J. Xu, H. Y. Chen, Z. H. Lu. Amperometric hydrogen peroide biosensor weth sol-gel/chitosan network-like film as immoilization matrix. Biosensors and Bioelectronics, 2003,18:335-343.
    [3] S. Y. Xu, B. Peng, X. Z.Han. A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres. Biosensors and Bioelectronics,2007,22:1807- 1810.
    [4] F. Vianello, L. Zennaro, A. Rigo. A coulometric biosensor to determine hydrogen peroxide rsing a monomolecular layer of horseradish peroxidase immobilized on a glass surface. Biosensors and Bioelectronics,2007,22:2694-2699.
    [5] S. Z. Zong, Y. Cao, Y. M. Zhou, H. X. Ju. Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix. Biosensors and Bioelectronics,2007,22:1776-1782.
    [6] S. H. Chen, R. Yuan, Y. Chai, L. Y. Zhang, A. Wang, X. L. Li. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemogeobinon multiwall carbon nanotubes and gold colloidal nanoparticles. Biosensors and Bioelectronics,2007,22:1268-1274.
    [7] L. Gao, Q. M. Gao. Hemoglobin niobate composite based biosensor for efficient determination of hydrogen peroxede in a broad pH range. Biosensors and Bioelectronics, 2007,22:1454-1460.
    [8] S. Q. Liu, Z. H. Dai, H. Y. Chen, H. X . Ju. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosensors and Bioelectronics,2004,19:963-969.
    [9] G. J. Zhou, G. Wang, J. J. Xu, H. Y. Chen. Reagentless chemiluminescence biosensor for determination of hydrogen peroxide based on the immobilization of horseradish peroxidase on biocompatible chitosan membrane. A ensors and Actuators B,2002,81:334-339.
    [10] A. Tahirovic, A. Copra, E. O. Miklicanin, K. Kalcher. A chemiluminescence sensor for the determination of hydrogen peroxide.Talanta,2007,72:1378-1385.
    [11] X. W. Zheng, Z. H. Guo. Potentiometric determination of hydrogen peroxide at MnO2-doped carbon paste electrode.Talanta,2000,50:1157-1162.
    [12] S. Campuzano, M. Pedrero, J. M. Pingarron. A peroxidase-tetrathiafulvalene biosensor based on self-assembled monolayer modified Au electrodes for the flow-injection determination of hydrogen peroxide.Talanta,2005,66:1310-1319.
    [13] R. C. Matos, J. J. Pedrotti, L. Angnes. Flow-injection system with enzyme reactor for differential amperometrec determination of hydrogen peroxide in rainwater. Anal. Chim. Acta, 2001,441:73-79.
    [14] A. Oszwaldowsdi, R. Lipka, M. Jarosz. Sensitive reversed-phase liquid chromatographic determination of hydrogen peroxide and glucose based on ternary vanadirm(V)-hydrogen peroxide-2-(5-bromo-2pyridylazo)-5diethylaminophenol system. Anal. Chim. Acta,2000,421:35-43.
    [15] K. Zhang, L. Y. Mao, R. X. Cai. Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst.Talanta,2000,51:179-186.
    [16] K. F. Fernandes, C. S. Lima,J. M. Lopes, C. H. Collins. Hydrogen peroxide detection system consisting of chemically immobilised peroxidase and spectrometer.Process Biochemistry,2005,40:3441-3445.
    [17] Y. H. Lin, X. L. Cui, L. Y. Li. Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides. Electrochemistry Communications.2005,7:166-172.
    [18] S. Svensson, A. C. Olin, M. Larstad, G. L. Lvist, K. Toren. Determination of hydrogen peroxide in exhaled breath condensate by flow injection analysis with fluorescence detection.Journal of Chromatography B,2004,809:199-203.
    [19] B. Tang, L. Zhang, K. H. Xu. FIA-near-infrared spectrofluorimetric trace determination of hydrogen peroxide using tricarchlorobocyanine dye (Cy.7Cl)and horseradish peroxidase(HRP).Talanta,2006,68:876-882.
    [20] H. Q. Chen, H. P. Yu, Y. Y. Zhou, L. Wang. Fluorescent quenching method for determination of trace hydrogen peroxide in rain water. Spectrochinmica Acta Part A,2007,67:683-686.
    [21] L. Marle, G. M. Greenway. Determination of hydrogen peroxide in rainwaterin a miniaturised analytical system. Anal. Chim. Acta,2005,548:20-25.
    [22] Y. F. Hu, Z. J. Zhang, C. Y. Yang. The determination of hydrogen peroxide generated from cigarette smoke with an ultrasensitive and highly selective chemiluminescence method. Anal. Chim. Acta, DOI:10.1016/j.aca.2007.0&.018.
    [23] Z. L. Jiang, S. J. Sun, A. H. Liang, W. X. Huang, A. M. Qin. Gold-labeled nanoparticle-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B. Clin. Chem, 2006, 52: 1389-1394.
    [24] Z. L. Jiang, S. M. Zhou, A. H. Liang, C. Y. Kang, X. C. He. Resonance scattering effect of rhodamine dye association nanoparticles and its application to respective determination oftrace ClO2 and Cl2. Environ. Sci. Technol. 2006, 40: 4286-4291.
    [25] M. Hou, S. J. Sun, Z. L.Jiang. A new and selective and sensitive nanogold-labeled immunoresoance scattering spectral assay for trace prealbumin. Talanta, 2007,72:463-467.
    [26] A. H. Liang, Z. L. Jiang, B. M. Zhang, Q. Y. Liu, X. Lu. A new resonance scattering spectral method for the determination of trace amounts of iodate with rhodamine 6G. Anal.Chim.Acta,2005,530:130-134.
    [27] S. P. Liu, Q. Liu, Z. F. Liu, M. Li. C. Z. Huang. Resonance Rayleigh scattering of chuomium(VI)-iodide-basic triohenylmethane dye systems and their analytical application. Anal. Chim. Acta,1999,379:53-61
    [28] Z. P. Wang, Y. H. Qian, G. S. Chen, K. L. Cheng. Studies on simultaneous fluorenscence spectuophotometric determination of ultratrace niobium(V),tantalum(V)and zirconium(IV)using partial least squares algorithm. Microchim. J, 1998,60:271-281.
    [29] J. Y. Deng, S. Y. Sun, Z. L.Jiang, A. H. Liang. Immune resonance scattering spectral method for the determination of Trace IgG. Spectrosc Spectral Anal 2006;26: 1487-90.
    [30] A. H. Liang, Y. J. Huang, Z. L. Jiang. A rapid and sensitive Immune resonance scattering spectral assay for microalbumine. Chin. Chim. Acta, 2007,383:73-77.
    [31] Z. L. Jiang, S. M. Zhou. A resonance scattering method for determination of hydroxyl radical in Fenton system using Rhodamine S and its application in screening the antioxidant.Talanta,2006,70(2):444-448.
    [32] Z. L. Jiang, Q.Y.Liu,S. P. Liu. Catalytic resonance scattering spectral method for the determination of trace amounts of Se.Talanta,2002,58:635-640.
    [33] Z. L. Jiang, G. X. Huang. Resonance scattering spectra of Micrococcus Lysodeikticus and its application to assay of lysozyme activity. Clin. Chim. Acta,2007,376:136-141.
    [1] M. Katayama,Y. Matsuda, K. Kobayashi, S. Kaneko, H. Ishikawa. Simultaneous determination of glucose 1,5-anhydro- D-glucitol and related sugar alcohols in serum by high performance liquid chromatography with benzoic acid derivatization. Biomed. Chromatogr, 2006, 20:440-445.
    [2] J. H. Yu, S. Q. Liu, H. X. Ju. Glucose sensor for flow injection analysis of serum glucose based on of glucose oxidase in titania sol-gel membrane.Biosensors and Bioelectronics,2003, 19:401-409.
    [3] X. Chu, D. X. Duan, G. L. Shen, R. Q. Yu. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta, 2007, 71: 2040–2047.
    [4] S. Kalayci, G. Somer, G. Ekmekci. Preparation and application of a new glucose sensor based on iodide ion selective electrode.Talanta,2005,65:87-91.
    [5] S. Hrapovic, Y. Liu, K. B. Male, J. H. T. Luong. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem, 2004,76:1083-1088.
    [6] C. Z. Zhao, C. L.Shao, M. H. Li, K. Jiao. Flow-injection analysis of glucose withoutenzyme based on electrocatalytic oxidation of glucose at a nickel electrode.Talanta,2007,71:1769-1773.
    [7] D. T. Bostick, D. M. Hercules. Quantitative determination of blood glucose using enzyme induced chemiluminescence of luminsl.Anal.Chem.,1975,47:446-451.
    [8] B. Li, Y. Z. He. Simultaneous determination of glucose, fructose and lactose in foodsamples using a continuous-flow chemiluminescence method with the aid of artificial neural networks. Luminescence 2007, 22: 317–325.
    [9] C. Y. Wang, H. J. Huang. Flow injection analysis of glucose based on its inhibition of electrochemiluminescence in a Ru(bpy)32+–tripropylamine system. Anal. Chim. Acta, 2003,498:61–68.
    [10] C. A. Marquette,L.J.Blum. Self-containing reactant biochips for the electrochemiluminescent determination of glucose, lactate and choline. Sensors and Actuators B,2003,90:112–117.
    [11] A. Economou, P. Panoutsou, D. G. Themelis. Enzymatic chemiluminescent assay of glucose by sequential-injection analysis with soluble enzyme and on-line sample dilution. Anal. Chim. Acta,2006,572:140-147.
    [12] N. Piza, M. Miro, J. M. Estela, V. Cerda. Automated enzymatic assays in a renewable fashion using the multisyringe flow injection scheme with soluble enzymes. Anal.Chem., 2004, 76:773-780.
    [13] A. C. A. Oliveira, V. C. Assis, M. A. C. Matos, R. C. Matos. Flow-injection system with glucose oxidase immobilized on a tubular reactor for determination of glucose in blood samples. Anal. Chim. Acta,2005,535:213-217.
    [14] C. G. Maria, A. Townsend. Sequential determination of glucose, fructose and sucrose by flow-injection analysis with immobilized enzyme reactors and spectrophotometric detection. Anal. Chem. Acta,1992,261:137-142.
    [15] P. S. Jensen, J. Bak, S. Ladefoged, S. A. Engels. Determination of urea,glucose, and phosphate in dialysate with Fourier transform infrared spectroscopy. SpectrochimicaActa Part A,2004,60:899-905.
    [16] J. Y. Wang, Z. L. Zhao. Enzymatic determination of glucose by optical-fiber sensor sequential injection renewable surface spectrophotometry. Chemical Research in Chinese Universities,2006,22(3):287-291.
    [17] C. P. Huang, S. W. Liu, T. M. Chen, Y. K. Li. A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots. Sensors and Actuators B, 2007,DOI:10.1016/j.snb.2007.08.021.
    [18] R. K. Shervedani, A. H. Mehrjardi, N. Zamiri. A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry,2006,(69):201–208.
    [19] L. Liu,J. F. Song,P. F. Yu,B. Cui. Voltammetric determination of glucose based on reduction of copper(II)–glucose complex at lanthanum hydroxide nanowire modified carbon paste electrodes. Talanta, 2007,(71):1842–1848.
    [20] H. S. M. Abd-Rabboh, M. E. Meyerhoff. Determination of glucose using a coupled-enzymatic reaction with new fluoride selective optical sensing polymeric film coatedin microtiter plate wells. Talanta, 2007,72:1129-1133.
    [21] J. F. Sierra,J. Galban, J. R. Castillo. Determination of Glucose in Blood Based on the Intrinsic Fluorescence of Glucose. Anal.Chem., 1997,69:1471-1476.
    [22] 陈莉华,黄飞,刘六战,沈含熙. 吡罗红为底物的辣根过氧化物酶催化荧光反应测定葡萄糖.光谱与光谱学,2003,23(5):917-921.
    [23] Z. Jin, R. Chen, L. A. Colon. Determination of Glucose in Submicroliter Samples by CE-LIF Using Precolumn or On-Column Enzymatic Reactions. Anal.Chem.,1997,69:1326-1331.
    [24] Y. P. Zhou, J. H. Jiang, H. L. Wu, G. L. Shen, R. Q. Yu, Y. Ozaki. Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression. J. Chemometrics, 2006,20:13-21.
    [25] Z. L. Jiang, S. J. Sun, A. H. Liang, W. X. Huang, A. M. Qin. Gold-labeled nanoparticle-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B. Clin. Chem., 2006, 52: 1389-1394.
    [26] Z. L. Jiang, S. M. Zhou, A. H. Liang, C. Y. Kang, X. C. He. Resonance scattering effect of rhodamine dye association nanoparticles and its application to respective determination of trace ClO2 and Cl2. Environ. Sci. Technol, 2006, 40: 4286-4291.
    [27] M. Hou, S. J. Sun, Z. L. Jiang. A new and selective and sensitive nanogold-labeled immunoresoance scattering spectral assay for trace prealbumin. Talanta, 2007,72:463-467.
    [28] A. H. Liang, Z. L. Jiang, B. M.Zhang, Q. Y. Liu, X. Lu. A new resonance scattering spectral method for the determination of trace amounts of iodate with rhodamine 6G. Anal. Chim. Acta,2005,530:130-134.
    [29] S. P. Liu, Q. Liu, Z. F. Liu, M. Li, C. Z. Huang. Resonance Rayleigh scattering of chuomium(VI)-iodide-basic triohenylmethane dye systems and their analytical application.Anal.Chim.Acta,1999,379:53-61
    [30] Z. P. Wang, Y. H. Qian, G. S. Chen, K. L. Cheng. Studies on simultaneous fluorenscence spectuophotometric determination of ultratrace niobium(V),tantalum(V),and zirconium(IV)using partial least squares algorithm. Microchim. J, 1998,60:271-281.
    [31] J. Y. Deng, S. Y. Sun, Z. L. Jiang, A. H. Liang, Immune resonance scattering spectral method for the determination of Trace IgG. Spectrosc Spectral Anal., 2006,26: 1487-90.
    [32] A. H. Liang, Y. J. Huang, Z. L. Jiang. A rapid and sensitive Immune resonance scattering spectral assay for microalbumine. Chin. Chim. Acta, 2007;383:73-77.
    [33] Z. L. Jiang, S. M. Zhou. A resonance scattering method for determination of hydroradical in Fenton system using Rhodamine S and its application in screening the antioxidant.Talanta,2006,70,444-448.
    [34] Z. L. Jiang, Q. Y. Liu, S. P. Liu. Catalytic resonance scattering spectral method forthe determination of trace amounts of Se.Talanta,2002,58:635-640.
    [35] Z. L. Jiang, G. X. Huang. Resonance scattering spectra of Micrococcus Lysodeikticus and its application to assay of lysozyme activity. Clin. Chim. Acta,2007,376:136-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700