城轨牵引内置式永磁同步电机驱动系统效率优化控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城轨交通具有客运周转量大、安全可靠、受干扰少等其他城市客运交通无可比拟的优点,对缓解城市交通压力的作用越来越受到重视。电力牵引具有功率大、速度快、效率高、过载能力强等特点,已经成为城轨交通牵引动力的发展方向。内置式永磁同步电机以其体积小、低速输出转矩大、磁路气隙小等优点,可利用其磁阻效应来提高电机效率和改善调速特性,特别适宜用作城轨交通的牵引电机。城轨电力牵引系统运行能耗问题引起广泛关注,牵引系统节能控制成为城轨牵引系统研究的一个重要方向。论文以城轨牵引内置式永磁同步电机(interior permanent magnet synchronous motor, IPMSM)驱动系统为研究对象,结合城轨交通运行特性,重点研究内置式永磁同步电机效率优化及其控制策略的相关理论和方法,为城轨牵引内置式永磁同步电机驱动系统节能降耗应用提供理论和实验研究基础。
     首先分析内置式永磁同步电机的结构和原理,推导其在不同坐标系中的数学模型,得到相应的等效电路。在分析空间矢量脉宽调制(Space Vector PWM,SVPWM)电压型逆变器的工作特点和SVPWM输出波形谐波成分的基础上,提出了IPMSM直接转矩控制系统开关频率优化方法,根据转速和负载自适应控制滞环宽度值,采用零电压矢量优化分配策略,抑制逆变器输出电压电流谐波,减少由谐波引起的铁芯损耗和铜损,提高系统的效率,改善系统的动态性能。
     针对城轨牵引电机驱动系统在加速区和制动区暂态运行过程的效率优化问题,结合城轨牵引电机驱动系统运行特点和电机状态方程,提出了最优磁链/速度控制策略和效率优化瞬时功率控制策略。最优磁链/速度控制策略在充分发挥永磁同步电机转矩输出能力的同时,控制定子磁链和电机的速度,实现永磁同步电机损耗最小运行,提高电机的运行效率。瞬时功率控制策略是根据三相电路瞬时功率理论,通过控制电机瞬时输入有功和无功功率,控制电机定子磁场幅值和位置角度,提高系统的效率以及转矩输出能力和响应速度。
     将城轨牵引电机驱动系统恒速(巡航)运行效率优化控制问题转化为电机稳态运行效率优化控制问题。分析了各种损耗与励磁电流和转速的关系,建立了IPMSM的损耗模型,提出了一种电磁损耗最小的励磁电流控制方法,实现最小损耗电流和最大输出转矩控制,提高电机运行效率和改善系统动态性能。
     基于损耗模型的IPMSM驱动系统效率优化控制方法对电机参数依赖大,实现困难大。研究了黄金分割法和模糊寻优法结合的搜索技术,提出了城轨牵引IPMSM驱动系统基于集成搜索技术的效率优化控制方法。仿真结果表明:该方法可以减小系统能耗,提高牵引系统的效率,转矩脉动小,鲁棒性好。
     采用ST公司的STM32F103嵌入式微控制器作为主控制芯片,以C语言作为控制软件编程语言,构建了IPMSM交流调速实验平台,详细介绍了系统的硬件电路和部分软件的设计与实现。基于该实验平台进行了IPMSM驱动系统起动/制动暂态过程运行和恒速(巡航)稳态运行的效率优化控制实验。实验结果验证了本文提出的效率优化控制方法的正确性和有效性。
More and more attentions have been paid on urban rail transit as it relieves pressure of urban transportation, unexampled advantages of which are large passenger transport volume, safe and reliable, little disturbance, and so on, compared with other means of urban passenger transportation. Electric traction has become the development direction of traction power with the following features:high power, fast speed, high efficiency, strong overload capacity. The interior permanent magnet synchronous motor(IPMSM) can make use of the magnetoresistive effect to improve its efficiency and speed characteristics, has the advantages of small size, large output torque in the low speed, minor magnetic air gap, so that it is especially suitable for traction motor of urban rail transit. Extension attentions have been focused on the problem operating energy consumption in the system of electric traction, and energy-saving control of traction system becomes a major research direction in the system of urban rail traction. Chosen the IPMSM drive system of urban rail traction as research object, combined the operating characteristic of urban rail transit, the relevant theory and method to IPMSM efficiency optimization and control strategy are mainly studied in paper. The theoretical and experimental basis is provided for application of energy saving and lower consumption in the drive system of IPMSM for urban rail traction.
     The structure and principle of IPMSM are firstly analyzed, its mathematical models are deduced in the different coordinate system, and respectively equivalent circuits are obtained. The switch frequency optimization method is proposed based on analysing to the characteristic of SVPWM voltage source inverter and harmonic component of SVPWM output waveform. The hysteresis band is adaptively controlled by the speed and load changing rate and the optimum distribution strategy of zero voltage vector is adopted to suppress harmonic waveform in the output voltage and current of inverter, reduce core and copper losses produced by harmonic voltage and current, and improve system efficiency and dynamic performance.
     Based on the analysis to drive system's operating characteristic and motor's state equation, the control strategy of optimal flux/speed and efficiency optimization instantaneous power are presented for the drive system of urban rail traction motor during the transiently operating process of accelerating and braking region.It can fully develop the ability of output torque and can control the stator flux and motor speed to attain minimum operating loss of IPMSM and improve operating efficiency in the control strategy of optimal flux/speed. The instantaneous power control strategy is proposed based on the instantaneous power theory of three phase circuit. Instantaneously input active and reactive power are changed by the control of stator field's amplitude and position angle to improve the system efficiency, torque output capability, and response speed.
     When the drive system of urban rail traction motor runs at constant speed (cruising operation), its operating state is approximated to be steady. The efficiency optimization control in the drive system of urban rail traction motor is solved at steadily operating state. Analyzed the relation among various losses, excitation current, and speed, the loss model of IPMSM is built. The minimum excitation current control method is proposed to attained minimum electromagnetic losses. The minimum loss and maximum output torque are achieved by the minimum excitation current control, and the operating efficiency of motor and dynamic performance of system are improved.
     The loss model efficiency optimization control method of IPMSM is largely dependent on motor parameters and is hard to be realized. The golden section method and fuzzy logic search technique are researched. The integrated search technology is proposed to realize online efficiency optimization control for drive system of urban rail traction motor. Simulation results are proved that the traction system energy consumption is reduced, the traction system efficiency is improved effectively, torque ripple is reduced, and robustness is improved by the method.
     The embedded microcontroller STM32F103 of ST corporation is used for the host control chip, the C programming language is applied for control software, and the experimental platform is constructed for efficiency optimization control system of urban rail traction IPMSM. Design and realization on hardware circuit of overall system and partial software are introduced in detail. The efficiency optimization control experiments of IPMSM drive system are performed on the platform during the transiently operating process of accelerating/braking region and steady-state operating process of constant speed (cruising operation). The validity of the proposed strategy is proved by the experimental results.
引文
[1]Toshihiko Noguehi.Trends of Permanent-Magnet Synchronous Machine Drives[J]. IEEE Transactions on Electrical and Electronic Engineering.2007, (2):125-142.
    [2]冯蕾,李慧,温源.透视交通拥堵背后“城市病”公共资源为谁服务[N].光明日报,2010,10,9.http://news.xinhuanet.com/society/2010-10/10/c_13549729.htm
    [3]2009-2013年中国城市轨道交通及设备产业运营态势与投资策略报告[R].http://www.BaogaoChina.com/2009-08/2009_2013chengshiguidaojiaotongjBao Gao.html,2009,08.
    [4]孔令洋.城市轨道交通系统型式选择研究[D].北京交通大学博士学位论文,2009,5.
    [5]施仲衡.建设资源节约型城市轨道交通[J].都市快轨交通,2008,21(1):(卷首语)http://www.cae.cn/cn/yuandihezuo/shanghaishi/20090615/cae3699.html
    [6]吴爽.中等规模城市的快轨交通建设规划[J].城市快轨交通,2007,20(1):15-18.
    [7]侯蓉华.城际轨道交通系统若干问题研究[D].西南交通大学硕士学位论文,2006.
    [8]汪卫军.牵引电机的效率优化控制研究[D].北京交通大学硕士学位论文,2009.
    [9]魏祥林.永磁同步电机直接转矩控制策略的研究[D].兰州理工大学硕士学位论文,2008.
    [10]吴茂杉.国内城轨车辆电传动系统主要问题分析[J].变流技术与电力牵引,2007,1:7-12.
    [11]徐安编.城市轨道交通电力牵引[M].北京:中国铁道出版社,2000.
    [12]Kondo, Minoru. Appplication of Permanent Magnet Synchronous Motor to Driving Railway Vehicles [J]. Railway Technology Avalanche,2003,(1):6.
    [13]近藤稔,等(日).永磁同步电动机在铁道机车动车上的应用[J].变流技术与电力牵引,2003,(1):1-5.
    [14]T Klockow,等(德).永久磁铁励磁的牵引电动机[J].变流技术与电力牵引,2003,(4):37-39.
    [15]H.Nieke等(德).低地板车辆用牵引电动机系列[J].交流技术与电力牵引,2004,(2):42-48.
    [16]川村淳也等(日).牵引电动机能耗的比较.交流技术与电力牵引,2004,(6):13-17.
    [17]李珂.电动汽车高效快响应电驱动系统控制策略研究[D].山东大学博士学位论文,2007.
    [18]张飞.地铁用永磁同步电动机设计中的关键技术问题研究[D].沈阳工业大学硕士学位论文,2006.
    [19]徐英雷,李群湛,许峻峰.城轨车辆永磁同步电机牵引系统研究现状与发展前景[J].电机与控制应用,2009,36(5):7-10.
    [20]冯江华.城轨车辆用永磁同步电机驱动系统控制策略研究[D].中南大学博士学位论文,2008.
    [21]刘建强.直线电机轨道交通牵引传动系统研究[D].北京交通大学博士学位论文,2008.
    [22]陈伟华,李秀英,姚鹏.电机及其系统节能技术发展综述[J].电器工业,2008,9:46-54.
    [23]邹积勇.电动汽车控制策略研究[D].天津大学博士学位论文,2007.
    [24]刘景林,李声晋,罗兵,李钟明.稀土永磁同步发电机的结构特点及关键技术[J].微电机,1997,30(1):3-5.
    [25]裴华刚.基于DSP的异步电机矢量控制系统效率优化与仿真[D].武汉理工大学硕士学位论文,2007.
    [26]孙丰涛.基于DSP的矢量控制异步电机效率优化控制研究[D].山东大学硕士学位论文,2005.
    [27]M. Depenbrock.Direkte Selbstregelung fur hoch dynamische Drehfeldantriebe mit Stromrichterspeisung[J]. ETZ Arch.,1985,7(7):211-218.
    [28]I. Takahashi,T Naguchi.A new quick-response and high-efficiency control strategy of an induction motor[J].IEEE Transactions on IA,1986,22(5):820-827.
    [29]L zhong,M F Rahman.W Y Hu Analysis of direct torque control in permanent magnet synchronous motor drivers[J]. IEEE Transactions on Power Electronics, 1997,12(3):528-536.
    [30]Hu Yuwen,Tian Cun,Gu kang.In-depth research on direct torque control Permanent magnet synchronous motor[C].Seville Spain:IECON 02 Industrial Electronics Society,2002,2(5):1060-1065.
    [31]Rowan T.M.,Lipo T.A.Aquantitative analysis of induction motor Performance improvement by SCR voltage control[J].IEEE Trans. On IA.1983,19(3): 543-553.
    [32]Alexande K.,Donald G..Control means for minimization of losses in AC and DC motor drives[J].IEEE Trans.on IA.,1983,13(4):561-570.
    [33]Kim H.G.,Sul S.K., ParkM.H..Optimal effieiency drive of a current source inverter fed induction motor by flux control[J].IEEE Trans. On IA.,1984,20(6): 1453-1459.
    [34]Lorenz R D,Yang S M.Effieieney optimized flux trajectories for closed-cyele operation of field-orientation induction machine drives[J].IEEE Trnas. Ind. APPlieat.,1992,28(3):574-580.
    [35]Gareia G O,Luis J C M,Stephan R M. An efficient contorller for an adajusbatle speed induction motor drive[J].IEEE Trnas.on Ind.Electron,1994,41(1):533-539.
    [36]Kioskeridis I,Margaris N.Loss minimization in induction motor adjustable-speed drives[J].IEEE Trnasaetions Indusrtial Eleetronies,1996,43(1):226-231.
    [37]Kirshcen D S,Novotny D W,LipoTA.On-line effieieney optimization of avariabler fequeney induction motor drive[J].IEEE Trnas. On Ind. APPlieat,1985, 21(3):610-615.
    [38]Abrhamasen F,Blaabjerg F,Pedersen J K.On the enegry optimized control of stnadard and high-effieiency induction motors in CT and HVAC applications[J]. IEEE Trnas. On Ind. APPI,1998,34(4):822-831.
    [39]Schiferl R F,Lipo T A.Core loss in buried magnet permanent magnet synchronous motors [J]. IEEE Trans.on Energy Conversion,1989,4(2):279-284.
    [40]Famouri P,Cathey J J.Loss minimization control of an induction motor drive[J]. IEEE Trans.on Ind.APPlicat,1991,27(1):32-37.
    [41]Atallah K,Zhu Z Q,Howe D.An improved method for predicting iron losses in brushless permanent magnet drives[J].IEEE Trans. on Magnetics,1992,28(2): 2997-2999.
    [42]K. Uezato, et a.l. Parameter Measurement of Synchronous Reluctance Motors Including Stator and Rotor Iron Loss[J]. in Proc. SMIC 93,1993:247-252.
    [43]Mi C C,Slemon G R,Bonert R.Minimization of iron losses of permanent magnet synchronous machines[J],IEEE Trans. on Energy Conversion,2005,20(1): 121-127.
    [44]NUrasaki, TSenjyu. Equivalency of parallel model and series model for permanent magnet synchronous motors including stator iron loss [A]. Proc. of IEEE Industry Application Society Conference [C]. Japan,1999. Vol.1:91-96.
    [45]Yamazaki K,Seto Y.Iron loss analysis of interior permanent magnet synchronous motors-variation of main loss factors due to driving condition[J].IEEE Trans. on Industry Applications,2006,42(4):1045-1052.
    [46]刘陵顺,刘卫华,田锦昌.考虑铁损时异步电动机的最佳效率控制[J].微电机,2001,34(4):50-53.
    [47]方瑞明,王榕.基于谐波分析法的高速变频电机铁耗计算方法[J].电机与控制学报,2004,8(1):25-28.
    [48]张云,吴凤江,孙力,赵克.异步电动机铁耗对直接转矩控制性能的影响及补偿方法[J].电工技术学报,2008,23(9):51-57.
    [49]高仕红,李善奎.考虑铁耗时永磁同步电机的数学模型及其仿真研究[J].微电机,2007,40(1):45-48.
    [50]高仕红.考虑铁耗时永磁同步电机的转子磁场定向矢量控制[J].湖北民族学院学报(自然科学版),2007,25(2):225-227.
    [51]陈阳生,王文中.在恒转矩和弱磁控制状态下的各种永磁同步电机负载铁耗[J].电工技术学报,2007,22(9):45-50.
    [52]张洪亮,邹继斌,陈霞,等PMSM定子铁耗与磁极涡流损耗计算及其对温度场的影响[J].微特电机,2008,(5):1-4,39.
    [53]王瑾.超超高效永磁同步电动机铁耗研究与设计[D].沈阳:沈阳工业大学硕士学位论文,2009.
    [54]郭伟,张承宁.车用永磁同步电机的铁耗与瞬态温升分析[J].电机与控制学报,2009,13(1):83-88.
    [55]胡笳,罗应立,李志强,刘明基.永磁电动机不同运行条件下的损耗研究[J].电机与控制学报,2009,13(1):11-16.
    [56]Kazumik Kurihara, Tomotsuga Kubota. Steady-State Performance Analysis of Permanent Magnet Synchronous Motors Including Space Harmonics[J]. IEEE Trans. on Magnetics,1994,30(3):1306-1315
    [57]Tseng K J,Wee S B.Analysis of flux distribution and core losses in interior permanent magnet motor[J].IEEE Trans. on Energy Conversion,1999,14(5): 969-975.
    [58]窦满锋,刘卫国.高效节能稀土永磁同步电机技术研究[J].西北工业大学学报,2004,22(3):6-8.
    [59]安忠良.超高效永磁同步电动机研究开发[D].沈阳:沈阳工业大学硕士学位论文,2006.
    [60]符荣,窦满锋,贾宏新.稀土永磁同步电动机稳态运行的转子铜耗分析[J].微特电机,2006,9:11-14.
    [61]周鹗,曾朝晖.高性能永磁同步电机矢量控制系统研究[J].电机与控制学报,1997,1(1):1-6.
    [62]MORIMOTO S., TONG Y.,TAKEDA Y.,HIRASA T.Loss minimization control of permanent magnet synchronous motor drives [J]. IEEE Trans on Industrial Electronics,1994,41(5):511-517.
    [63]Wasynczuk O,Sudhoff S D,Hansen I G,et al.A Maximum Torque Per Ampere Control Strategy for Induction Motor Drives[J].IEEE Transactions on Power Conversion(S0885-8993),1998,13(2):163-169.
    [64]URASAKIN, SENJYU T. Equivalency of parallelmodel and seriesmodel for permanent synchronous motors including stator iron loss [C]. Proc of IEEE Industry Application Society Conference,1999,91-96.
    [65]Mademlis C,Margaris N.Loss minimization in vector-controlled interior permanent-magnet synchronous motor drives [J].IEEE Trans on Industrial Electronics,2002,49(6):1344-1347.
    [66]CAVALLARO C, ANTONINO O D T, ROSARIOM. Efficiency enhancement of permanent magnet synchronous motor drives by online lossminimization approaches [J]. IEEE Trans on Industrial Electronics,2005,52(4):1153-1160.
    [67]许峻峰,冯江华,许建平.考虑损耗模型永磁同步电机直接转矩控制[J].电力电子技术,2005,39(2):24-26.
    [68]崔培良,赵克友.面装永磁同步电机最小损的速度控制[J].青岛大学学报(工程技术版),2006,21(1):35-38.
    [69]崔培良.高性能交流电机变频控制及效率改善[D].青岛大学硕士学位论文,2006.
    [70]王晓磊,赵克友.永磁同步电机最小损耗的直接转矩控制[J].电机与控制学报,2007,11(4):331-334.
    [71]陈启飞.电动汽车驱动装置效率最佳的控制方法研究[D].沈阳工业大学硕士学位论文,2007.
    [72]徐艳平,钟彦儒.永磁同步电机最小损耗控制的仿真研究[J].系统仿真学报,2007,19(22):5283-5286.
    [73]Naomitus Urasaki, Tomonobu Senjyu, Katsumi Uezato. An accurate modeling for permanent magnet synchronous motor drives[J]. IEEE Trans. on Industry Applications,2000,35(3):387-392.
    [74]MADEMLIS C, KIOSKERIDIS I, MARGARIS N. Optimal efficiency control strategy for interior permanent magnet synchronous motor drives [J]. IEEETrans on Energy Conversion,2004,19(4):1-9.
    [75]宋聚明,苏彦民.基于精确建模下的永磁同步电动机(PMSM)最佳效率控制研究[J].电工电能新技术,2004,23(2):22-25.
    [76]崔纳新,张承慧,孙丰涛.异步电动机的效率优化快速响应控制研究[J].中国电机工程学报,2005,25(11):120-123.
    [77]郭庆鼎,陈启飞,刘春芳.永磁同步电机效率优化的最大转矩电流比控制方法[J].沈阳工业大学学报,2008,30(1):1-5.
    [78]徐石交.感应电机最大效率优化控制研究[J].舰船科学技术,2008,30(2):150-153.
    [79]ENRICO C.Design of solar high altitude long endurance aircraft for multi payload&operations[J].A erospace Science and Technology,2006,(10):541-550.
    [80]宋科,刘卫国,骆光照,窦满峰.航空电驱动系统效率优化控制研究[J].电机与控制学报,2009,13(4):471-476.
    [81]Kirschen D,Novotny D,Lipo T.Optimal efficiency control of an induction motor drive[J].IEEE Transactions on Energy Conversion,1987,2(1):70-76.
    [82]SOUSA G C D, SIMONETTID S L, NORENA E E C. Efficiency optimization of a solar boat inductionmotor drive[C]//IEEE35th IASAnnualMeeting. Rome: IEEE Press,2000:1424-1430.
    [83]Moreira J C,Lipo T A,Blasko V.Simple efficiency maximizer for an adjustable frequency induction motor drive[J].IEEE Trans. On Ind,Applicat,1991,27(5): 940-946.
    [84]何光东,俞健,蒋静坪.利用斐波那契法实现交流电机的效率最优控制[J].控制与决策,1999,14(4):349-353.
    [85]Sousa G C D,Bose B K,Cleland J D.Fuzzy logic based on-line effieiency optimization control of an indirect vector-controlled induction motor drive[J]. IEEE Transactions on Industrial Electronics,1995,42(2):192-198.
    [86]Bose B K.A high performance inverter-fed drives system of interior permanent magnet synchronous machine [J].IEEE Trans on Industry Applications,1987, 24(6):987-997.
    [87]Bose B K,Patel N R,Rajashekara K.A neuro-fuzzy-based on-Line effieiency optimization control of a stator flux-oriented direct veeotr-controlled induction motor drive[J].IEEE Trans. on Ind. Electron,1997,44(2):270-273.
    [88]Ta Cao Minh, Yoichi Hori.Convergence improvement of effieiency optimization control of induction motor drives[J].IEEE Trans. on Ind. Applieat,2001,37(6): 1746-753.
    [89]张立伟,温旭辉,郑琼林.异步电机用混合式模糊搜索效率优化控制研究[J].中国电机工程学报.2007,27(27):83-87.
    [90]LUB, HABETLER TG, HARLEY RG. A survey of efficiency estimation methods for in-service induction motors [J]. IEEE Trans on IndApplicat,2006, 42(4):924-933.
    [91]L.Shi, S.Olafsson, Q.Chen. A new hybrid optimization algorithm[J]. Computers & Industrial Engineering,1999,36(2):409-426.
    [92]Hassan A A.Improving the power efficiency of a rotor flux-oriented induction motor drive[J].Electric Power Components and Systems,2002,30(5):431-442.
    [93]郭振宏,王秀和,唐任远.永磁同步电动机设计专家系统几个问题的探讨[C].1994年永磁电机年会论文集,1994.
    [94]牛晨,陈易,郭鹏义等.电动汽车的电效率优化问题[C].中国电工技术学会电力电子学会第八届学术年会论文集,深圳:2001:849-857.
    [95]张承慧.变频调速系统效率优化控制、理论与应用[D].山东大学博士学位论文,2001.
    [96]郭鹏义,杨耕,孙梅生,等.电动汽车驱动用感应电机在线效率最优控制的算法研究[J].电机与控制学报,2003,7(4):290-293.
    [97]崔纳新,张承慧,杜春水.变频调速异步电动机效率优化控制的研究进展[J].电工技术学报,2004,19(5):36-42.
    [98]许家群,朱建光,邢伟,唐任远.电动汽车驱动用永磁同步电动机系统效率优化控制研究[J].电工技术学报,2004,8(7):81-85.
    [99]刘小虎,谢顺依,郑力捷.一种改进的感应电机最大效率控制技术研究[J].中国电机工程学报,2005,25(6):95-98.
    [100]杨耕,耿华,王焕钢.一种考虑感应电机动态效率的转矩控制策略[J].电工技术学报,2005,20(7):93-98.
    [101]崔纳新,张承慧,李珂,张承进.基于参数在线估计的交流异步电动机效率最优控制[J].电工技术学报,2007,22(9):80-85.
    [102]周启章.鼠笼式异步电动机杂散铁耗的分析及抑制[J].电机技术,1994,3:3-4.
    [103]刘瑞芳.基于电磁场数值计算的永磁电机性能分析方法研究[D].南京:东南大学,2003.
    [104]Fernaneds B G,Rllai S K,SubbaraoV.Performance of an adaptive hysteresis band current controlled induction motor drive [C].Proceedings of the 1992 International Conference on Power Electronics and Motion Control,Hongkong, 1992:447-452.
    [105]Garcia G O,Mendes Luis J C,Stephan R M,et al.An efficient controller for an adjustable speed induction motor drive[J].IEEE Transactions on Industrial Electronics,1994,41(5):533-539.
    [106]Choy I,Kwon S H,Choi J Y.On-line effieiency optimization control of a slip an agular frequency controlled induction motor drive using neural netwokrs[C]. IEEE IECON 22nd International Conefernce,1996,(2):1216-1221.
    [107]Sul S K,Park M H.A novel technique for optimal efficiency control of a current source inverter-fed induction motor[J].IEEE Trnas. On Power Electron,1988, 3(2):192-199.
    [108]Abrahamsen F,Blaabjerg F.On the energy optimized control of standard and high-efficiency induction motors in CT and HVAC applications[J],IEEE Trans.IA.,1998,34(4):822-831.
    [109]Toh C L,Idris N R N,Yatim A H M.Constant and high switching frequency torque controller for DTC drives[J].IEEE Power Electronics Letters,2005,3(2): 76-80.
    [110]Shi C W,Qiu J Q,Jin M J,et al.Study on the performance of different direct torque control methods for permanent magnet synchronous machines[J]. Proceedings of the CSEE,2005,25(16):141-146.
    [111]Kwon Tae-suk, Sul Seung-Ki.A novel flux weakening algorithm for surface mounted permanent synchronous machines with infinite constant power speed ration[C].International Conference on Electrical Machines and Systems (ICEMS), Seoul,2007:440-445.
    [112]唐任远,等(Tang Renyuan,et al.)现代永磁电机(Modern permanent magnet machines) [M]北京:机械工业出版社(Beijing:China Machine Press),2000.
    [113]田淳,胡育文.永磁同步电机直接转矩控制系统理论及控制方案的研究[J].电工技术学报,2002,17(1):7-11.
    [114]黄慧敏.永磁同步电机控制方法建模与仿真研究[D].武汉理工大学硕士学位论文,2007.
    [115]窦汝振.高性能永磁交流伺服系统及其新型控制策略的研究[D].天津大学博士学位论文,2002.
    [116]许振伟.永磁交流伺服系统及其控制策略研究[D].浙江大学博士学位论文,2003.
    [117]胡奇锋.永磁同步电机高性能调速控制系统研究[D].浙江大学硕士学位论 文,2004.
    [118]盛利涛.永磁同步电机直接转矩控制策略的研究与实现[D].浙江工业大学硕士学位论文,2007.
    [119]许峻峰.提高永磁同步电动机调速系统性能方法研究[D].西南交通大学博士学位论文,2007.
    [120]H. Ibrahim OKUMUS,Mustafa AKTAS. Adaptive hysteresis band control for constant switching frequency in DTC induction machine drives[J].Turk J Elec Eng&Comp Sci,2010,18(1):59-69.
    [121]Okumus H.I..Improved Direct Torque Control of Induction Machine Drives [D].Phd Thesis,UNIVERSITY OFBRISTOL,UK,July 2001.
    [122]J.K.Kang,D.W.Chung,S.K.Sul,Direct Torque Control of Induction Machine With Variable Amplitude Control of Flux and Torque Hysteresis Bands[C]. IEEE/IEMD Int.Conf.,1999:640-642.
    [123]Y.Li,J.Shao,and B.Si.Direct torque control of induction motors for low speed drives considering discrete effect of control and dead-time timing of inverters[C].in Proc.IEEE-IAS Annu.Meeting,1997:781-788.
    [124]L.Tan and M.F.Rahman.A new direct torque control strategy for flux and torque ripple reduction for induction motors drive by using space vector modulation[C].in Proc.32nd Annu.PESC,2001,vol.3:1440-1445.
    [125]Bowes S.R,Grewal S.Three-level hysteresis band modulation strategy for single-phase PWM inverter[J].IEEE Proc. Electr. Power Appl.,1999,146(6): 695-706.
    [126]Bose Bimal K..An Adaptive Hysteresis-Band Current Control Technique of a Voltage-Fed PWM Inverter for Machine Drive System[J].IEEE Trans.Industrial Electronics,1990,Vol 37:402-408.
    [127]S.Mir and M.E.Elbuluk.Precision torque control in inverter-fed induction machines using fuzzy Iogic[C].in Proc. IEEE-IAS Annu.Meeting,1995:396-401.
    [128]Casadei D,Grandi G,Serra G.Effects of Flux and Torque Hysteresis Band Amplitude in Direct Torque Control of Induction Machines[C].IECON'94, Bologna,Italy,1994:299-304.
    [129]N.R.N.Idris and A.H.M.Yatim.Reduced torque ripple and constant torque switching frequency strategy for Direct Torque Control of induction machine[C].in Proc.l5th IEEE-APEC,New Orleans,LA,2000:154-161.
    [130]N.R.N.Idris and A.H.M.Yatim.Direct torque control of induction machines with constant switching frequency and reduced torque ripple[J].IEEE Trans. Ind. Electron.,2004,51(4):758-767.
    [131]C.L.Toh,N.R.N.Idris,and A.H.M.Yatim.Constant and high switching frequency torque controller for DTC drives[J].IEEE Power Electron.Lett.,2005,3(2):76-80.
    [132]马德中,金阳,南余荣,等.采用滞环宽度优化控制感应电机直接转矩控制[J].微特电机,2003,31(2):19-21.
    [133]田亚菲,何继爱,黄智武.电压空间矢量脉宽调制(SVPWM)算法仿真实现及分析[J].电力系统及其自动化学报,2004,16(4):65-71.
    [134]魏欣,陈大跃,赵春宇.一种基于占空比控制技术的异步电机直接转矩控制方案[J].中国电机工程学报,2005,25(14):93-97.
    [135]任或,刘欢.基于TMS320F2812的永磁同步电机SVPWM调速[J].机电工程,2009,26(8):86-89.
    [136]周熙炜,刘卫国.空间电压矢量合成的新型选择谐波消去技术[J].中国电机工程学报,2009,29(30):35-41.
    [137]赵辉,鲁超,冯金钊.基于SVPWM的永磁同步电机控制策略研究[J].电测与仪表,2009,46(523):13-16.
    [138]王斌,王跃,王兆安.空间矢量调制的永磁同步电机直接转矩控制[J].电机与控制学报,2010,14(6):45-50.
    [139]赵小皓.直接驱动永磁同步电机控制策略仿真研究与实现[D].西南交通大学硕士学位论文,2009.
    [140]冯江华,许峻峰.永磁同步电机直接转矩控制系统转矩调节新方法[J].中国电机工程学报,2006,26(13):151-157.
    [141]丁荣军.轨道电力牵引无速度传感器直接转矩控制及其应用研究[D].中南大学博士学位论文,2008.
    [142]冯江华.城轨车辆用永磁同步电机驱动系统控制策略研究[D].中南大学博士学位论文,2008.
    [143]刘红兵.浅谈高速动车组电力牵引传动控制系统[J].电源世界,2010,5:50-52.
    [144]Gill D C,Goodman C J.Computer-Based Optimisation Techniques for Mass Transit Railway Signaling Design[J].IEE Proc-B,1992,139(3):261-275.
    [145]Bharath s,Nakra B c,Gupta K N.A distributed mathematical model for pressure transient analysis railway pneumatic brake system[J].International Journal of Mechanical sciences,1990,32(2):133-145.
    [146]Wang Jing,etal.Direct Fuzzy Neural Control with Application to Automatic Train Operation [J].Control Theory and Applications.1998.15(3).391-399.
    [147]江彩玉,徐国卿,全力,方向,王晶晶.城市轨道车辆异步牵引电机额定参数研究[J].城市轨道交通研究,2001,3:49-53.
    [148]王峰,刘海东,丁勇,陈善亮,毛保华.列车节能运行的算法及实施技术研究[J].北方交通大学学报,2002,26(5):13-18.
    [149]刘文生,李文,赵恒连.交流传动机车起动控制特性研究[J].大连铁道学院学报,2004,25(2):37-41.
    [150]谢宏成,乌正达,谢维康.城市轨道车辆牵引仿真计算[J].电力机车与城轨车辆,2005,28(5):20-22.
    [151]魏伟.列车空气制动系统仿真的有效性[J].中国铁道科学,2006,27(5):104-109.
    [152]杨俭,宋瑞刚,尧辉明,方宇.30 kW交流电机城市轨道车辆模拟牵引系统[J].电力机车与城轨车辆,2008,31(6):1-4.
    [153]林祁.基于粒子群算法的铁路闭塞分区设计优化研究[D].西南交通大学硕士学位论文,2009.
    [154]周伟志.电气化铁路供电系统负荷过程仿真研究[D].西南交通大学硕士学位论文,2004.
    [155]钱立新.350km/h高速动车组制动技术的最新进展[J].电力机车与城轨车辆,2004,27(1):1-3.
    [156]黄先伟,张立伟.高速列车牵引电传动系统集成与优化设计研究[[J].变频器世界,2009(10):37-42
    [157]石红国.列车运行过程仿真及优化研究[D].西南交通大学博士学位论文,成都:2006.
    [158]吴海俊.模糊神经网络在列车制动控制中的建模及应用[D].北京交通大学硕士学位论文,2008.
    [159]吴亮.牵引计算在高速铁路闭塞分区设计中的应用研究[D].西南交通大学硕士学位论文,2008.
    [160]黄济荣.电力牵引交流传动与控制[M].北京:机械工业出版社,1998.
    [161]饶忠.列车制动M].北京:中国铁道出版社1998.
    [162]彭其渊,石红国,魏德勇.城市轨道交通列车牵引计算[M].成都:西南交通大学出版社,2005.
    [163]孙中央.列车牵引计算实用教程[M].第二版.北京:中国铁道出版社,2006.
    [164]Akagi H,Kanazawa Y,Nabae A.Instantaneous reactive power compensators comprising switching devices without energy storage components[J]. IEEE Transactions on Industrial Application,1984,20(3):625-630.
    [165]Furuhashi T,et al.A study on the theory of instantaneous reactive power[J]. IEEE Trans on IE,1990,37(1):86-90.
    [166]Peng Fangzheng,Lai Jihsheng.Generalized instantaneous reactive power theory for three-phase power systems[J].IEEE Transactions on Instrumentation and Measurement,1996,45(1):293-297.
    [167]Peng Fangzheng,Ott G W Jr,Adams D J.Harmonic and reactive power compensation based on the generalized instantaneous reactive power theory for three-phase four-wire systems[J].IEEE Transactions on Power Electronics,1998, 13(6):1174-1180.
    [168]陈文纯主编.电机瞬变过程[M].北京:机械工业出版社,1982.
    [169]王兆安,等.三相电路瞬时无功功率理论研究[J].电工技术学报,1992,(2):55-59.
    [170]戴先中,等.非正弦三相电路中瞬时无功量的普遍化定义[J].中国电机工程学报,1998,18(6):388-394.
    [171]熊健,康勇,张凯,陈坚.电压空间矢量调制与常规SPWM的比较研究[J].电力电子技术,1999,(1):25-28.
    [172]刘进军,王兆安.基于旋转空间矢量分析瞬时无功功率理论及其应用[J].电工技术学报,1999,(1):49-54.
    [173]熊元新,陈允平.正弦电路瞬时功率理论研究[J].电网技术,2001,25(6):18-21.
    [174]王茂海,刘会金.通用瞬时功率定义及广义谐波理论[J].中国电机工程学报,2001,21(9):68-73.
    [175]丁仁杰,刘健,张隽,赵玉伟.一种基于瞬时无功功率理论的SVC控制方法[J].电工技术学报,2006,21(5):47-51.
    [176]郑灼.永磁同步电机瞬时功率控制[J].中国电机工程学报,2007,27(15):38-42.
    [177]储剑波,胡育文,黄文新,李勇,鲁文其,王明金.永磁同步电机直接功率控制基本原理[J].电工技术学报,2009,24(10):21-26.
    [178]IEC60034-30(2008 FDIS) Efficiency classes of single-speed, three-phase, cage-induction motors.
    [179]IEC60034-2-1:2007 Standard methods for determining losses and efficiency from tests (excluding machines for traction vehicles).
    [180]Hans De Keulenaer.Energy Efficient Motor Driven Systems[J].Energy & Environment, July 29,2009:873-905.
    [181]Energy Using Product(EuP)Directive Preparatory Study Lot 11:Motors Final Stakeholder Meeting EC,Brussels,25 October 2007.
    [182]靳宝安编译.国外高效(节能)电机标准化综述[J].世界标准化与质量管理,2000,6:33-34.
    [183]Honsinger V B.Permanent magnet asynchronous operation[J].IEEE Trans.on MAG,1980,99(4):1503-1509.
    [184]Mliller T J E.Sychronization of line-start permanent magnet AC motor[J].IEEE Trans.on MAG,1984,103(7):1822-1828.
    [185]窦汝振,温旭辉.永磁同步电动机直接转矩控制的弱磁运行分析[J].中国电机工程学报,2005,25(12):117-121.
    [186]冷再兴,马志源.一种新的内置式永磁同步电机弱磁调速控制方法[J].微电机,2006,39(6):11-14.
    [187]刘春光,臧克茂,马晓军.电传动装甲车辆用永磁同步电机的弱磁控制算法[J].微特电机,2007(4):27-30.
    [188]冯江华,桂卫华,许俊峰.考虑参数变化的永磁同步电动机弱磁控制研究[J].微电机,2008,41(4):20-31.
    [189]喻寿益,曾国庆,高金生,等.37kW异步电机交流调速实验平台的研究[J].中南大学学报:自然科学版,2009,40(4):980-985.
    [190]P. Thelin and H-P Nee.Calculation of the Airgap Flux Density of PM Synchronous Motors with Buried Magnets Including Axial Leakage and Teeth Saturation[C].Proceedings of EMD'99,Canterbury,United Kingdom, September, 1999:339-345.
    [191]P. Thelin, J. Soulard, H.-P. Nee, and C. Sadarangani.Comparison between Different Ways to Calculate the Induced No-Load Voltage of PM Synchronous Motors using Finite Element Methods[C].Proc.4th IEEE International Conferenceon Power Electronics and Drive Systems,Systems, PEDS' O1,Bali, Indonesia,October 2001:468-474.
    [192]Xiao Changliang,Shi Tingna and Chen Yongxiao.Magnetic circuit calculation and finite element method analysis of permanent magnet synchronous motor with hybrid magnetic circuit structure[C].Proceedings of CICEM'95, Hangzhou, China August/September,1995:403-405.
    [193]周洁.用等效磁网络法与有限元法计算永磁电机参数的比较[J].西安交通大学学报,1998(4):23-26.
    [194]徐广人.高效高起动转矩永磁同步电动机设计中的关键技术问题研究[D].沈阳工业大学博士学位论文,1999.
    [195]赵强.永磁电机中永磁体尺寸优化设计[J].电机电器技术,2001(3):2-5.
    [196]胡敏强,黄学良.电机运行性能数值计算方法及其应用[M].南京:东南大学出版社,2003.
    [197]陶果,邱阿瑞,柴建云,等.永磁同步伺服电动机的磁场分析与参数计算[J].清华大学学报(自然科学版),2004,44(10):1317-1320.
    [198]赵朝会,朱德明,严仰光.切向结构永磁同步电机辅助磁极的优化[J].南京航空航天大学学报,2006,38(1):53-57.
    [199]赵清.中型高效永磁同步电动机设计关键技术研究[D].哈尔滨工业大学博士论文,2006.
    [200]张飞,唐任远,陈丽香,韩雪岩.永磁同步电动机参数研究[J].电工技术学报,2006,21(11):7-10.
    [201]黄明星.新型永磁电机的设计、分析与应用研究[D].浙江工业大学博士学位论文,2008.
    [202]G. Fuat Uler,Osama A. Mohammed,and Chang-Seop Koh.Utilizing Genetic Algorithms for Optimization Design of Electromagnetic Devices[J]. IEEE Trans. On Magnetics,VOL.30,NO.6,November 1994.
    [203]Sim Dong-Joon,JungHyun-Kyo,Song-Yop,Won Jong-SOO.Application of vector optimization employing modified genetic algorithm to permanent magnet motor design[J]. IEEE Trans. on Magnetics,VOL.33,Mar,1997:1888-1891.
    [204]Han Ki-Jin, Cho Han-Sam, Cho Dong-Hyeok, Jung Hyun-Kyo.Optimal core shape design for cogging torque reduction Of brushless DC motor using genetic algorithm[J].IEEE Trans. on Magnetics,VOL.36,Jul,2000:1927-1931.
    [205]孟大伟,周美兰.模拟退火算法在电机优化设计中的应用.电机与控制学报,2001,5(3).
    [206]夏永明,付子义,袁世鹰等.粒子群优化算法在直线感应电机优化设计中的应用.中小型电机,2002,29(6).
    [207]包广清,江建中.现代电机优化设计纵横谈[J].中小型电机,2004,31(4):1-6.
    [208]王步来,顾伟.稀土永磁同步电机优化设计分析[J].电工电能新技术,2006,25(2):56-58.
    [209]Feng Xinhua,Fan Jinshan.The Expert System for Designing 3 phase Medium-Induction Motors[C].Proceedings of China International Confrence on Electrical Machines,September 1991:18-20.
    [210]RahmanM.F.,Zhong L.,Lim K.W.A Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive Incorporating Field Weakening[J].IEEE Transactions on industry Applications,1998,34(6):1246-1253.
    [211]C.A.Martins,X.Roboam,T.A.Meynard and A.S.Carvalho.Switching Frequency Imposition and Ripple Reduction in DTC Drives by Using a Multilevel Converter[J].IEEE Transactions on Power Eleetronies,2002,17(2):286-297.
    [212]Rahman M.F.,Zhong L.,Haque Md.E.,Rahman M.A..A Direet Torque Controlled Interior Permanent Magnet Synchronous Motor Drive without a Speed Sensor[J].IEEE Transactions on Energy Conversion,2003,18(1):17-22.
    [213]Miloudi A.,Alradadi E.A,Draou.A New Control Strategy of Direct Torque Fuzzy Control of a PWM Inverter Fed Induction Motor Drive[J].IEEE International Symposium,2006(3):2535-2540.
    [214]Gang Feng.A Survey on Analysis and Design of Model-Based Fuzzy Control Systems[J].IEEE Transaction on Fuzzy Systems,2006,14(5):676-697.
    [215]李夙.异步电动机直接转矩控制[M].北京:机械工业出版社,1998.
    [216]薛毅.最优化原理与方法[M].北京:北京工业大学出版社,2001.
    [217]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002.
    [218]陈伯时等.电力拖动自动控制系统(第三版)[M].北京:机械工业出版社,2003.
    [219]ST Company. STM32F10xxx hard-ware development: getting started (Rev 3) [S/OL]. http://www.st.com/stonline/products/literature/an/13675.pd.2009,06.
    [220]ST Company. STM32F10x Refer-ence Manual (Rev 10) [S/OL]. http://www. st.com/stonline/products/literature/rm/13902.pdf.2009,12.
    [221]ST Company. STM32F103 Data-sheet (Rev 11) [S/OL]. http://www.st.com/ stonline/products/literature/rm/13587.pdf.2009,07.
    [222]江思敏TMS320LF24OXDSP硬件开发教程[M].北京:机械工业出版社,2003.
    [223]刘和平,王维俊等TMS320LF240XDSpe语言开发应用[M].北京:北京航空航天大学出版社,2003.
    [224]徐爱钧IAR EWARM嵌入式系统编程与实践[M].北京:北京航空航天大学出版社,2006.
    [225]王永虹,徐炜,郝立平.STM32系列ARM Cortex-M3微控制器原理与实践[M].北京:北京航空航天大学出版社,2008.
    [226]Rahman M.A,et al.Run-up Response of Poly-phase Permanent Magnet Motors[J]. Electric Machines and Power systems,1984,(9):359-367.
    [227]Zhou P.Field circuit analysis of permanent magnet synchronous motors.IEEE Trans on Mag,1994,30(4):1350-1359
    [228]Rahman M A,Osheiba A M.Synchronization process of line-start permanent magnet synchronous motors[J].Electric Machines and Power Systems,1997, 25(2):577-592.
    [229]Chalmers B J,Akmese R,Musaba L.Design and field weakening performance of permanent-magnet/reluctance motor with two-part rotor[J],IEE Proceedings, 1998,145(2):133-139.
    [230]Sozer Y,Torrey D A.Adaptive flux weakening control of permanent magnet synchronous motors[C].The 1998 IEEE Industry Applications Conference,St. Louis,MO,USA,1998,vol.1:475-482.
    [231]Rosana Esteller,et al.High starting of large induction motors at constant current with minimized starting torque pulsation[A].Conference Record of the 2000 IEEE[C].Rome:1593-1604.
    [232]Chen Zhiqian,Tomita M,Doki S,et al.An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors[J].IEEE Transactions on Industrial Electronics,2003,50(2):288-295.
    [233]Simanek J,Novak J,Cerny O,et al.FOC and flux weakening for traction drive with permanent magnet synchronous motor[C],IEEE International Symposium on Industrial Electronics (ISIE),Cambridge,2008;753-758.
    [234]Xu Longya, Zhang Yuan, Guven M K. A new method to optimize q-axis voltage for deep flux weakening control of IPM machines based on single current regulator[C]. International Conference on Electrical Machines and System (ICEMS), Wuhan, China,2008:2750-2754.
    [235]李洁.高性能变频调速系统若干关键技术问题研究[D].西安:西安理工大学博士论文,2006.
    [236]崔恒.基于模糊控制的异步电动机运行效率优化研究[D].西南理工大学硕士学位论文,2005.
    [237]符荣,窦满峰.基于有限元的稀土永磁同步电动机起动过程仿真研究[J].微特电机,2007,(1):5-6,45.
    [238]张鹏.永磁同步电动机弱磁调速控制方法的研究[D].天津大学硕士学位论文,2007.
    [239]赵猛,邹继斌,胡建辉等.异步起动永磁同步电动机起动特性研究[J].电工技术学报,2007,22(7):145-149.
    [240]朱熀秋,成秋良.无起动绕组永磁同步电机初始定位及起动策略[J].中国电机工程学报,2008,28(9):61-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700