孔雀石绿和结晶紫检测新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:孔雀石绿和结晶紫等潜在致癌物,是近年来水体污染和食用水产品卫生安全中重点监控的有机污染物。目前,孔雀石绿和结晶紫的主要检测方法是高效液相色谱法和高效液相色谱-质谱法。共振瑞利散射(RRS)光谱是近年发展起来的一项高灵敏度定量分析新技术,在生命科学、环境科学和纳米材料研究等方面得到了广泛的应用,但未见用RRS测定孔雀石绿和结晶紫的报道。本文利用共振瑞利散射法的技术特点,建立灵敏度高、选择性好、操作简单的检测孔雀石绿和结晶紫的新方法。
     方法:孔雀石绿和结晶紫都是三苯甲烷类阳离子染料,在一定条件下,将其与大阴离子反应,形成离子缔合物而失去亲水性。离子缔合物能在水相中因疏水作用而相互聚集,并以纳米粒子保留在溶液中。本文采用负吸收效应,从理论上对体系基体的作用进行分析;采用紫外-可见分光光度计测定吸收光强度,求出缔合物的条件稳定常数,对体系酸效应进行分析;采用荧光分光光度计测定共振瑞利散射强度,对孔雀石绿和结晶紫进行定性、定量分析。
     结果:本文以负吸收效应和条件稳定常数分别分析了基体和酸度对共振瑞利散射体系的影响;以I_3~-阴离子和磷钼酸根阴离子为配体,建立了共振瑞利散射测定孔雀石绿的两种新方法;以I3-阴离子为配体,建立了共振瑞利散射法测定结晶紫的新方法。I_3~--孔雀石绿体系中,孔雀石绿的检出限为3.6ng/mL,线性范围:12~900ng/mL,相关系数r=0.9997;磷钼酸根-孔雀石绿体系中,孔雀石绿的检出限为55ng/mL,线性范围:0.18~5.0μg/mL,相关系数r=0.9998。I_3~--结晶紫体系中,结晶紫的检出限为0.009μg/mL,线性范围:0.03~1.80μg/mL,相关系数r=0.9997。
     结论:利用共振瑞利散射技术建立水产品和水样中孔雀石绿和结晶检测的新方法,灵敏度达到或接近高效液相色谱法水平,但与高效液相色谱法和高效液相色谱-质谱法相比,新方法具有仪器试剂易得、操作简单、分析时间短、使用无二次污染等优点,更便于在基层检测部门推广应用。
Objective:
     Some potential carcinogens, such as malachite green (MG) and crystal violet (CV), are the significant organic contaminants, which are monitored for the safety of food or water. At present, the main detection methods of MG and CV are liquid chromatography and liquid chromatography tandem mass spectrometry. Resonance Rayleigh scattering (RRS) spectrum is a new sensitive quantitative analytical technique, which has been steadily developed recently, and has been applied widely to the study of life, environmental sciences and nanometer materials, etc. However, there are no reports discussing the determination of MG and CV by RRS. In this work, a sensitive, selective, simple and rapid method based on RRS was established for the determination of MG and CV.
     Methods:
     Triphenylmethane dyes MG and CV respectively react with some negative ions under suitable conditions to form a hydrophobic ion-associate. Then the ion-associate could self-assemble to form a nanoparticle, suspending in aqueous solution at suitable concentration and emitting intense RRS induced by excited ray. In this article, the effect of matrix on the intensity of RRS is analyzed theoretically based on the matrix negative absorption effect; the effect of pH is analyzed based on the conditional stability constant which is assayed by spectrophotometry; and MG and CV are analyzed qualitatively and quantitatively through detecting the intensity of RRS by the fluorescence spectrophotometer synchronously scanning.
     Results:
     In this article, the effects of matrix and pH on the intensity of RRS were analyzed based on the matrix negative absorption effect and conditional stability constant for the first time; novel methods were developed to analyze MG by RRS based on the forming of ion-associate of MG-I3- and MG-PMA (phosphomolybdate) respectively, and similarly a novel method was developed to analyze CV through the forming of ion-associate of CV-I_3~-. In the system of MG-I_3~-, the detection limit of the method is 3.6 ng/mL, the linearity range is 12~900 ng/mL, and the relative index r is 0.9997. In the system of MG-PMA, the detection limit of the method is 0.055μg/mL, the linearity range is 0.18~5.00μg/mL, and the relative index r is 0.9998. And In the system of CV-I_3~-, the detection limit of the method is 0.009μg/mL, the linearity range is 0.03~1.80μg/mL, and the relative index r is 0.9997.
     Conclusion:
     The sensitivity of the new method is similar to liquid chromatography and liquid chromatography tandem mass spectrometry, but RRS is simpler, faster and has no secondary pollution. So it is more suitable for the determination of MG and CV in the lower detection units.
引文
[1] 王声瑜. 怎样有效选用含氯消毒剂和孔雀石绿[J]. 北京水产, 1999, 3:16~17
    [2] 卢迈新. 美洲鳗对几种药物的敏感性研究[J]. 淡水渔业, 2000, 30(5): 28~29
    [3] Chang-Jun C, Daniel R.D, Carl E.C. Biotransformation of malachite green by the fungus Cunningham Ella elegans[J] Appl. Envioron. Microb. 2001, 67(9): 4358~4360
    [4] Alderman DJ. Malachite green: a review[J]. Journal of fish diseases, 1985, 8: 289~298
    [5] 蔡凤英. 浅谈孔雀石绿的危害[J]. 河南水产, 2006, 1:29
    [6] 翟毓秀, 郭莹莹, 耿霞. 孔雀石绿的代谢机理及生物毒性研究进展[J]. 中国海洋大学学报, 2007. 37 (1): 27~32
    [7] Machova J, Svobodova Z, Svobodnik J, et al. Persistence of malachite green in tissues of rainbow trout after a long-term therapeutic bath[J]. Acta. Vet. Brno. 1996, 65 (2): 151~159
    [8] Alborali L, Sangiorgi E, Leali M, et al. The persistence of malachite green in the edible tissue of rainbow trout (Oncorhynchus mykiss)[J]. Rivista Italiana di Acquacoltura Veroma, 1997, 32 (2): 45~60
    [9] Nowak B, De Guingand P. Effects of prophylactic treatments with malachite green on early life stages of rainbow trout[J]. Aust. J. Ecotoxicol. 1997, 3(2): 141~146
    [10] Culp S. J. Metabolic changes occurring in mice and rats fed LMG[C]. San Diego: Proc 88th Ann Meeting of Am Soc for Cancer Re2 search, 1997: 121
    [11] Bongsup P Cho, Lonnie R B, Joanna D. Moody, et al. Synthesis and Characterization of 4’2 Amino and 4’2 Nitro Derivatives of 42N, N2 Dimethylaminotriph enylmethane as precursors for a proximate mala2chite green metabolite[J] . Tetrahedron, 2000, 56: 7379~7388
    [12] Toxicity and carginogenicity of malachite green and leucomalachite green, in:National Toxicology Program Technical Report 527 (http://www.ehp.niehs. nih.gov/NTP/docs)
    [13] Culp SJ, Mellick PW, Trotter RW, et al. Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats[J]. Food Chem Toxicol, 2006, 44(8): 1204~1212
    [14] Susan M. Thomas and Donald G. MacPhee. Crystal violet: a direct-acting frameshift mutagen whose mutagenicity is enhanced by mammalian metabolism [J]. Mutation Research Letters, 1984, 140(4): 165~167
    [15] Srivastava A.K, Sinha R, Singh N.D, et al. Histopathological changes in a freshwater catfish, Heteropneustes fossilis following exposure to malachite green[J]. Proc. Natl. Acad. Sci. India. 1998, 68 (B): 123~127
    [16] Gerundo N, Alderman D J, Feist S W, et al. Pathological effects of repeated doses of malachite green: a preliminary study. J Fish Dis, 1991, 14: 521~532.
    [17] Srivastava A.K, Sinha R, Singh N.D, et al. Malachite green induced changes in carbohydrate metabolism and blood chloride levels in the freshwater catfish, Heteropneustes fossilis[J]. Acta Hydrobiol, 1995, 37(2): 113~119
    [18] Yildiz, H.Y, Pulatsu, S. Evaluation of the secondary stress response in healthy Nile tilapia (Oreochromis niloticus L.) after treatment with a mixture of formaline, malachite green and methylene blue[J]. Aquacult Res, 1999, 30(5): 379~383
    [19] Tanck M.W.T, Hajee C.A.J, Olling M, et al. Negative effect of malachite green on haematocrit of rainbow trout(Oncorhynchus mykiss Walbaum)[J]. Bull. Eur. Assoc. Fish. Pathol, 1995, 15 (4): 134~136
    [20] Srivastava A.K, Roy D, Sinha R, et al. Dyes induced changes in the haematological parameters of a freshwater catfish, Heteropneutes fossilis[J]. Ecol. Environ. Conserv, 1996, 2: 155~158
    [21] Grizzle, J. M. Hematological changes in fingerling channel catfish exposed to malachite green. Prog[J]. Fish Cult, 1977, 39 (2): 90~93
    [22] Bills T.D, Marking L.L, Chandler Jr. J.H. Malachite green: its toxicity to aquatic organisms, persistence and removal with activated carbon[J]. Investig. Fish Contr. 1977, 75: 6
    [23] Alderman D.J, Polglase J.L. A comparative investigation of the effects of fungicides on Saprolegnia parasitica and Aphanomyces astaci[J]. Trans. Br. Mycol. Soc, 1984, 83: 313~318
    [24] Srivastava S.J, Singh N.D, Srivastava A.K, et al. Acute toxicity of malachite green and its effects on certain blood parameters of a catfish, Heteropneustes fossilis[J]. Aquat. Toxicol. 1995, 31: 241~247
    [25] Schoettger R.A. Toxicology of thiodan in several fish and aquatic invertebrates[J]. US Department of Interior Fish and Wildlife Series Report, 1970, 35: 31
    [26] Smith M.J, Heath A.G. Acute toxicity of copper, chromate, zinc and cyanide to freshwater fish: effects of different temperature[J]. Bull. Environ. Contam. Toxicol. 1979, 22: 113~119
    [27] Gluth G, Hanke W. The effects of temperature on physiological changes in carp, Cyprinus carpio (L.) induced by phenol[J]. Ecotoxicol. Environ. Safety, 1983, 7: 373~389
    [28] Larry G. Rushing, Harold C. Thompson. Simultaneous determination of malachite green, gentian violet and their leuco metabolites in catfish or trout tissue by high performance liquid chromatography with visible detection[J]. Journal of Chromatography B, 1997, 688: 325~330
    [29] Harold C. ThompsonJr, Larry G. Rushing, Theresa Gehring, et al. Persistence of gentian violet and leucogentian violet in channel catfish (ictalurus punctatatus)muscle after water-borne exposure[J]. Journal of Chromatography B, 1999, 723: 287~291
    [30] 张莉, 文红, 王红. 高效液相色谱法测定鱼类产品中孔雀石绿及无色孔雀石绿的残留[J]. 中国卫生检验杂志, 2005, 15(12): 1483~1484
    [31] 刘桂华, 姜杰, 谢建滨, 等. 同位素内标稀释高效液相色谱-质谱法测定鱼体中的孔雀石绿及其代谢物[J]. 现代预防医学, 2006, 33(1): 124~126
    [32] Kirsi Halme, Erja Lindfors, Kimmo Peltonen. A confirmatory analysis of malachite green residues in rainbow trout with liquid chromatography- electrospray tandem mass spectrometry[J]. Journal of Chromatography B, 2007, 845: 74~79
    [33] I. Safank, M. Safankova. Detection of low concentrations of malachite green and crystal violet in water[J]. Water Research, 2002, 36: 196~200
    [34] 龚朋飞. 孔雀石绿单克隆抗体的制备及其检测试剂盒的初步研制[硕士学位论文]. 长沙: 湖南农业大学, 2005
    [35] 韩志辉, 吕昌银, 杨胜圆, 等. 银-邻菲罗啉-酸性三苯甲烷染料体系共振瑞利散射法测定痕量银[J]. 分析测试学报, 2006, 25(1): 69~72
    [36] 陈莲惠, 刘绍璞, 罗红群, 等. 夜蓝共振瑞利散射光谱法测定透明质酸钠[J]. 分析科学学报, 2005, 21(3): 304~306
    [37] 冯宁川, 龚国权. 亮黄-曲通X-100体系共振瑞利散射法测定蛋白质[J]. 分析化学, 2002, 30(4): 425~427
    [38] 葛从辛, 胡富陶, 干宁. 苯胺红T共振瑞利散射法测定生物样品中核酸[J]. 宁波大学学报(理工版), 2006, 19(1): 18~22
    [39] Culp SJ, Beland FA. Malachite green: a toxicological review[J]. J. Am College Toxicol. 1996; 15: 219~238
    [40] Rao KVK. Inhibition of DNA synthesis in primary rat hepatocyte cultures by malachite green: a new liver tumor promoter[J]. J. Toxicol Lett. 1995, 81: 107~113
    [41] Turnipseed S.B. Liquid chromatographic determination of malachite green and leuco- malachite green (LMG) residues in salmon with in situ LMG oxidation[J]. J. AOAC Int, 2005, 88(5): 1292~1298
    [42] Hernando MD, Mezcuam M, Suárez-Barcena JM, et al. Liquid chromatography with time-of-flight mass spectrometry for simultaneous determination of chemo-therapeutant residues in salmon[J]. Analytica Chimica Acta, 2006, 562(2): 176~184
    [43] 张志刚, 施冰, 陈鹭平, 等. 液相色谱法同时测定水产品中孔雀石绿和结晶紫残留[J]. 分析化学, 2006, 34(5): 663~667
    [44] 刘绍璞, 杨睿, 罗红群, 等. 某些同多酸根与蛋白质相互作用的共振瑞利散射光谱研究[J]. 分析化学, 2005, 33(8): 1125~1128
    [45] 刘绍璞, 张筑元, 胡小莉, 等. 某些碱性吩嗪染料与肝素相互作用的共振瑞利散射光谱研究[J]. 分析化学, 2005, 33(7): 989~992
    [46] 王明霞, 刘忠芳, 胡小莉, 等. 阳离子表面活性剂与四苯硼钠反应的共振瑞利散射光谱及其分析应用[J]. 分析化学, 2005, 33(10): 1427~1430
    [47] 赵琦华, 徐其亨. 金属离子-SCN--孔雀绿显色体系的比较研究[J]. 云南化工, 1994, 21(3): 34~38
    [48] 鲁群岷, 何佑秋, 刘绍璞, 等. 金纳米微粒作探针共振瑞利散射光谱法测定亚甲蓝[J]. 高等学校化学学报, 2006, 27(5): 849~852
    [49] 韩志辉, 吕昌银, 杨胜圆. Cd2 +-PAN-聚乙烯醇共振瑞利散射法测定水中痕量镉[J]. 分析科学学报, 2006, 22(1): 77~79
    [50] Xiufen Long, Shuping Bi, Haiyan Ni, Xiancong Tao, Ning Gan. Resonance Rayleigh scattering determination of trace amounts of Al in natural waters and biological samples based on the formation of an Al(III)–morin–surfactant complex[J]. Analytica Chimica Acta, 2004, 501(1): 89~97
    [51] 冯素玲, 刘雪平, 樊静. 十六烷基三甲基溴化铵敏化孔雀石绿-脱氧核糖核酸的共振光散射增强法测定脱氧核糖核酸[J]. 光谱学与光谱分析, 2004, 24(5): 606~609
    [52] The Merck Index, Eleventh Edition (S. Budavari, Ed.), Merck and Company, Inc. Publishers, Rahway, New Jersey, 1989
    [53] Fujita, H, Mizuo, A, Hiraga, H. Mutagenicity of dyes in the microbial system. Ann. Rep. Tokyo Metr. Res. Lab. 1976, 27(2): 153~158
    [54] K. Norrby, H. Mobacken. Effect of triphenylmethane dyes (brilliant green,crystal violet, methyl violet) on proliferation in human normal fibroblast-like and established epithelial-like cell lines. Acta Derm Venereol, 1972, 52(6): 476~483.
    [55] GB/T 19857—2005. 中华人民共和国国家质量监督检验检疫总局, 国家标准化管理委员会发布. 水产品中孔雀石绿和结晶紫残留量的测定. 2005-09-05实施
    [56] 谢文, 丁慧瑛, 奚君阳, 等. 水产品中孔雀石绿、结晶紫及其代谢产物残留量的检测. 色谱, 2006, 24(5): 529~530
    [1] 李宁. 孔雀石绿对健康的影响[J] . 国外医学卫生学分册, 2005, 32(5): 262~264
    [2] Culp SJ, Beland FA. Malachite green: a toxicological review [J]. Am Coll Toxicol, 1996, 15: 219~238
    [3] 龚朋飞. 孔雀石绿单克隆抗体的制备及其检测试剂盒的初步研制[硕士学位论文]. 长沙: 湖南农业大学, 2005
    [4] 孟庆显. 孔雀绿在防治鱼虾类疾病中的应用[J]. 山东海洋学院学报, 1983 13(4): 88~94
    [5] Bills T.D, Marking L.L, Chandler Jr. J.H. Malachite green: its toxicity to aquatic organisms, persistence and removal with activated carbon[J]. Investig. Fish Contr. 1977, 75: 6
    [6] Alderman D.J, Polglase J.L. A comparative investigation of the effects of fungicides on Saprolegnia parasitica and Aphanomyces astaci[J]. Trans. Br. Mycol. Soc, 1984, 83: 313~318
    [7] Srivastava S.J, Singh N.D, Srivastava A.K, et al. Acute toxicity of malachite green and its effects on certain blood parameters of a catfish, Heteropneustes fossilis[J]. Aquat. Toxicol, 1995, 31: 241~247
    [8] Schoettger R.A. Toxicology of thiodan in several fish and aquatic invertebr- ates[J]. US Department of Interior Fish and Wildlife Series Report, 1970, 35: 31.
    [9] Smith M.J, Heath A.G. Acute toxicity of copper, chromate, zinc and cyanide to freshwater fish: effects of different temperature[J]. Bull. Environ. Contam. Toxicol. 1979, 22: 113~119
    [10] Gluth G, Hanke W. The effects of temperature on physiological changes in carp, Cyprinus carpio (L.) induced by phenol[J]. Ecotoxicol. Environ. Safety, 1983, 7: 373~389
    [11] Srivastava A.K, Sinha R, Singh N.D, et al. Histopathological changes in a freshwater catfish, Heteropneustes fossilis following exposure to malachitegreen[J]. Proc. Natl. Acad. Sci. India, 1998, 68 (B): 123~127
    [12] Gerundo N, Alderman D J, Feist S W, et al. Pathological effects of repeated doses of malachite green: a preliminary study[J]. J Fish Dis, 1991, 14: 521~532.
    [13] Toxicity and carginogenicity of malachite green and leucomalachite green, in: National Toxicology Program Technical Report 527 (http://www.ehp.niehs. nih.gov/NTP/docs)
    [14] Culp SJ, Mellick PW, Trotter RW, et al. Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats[J] . Food Chem Toxicol, 2006, 44(8): 1204~1212
    [15] Mahudawala DM, Redkar AA, Wagh A, et al. Malignant transformation of Syrian hamster embryo (SHE) cells in culture by malachite green: an agent of environmental importance [J] . Indian J Exp Biol, 1999, 37(9): 904~918
    [16] Steven M Plakas. Optimization of a liquid chromatographic method for determination of malachite green and its metabolites in fish tissues[J]. J of AOAC, 1995, 78: 1388~1394
    [17] Srivastava A.K, Sinha R, Singh N.D, et al. Malachite green induced changes in carbohydrate metabolism and blood chloride levels in the freshwater catfish, Heteropneustes fossilis[J]. Acta Hydrobiol, 1995, 37(2): 113~119
    [18] Yildiz H.Y, Pulatsu S. Evaluation of the secondary stress response in healthy Nile tilapia (Oreochromis niloticus L.) after treatment with a mixture of formaline, malachite green and methylene blue[J]. Aquacult Res, 1999, 30(5): 379~383
    [19] Svobodova Z, Groch L, Flajshans M, et al. Effect of long-term therapeutic bath of malachite green on common carp (Cyprinus carpio)[J]. Acta. Vet. Brno 1997, 66(2): 111~116
    [20] Doerge D.R, Chang H.C, Divi R.L, et al. Mechanism for inhibition of thyroid peroxidase by leucomalahchite green[J]. Chem. Res. Toxicol, 1998, 11(9): 1098~1104
    [21] Tanck M.W.T, Hajee C.A.J, Olling M, et al. Negative effect of malachite green on haematocrit of rainbow trout(Oncorhynchus mykiss Walbaum)[J]. Bull. Eur. Assoc. Fish. Pathol, 1995, 15(4): 134~136
    [22] Srivastava A.K, Roy D, Sinha R, et al. Dyes induced changes in the haematological parameters of a freshwater catfish, Heteropneutes fossilis[J]. Ecol. Environ. Conserv, 1996, 2: 155~158
    [23] Grizzle, J. M. Hematological changes in fingerling channel catfish exposed to malachite green. Prog[J]. Fish Cult, 1977, 39 (2): 90~93
    [24] 翟毓秀, 郭莹莹, 耿霞. 孔雀石绿的代谢机理及生物毒性研究进展[J]. 中国海洋大学学报, 2007, 37 (1): 27~32
    [25] Machova J, Svobodova Z, Svobodnik J, et al. Persistence of malachite green in tissues of rainbow trout after a long-term therapeutic bath[J]. Acta. Vet. Brno. 1996, 65 (2): 151~159
    [26] Alborali L, Sangiorgi E, Leali M, et al. The persistence of malachite green in the edible tissue of rainbow trout (Oncorhynchus mykiss)[J]. Rivista Italiana di Acquacoltura Veroma, 1997, 32 (2): 45~60
    [27] Nowak B, De Guingand P. Effects of prophylactic treatments with malachite green on early life stages of rainbow trout[J]. Aust. J. Ecotoxicol. 1997, 3(2): 141~146
    [28] Culp S. J. Metabolic changes occurring in mice and rats fed LMG[C]. San Diego: Proc 88th Ann Meeting of Am Soc for Cancer Re2 search, 1997: 121
    [29] Bongsup P Cho, Lonnie R B, Joanna D. Moody , et al. Synthesis and Characterization of 4’2 Amino and 4’2 Nitro Derivatives of 42N , N2 Dimethylaminotriph enylmethane as precursors for a proximate mala2chite green metabolite[J] . Tetrahedron, 2000, 56: 7379~7388
    [30] 李宁. 什么是孔雀石绿. 知识卡片, 2005, 11: 79
    [31] Larry G. Rushing, Harold C. Thompson. Simultaneous determination of malachite green, gentian violet and their leuco metabolites in catfish or trouttissue by high performance liquid chromatography with visible detection[J]. Journal of Chromatography B, 1997, 688: 325~330
    [32] Harold C. Thompson Jr, Larry G. Rushing, Theresa Gehring, et al. Persistence of gentian violet and leucogentian violet in channel catfish (ictaluruspunc- tatatus)muscle after water-borne exposure[J]. Journal of Chromatography B, 1999, 723: 287~291
    [33] 张莉, 文红, 王红. 高效液相色谱法测定鱼类产品中孔雀石绿及无色孔雀石绿的残留[J]. 中国卫生检验杂志, 2005, 15(12): 1483~1484
    [34] 刘桂华, 姜杰, 谢建滨, 等. 同位素内标稀释高效液相色谱-质谱法测定鱼体中的孔雀石绿及其代谢物[J]. 现代预防医学, 2006, 33(1): 124~126
    [35] Kirsi Halme, Erja Lindfors, Kimmo Peltonen. A confirmatory analysis of malachite green residues in rainbow trout with liquid chromatography- electrospray tandem mass spectrometry[J]. Journal of Chromatography B, 2007, 845: 74~79
    [36] I. Safank, M. Safankova. Detection of low concentrations of malachite green and crystal violet in water[J]. Water Research, 2002, 36: 196~200
    [37] A. Méndeza, F. Fernándeza, G. Gascób. Removal of malachite green using carbon-based adsorbents[J]. Desalination, 2007, 206: 147~153
    [38] V.K. Garg, Rakesh Kumar, Renuka Gupta. Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria [J]. Dyes and Pigments, 2004, 62: 1~10
    [39] S.S. Tahir, Naseem Rauf. Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay[J]. Chemosphere, 2006, 63: 1842~1848
    [40] Alok Mittala, Lisha Krishnana, V.K. Guptab. Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya[J]. Separation and Purification Technology, 2005, 43:125~133
    [41] 张晓昱, 颜克亮, 王宏勋. 稻草秆粉基质中白腐菌对三苯甲烷类染料的降解特性[J]. 应用与环境生物学报, 2006, 12 (2): 255~258
    [42] 李慧蓉, 陈武, 陈和谦. 黄孢原毛平革菌对三苯甲烷染料的生物脱色降解[J]. 上海环境科学, 2003, 22(11): 737~742
    [43] C.C. Chen, C.S. Lua, Y.C. Chungb, et al. UV light induced photodegradation of malachite green on TiO2 nanoparticles[J]. Journal of Hazardous Materials, 2007, 141: 520~528
    [44] Jing Li, Wanhong Ma, Yingping Huang, et al. Oxidative degradation of organic pollutants utilizing molecular oxygen and visible light over a supported catalyst of Fe(bpy)32+ in water[J]. Applied Catalysis B: Environmental, 2004, 48: 17~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700