鄂霍次克海天然气水合物区与东海内陆架泥质区沉积物古菌多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为研究鄂霍次克海天然气水合物区沉积物古菌、甲烷厌氧氧化古菌和硫酸盐还原细菌的多样性分布,我们以PCR技术为基础构建mcrA、dsrAB和古菌16S rRNA基因文库。对所获得的序列进行系统进化和统计学分析发现:鄂霍次克海古菌类群主要为Marine Benthic Group D (MBG-D)、Marine Benthic Group B (MBG-B)、Marine Crenarchaeotic Group I(MG- I),另外少量古菌16S rRNA基因序列为Anaerobic Methanotrophs 2c(ANME-2c),主要分布在LV39-25H岩心的表层沉积物中。LV39-40H岩心表层的古菌群落结构与其他六个层位古菌群落结构相比有着显著的差异。mcrA基因序列主要为催化甲烷厌氧氧化的古菌ANME-2(c和d簇),在所研究的各个层位的沉积物中均广泛分布。少量的ANME-1(a簇)发现于LV39-40H岩心表层以下的沉积物中。产甲烷古菌数目不多,集中分布在LV39-25H岩心200cm和LV39-40H岩心180cm的沉积物中。dsrAB基因文库分析表明硫酸盐还原细菌种类丰富,表层沉积物中硫酸盐还原细菌多样性最高。在两个岩心所有层位的沉积物中都有一定数量的克隆属于DSS簇,它们可能与ANME共生催化甲烷的厌氧氧化作用。总之,所有数据表明在鄂霍次克海天然气水合物区存在着较活跃的甲烷厌氧氧化作用,揭示了参与甲烷厌氧氧化作用的微生物群落结构和多样性。
     为研究东海内陆架闽浙沿岸泥质区不同深度沉积物中古菌群落垂向分布特征,通过古菌16S rRNA基因文库共得到473个有效克隆50个OTUs (Operational Taxonomic Units)。16S rRNA基因序列系统进化和统计分析发现古菌分别归属于泉古生菌(Crenarchaeota)和广古生菌(Euryarchaeota),其中以Miscellaneous Crenarchaeotic Group(MCG)为主,仅含少量的MBG-B、South African Gold Mine Euryarchaeotic Group(SAGMEG)、ANME-3、MG- I和MBG-D。该泥质区沉积物可能存在由ANME-3催化的甲烷厌氧氧化作用,同源序列分析表明其古菌群落分布与周边环境有较大联系。UniFrac与沉积物环境因子分析表明该泥质区古菌群落垂向分布与沉积物有机质含量和粒度变化密切相关。
     通过对比发现,鄂霍次克海天然气水合物区甲烷厌氧氧化古菌主要为ANME-2和少量的ANME-1,而东海内陆架泥质区甲烷厌氧氧化古菌仅为极少量的ANME-3;鄂霍次克海天然气水合物区广古生菌和泉古生菌数量各占一半,主要为MBG-D、MBG-B、MG-I。东海内陆架泥质区沉积物古菌序列主要为泉古生菌(MCG)。海域类型的不同以及有机碳含量等环境因子的差异可能是这两个海域古菌群落结构差异的主要原因
To identify the distribution and diversity of archaea, methanotrophs and sulfate-reducing bacteria (SRB) in the gas hydrate bearing sediments of the Okhotsk Sea, we investigated the diversity of archaeal 16S rRNA, mcrA, dsrAB genes sequences by using a PCR-based cloning approach. Phylogenetic and statistic analysis of clone sequences showed that: The majority of archaeal phylotypes were Marine Benthic Group D (MBG-D), Marine Benthic Group B (MBG-B) and Marine Crenarchaeotic Group I (MG I). Additional few sequences fell into Anaerobic Methanotrophs 2c (ANME-2c), which was mainly detected from the surface layer of core LV39-25H. The archaeal communities of the surface layer of core LV39-40H significantly distinct from those of other six depth layers. mcrA gene clone libraries showed that the ANME population consisted predominantly of ANME-2 methane oxidizers (group c and d) at each studied layers; few ANME-1 community (group a) were found coexist with ANME-2 below the surface sediments of core LV39-40H. Few methanogens were mainly retrieved from 200cm layer of core LV39-25H and 180cm layer of core LV39-40H. Clones libraries of dsrAB gene displayed the diversified SRB community composition, especially in the surface layers of the two cores. Quite a number of dsrAB clones, recovered from all layers of the two cores, were affiliated with the DSS group (Desulfosarcina and Desulfococcus), which may form consortia with ANME archaea. Generally, the data analysed here show active anaerobic oxidation of methane in the Okhotsk Sea gas hydrate, and reveale the distribution and diversity of the involved microbe.
     Archaeal 16S rRNA gene clone libraries were constructed from different depth layers sediments to elucidate the distribution and diversity of archaea in the Zhejiang and Fujian coastal mud wedge of the inner continental shelf of the East China Sea. We obtained 473 useable clones and 50 different OTUs (Operational Taxonomic Units). Phylogenetic and statistic analysis of clone libraries showed that: archaeal 16S rRNA gene sequences were within phylums of Crenarchaeota and Euryarchaeota, respectively. The majority of archaeal phylotypes were Miscellaneous Crenarchaeotic Group (MCG), Additional few sequences fell into MBG-B, South African Gold Mine Euryarchaeotic Group (SAGMEG), ANME-3, MG-I and MBG-D. There might be anaerobic oxidation of methane carried out by group ANME-3 in this mud wedge. Homologous sequences analyses showed that the distribution of archaea in this mud wedge was related to the surrounding environment. UniFrac analysis and sediment environmental parameters indicated that the vertical distribution of archaea was intimately coincided with the variation of sediment total organic carbon content and grain size.
     Comparative analysis demonstrated that: Anaerobic Methanotrophs located at the gas hydrate bearing Oktostk Sea were mainly ANME-2 and few ANME-1, while the counterparts located at mud wedge sediments in the East China Sea were just few ANME-3. In the gas hydrate bearing Oktostk Sea, Crenarchaeota and Euryarchaeota each accouted for half of the total archaeal sequences. The majority of archaeal phylotypes were Marine Benthic Group D (MBG-D), Marine Benthic Group B (MBG-B) and Marine Crenarchaeotic Group I (MG-I). Archaeal sequence obtained from mud wedge sediments in the East China Sea mainly belonged to the phylum of Crenarchaeota (MCG). The type of sea areas and various environment factors, such as total organic carbon content, may be the explanation for the difference of archaral community.
引文
Alain K, Holler T, Musat F, et al. Microbiological investigation of methane and hydrocarbon discharging mud volcanoes in the Carpathian Mountains, Romania. Environ. Microbiol. 2006, 8: 574-590.
    Altschul S, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3 389-3 402.
    Bahr M, Crump B C, Klepac-Ceraj V, et al. Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ. Microbiol. 2005, 7:1175-1185.
    Bale S J, Goodman K, Rochelle P A, et al. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Syst. Bacteriol. 1997, 47: 515–521
    Barnes S P, Bradbrook S D, Cragg B A, et al. Isolation of sulfate-reducing bacteria from deep sediment layers of the Pacific Ocean. Geomicrobiol. J. 1998, 15: 67-83.
    Barns S M, Delwiche C F, Palmer J D, et al. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequenees. Proc. Natl. Acad. Sci. USA. 1996, 93: 9188-919
    Biddle J F, Lipp J S, Lever M A, et al. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl. Acad. Sci. USA. 2006, 103:3846-3851.
    Bidle K A, Kastner M, Bartlett D H. A phylogenetic analysis of microbial communities associated with methane hydrate Containing marine fluids and sediments in the Cascadia margin (ODP site 892B). FEMS Microbiol. Lett. 1999, 177 (1): 101-108
    Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc. Natl. Acad. Sci. USA. 2004, 101: 11 111–11 116.
    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 2000, 407: 623 -626.
    Bogdanov Y A. Submarine hydrothermal vents as a habitat for marine organisms/ Gebruk A V. Biology Hydrothermal Systems. Moscow: KMK Press , 2002: 72 -112 (in Russian)
    Brandao P F, Torimura M, Kurane R, et al. Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Appl Microbiol Biotechnol. 2002, 58 (1): 77-83
    Buckley D H, Graber J R, Schmidt T M. Phylogenetic Analysis of Nonthermophilic Members of the Kingdom Crenarchaeota and Their Diversity and Abundance in Soils. Appl. Environ. Microbiol. 1998, 64: 4 333-4 339
    Chappe B, Albereeht P, Michaelis W. Polar lipids of Archaebacteria in the sediments and petroleums. Science. 1982, 217: 65-66
    Coolen M J L, Cypionka H, Sass A M, et al. Ongoing modification of Mediterranean sapropels mediated by prokaryotes. Science. 2002, 296: 2 407-2 410.
    Dang H Y, Lovell C R. Numerical dominance and phylotype diversity of marine Rhodobacter species during early colonization of submerged surfaces in coastal marine waters as determined by 16S ribosomal DNA sequence analysis and fluorescence in situ hybridization. Appl. Environ. Microbiol. 2002, 68: 496-504
    De Medici D, Croci L, Delibato E, et al. Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype enteritidis in poultry. Appl. Environ. Microbiol. 2003, 69: 3456~3461
    Delong E F, Wu K Y, Prezelin B B, et al. High abundance of Archaea in Antarctic marine picoplankton. Nature. 1994, 371: 695-697.
    Delong E F. Archaea in coastal marine environments. Proc. Natl. Acad. Sci USA. 1992, 89(12): 5 685-5 689.
    DeMaster D J, Mckee B A. Rates of sediment accumulation and particle reworkingbased on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research. 1985, 4: 143-158
    Deming J W, Baross J A. Deep-sea smokers: Windows to a subsurface biosphere? Geochimica et Cosmochimica Acta. 1993, 57: 3 219-3 230.
    Diaz R J, Trefry J H. Comparison of sediment profile image data with profiles of oxygen and Eh from sediment cores. Journal of Marine Systems. 200, 62: 164-172
    Felsenstein J. PHYLIP-phylogeny inference package (version 3.2). Cladistics. 1989, 5: 164-166
    Fuhrman J A, Ouverney C C. Marine microbial diversity studied via 16S RNA sequences: cloning results from coastal waters and counting of native archaea with fluorescent single cell probes. Aquatic Ecology. 1998, 32: 3-15.
    Girguis P R, Cozen A, DeLong E F. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous flow Bioreactor. Appl. Environ. Microbiol. 2005, 71: 3 725-3 733.
    Glud R, Ramsing N B, Gundersen J K, et al. Planar optrodes: A new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities. Mar. Ecol. Prog. Ser. 1996, 140: 217-226
    Goffredi S K, Wilpiszeski R, Lee R, et al. Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California. ISME Journal. 2008, 2(2): 204-220
    Hales B A, Edwards C, Ritchie D A, et al. Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification. Appl. Environ. Microbiol. 1996, 62: 668–675.
    Hallam S J, Girguis P R, Preston C M, et al. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl. Environ. Microbiol. 2003, 69:5483–5491
    Hansen T A. Carbon metabolism of sulfate-reducing bacteria. In The Sulfate-Reducing Bacteria. Odum J M and Singleton R (eds). New York: Springer Verlag. 1993, 21-40
    Hensen C H, Zabel M, Pfeier K, et al. Control of sulfate Pore-water Profiles by sedimentary events and the significance of anaerobic oxidation of methane for burial of sulfur in marine sediments. Geochimica et Cosmochimica Acta. 2003, 67(14): 2 631-2 647.
    Hill T C A, Walsh K A, Harris J A, et al. Using ecological diversity measures with bacterial communities. FEMS Microbiol. Ecol. 2003, 43: 1-11
    Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments. Nature. 1999, 398: 802-805.
    Hinrichs K-U, Hayes J M, Sylva S P, et al. Methane consuming archaebacteria in marine sediments. Nature. 1999, 398: 802-805
    Hoefs M J L, Shouten S, De Leeuw J W, et al. Ether lipids of planktonic archaea in the marine water column. Appl. Environ. Microbiol. 1997, 63: 3 090–3 095
    Huh C A , Su C C. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239, 240Pu. Marine Geology. 1999, 160: 183-196.
    Inagaki F, Nunoura T, Nakagawa S, et a1. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific ocean margin. Proc. Natl. Acad. Sci. USA. 2006, 103(8): 2 815-2 820.
    Inagaki F, Sakihama Y, Takai K, et al. Profile of microbial community structure and presence of endolithic microorganisms inside a deep-sea rock. Geomicrobiol. J. 2002, 19: 535–552.
    Inagaki F, Suzuki M, Takai K, et al. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl. Environ. Microbiol. 2003, 69: 7 224–7 235.
    Inagaki F, Takai K, Komatsu T, et al. Archaeology of Archaea: geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment. Extremophiles. 2001, 5: 385–392.
    Inagaki F, Tsunogai U, Suzuki M, et al. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl. Environ. Microbiol. 2004, 70: 7 445–7 455.
    Itoh T, Suzuki K, Sanchez P C, et a1. Caldisphaera lagunensis gen. nov., sp. Nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. Int J Syst Evol Microbiol, 2003, 53: 1 149-1 154
    Jorgensen B B, BottcherM E, Lusehen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediment. Geochimica et cosmochimica Acta. 2004, 68(9): 2 095-2 118.
    Kaneko R, Hayashi T, Tanahashi M, et al. Phylogenetic diversity and distribution of dissimilatory sulfite reductase genes from deep-sea sediments cores. Marine Biotechnology. 2007, 9: 429-436
    Karner M B, DeLong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001, 409: 507-510.
    Kashefi K, Lovley D R. Extending the upper temperature limit for life. Science. 2003, 301: 934
    Kato C, Inoue A, Horikoshi K. Isolating and characterizing deep-sea marine microorganisms. Trends in Biotechnology. 1996, 14(1): 6-12
    Kato C, Li L, Tamaoka J, et al. Molecular analyses of the sediment of the 11,000 m deep Mariana Trench. Extremophiles. 1997, 1 (3): 117-123
    Klepac-Ceraj, Bahr M, Crump B C, et al. High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Environ. Microbiol. 2004, 6: 686–698
    Knittel K, Boetius A, Lemke A, et al. Activity, distribution and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol. J. 2003, 20: 269-294
    Knittel K, Losekann T, Boetius A, et al. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 2005, 71: 467–479.
    Koga Y, Morii H, Akagawa-Matsushita M, et a1. Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens, further analysis of lipid component parts. Biosci Biotechnol Biochem. 1998, 62: 230-236
    Konneke M, Bern-hard A E, dela Torre J R, et a1. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005, 437: 543-546
    Konneke M, Bernhard A E, dela Torre J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005, 437: 543-546
    Krüger M, Meyerdierks A, Gl?ckner F O, et al. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature. 2003, 426: 878–881
    Kuypers M M M, Blokker P, Erbacher J, et a1. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event. Science. 2001, 293: 92-94.
    Kvenvolden K A. Gas hydrates-geological perspectives and global change. Geophys Rev. 1993, 31: 173–187
    Kvenvolden K A. Potential effects of gas hydrate on human welfare. Proc. Natl. Acad. Sci USA. 1999, 96(7): 3 420-3 426.
    Kvenvolden K. Methane hydrate: A major reservoir of carbon in the shallow geosphere. Chem. Geol. 1988, 71: 41-51
    Lanoil B D, Sassen R, La Duc M T, et al. Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates. Appl. Environ. Microbiol. 2001, 67: 5 143-5 153.
    Leloup J, Loy A, Knab N J, et al. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ. Microbiol. 2007, 9 (1): 131-142
    Liu J P, Xu K H, LiAC, et al. Flux fate of Yangtze River sediment delivered to the East China Sea. Geomorphology. 2007, 85: 208-224
    Lloyd K G, Lapham L, Teske A. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl. Environ. Microbiol. 2006, 72: 7 218-7 230.
    L?sekann T, Knittel K, Nadalig T, et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl. Environ. Microbiol. 2007, 73: 3 348-3 362.
    Lozupone C, Hamady M, Knight R. UniFrac-An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics. 2006, 7: 371-385
    Luan X W, Jin Y K, Anatoly O, et al. Characteristics of shallow gas hydrate inOkhotsk Sea. Sci. China Ser. D-Earth Sci. 2008, 51: 415-421
    Luton P E, Wayne J M, Sharp R J, et al. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology. 2002, 148: 3 521–3 530.
    Macalady J L, Vestling M M, Baumler D, et a1. Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid. Extremophiles. 2004, 8: 411-419.
    Marchesi J R, Weightman A J, Cragg B A, et al. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol. Ecol. 2001, 34:221-228.
    Martens C S, Albert D B, Alperin M J. Biogeochemical process controlling methane in gassy coastal sediment-part II. A model coupling organic matter flux to gas production, oxidation and trabsport. Continental shelf research. 1998,18: 1 741-1 770.
    Martens C S, Blair N E, Green C D. Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment. Science. 1986, 233: 1 300-1 303.
    Massana R, Murray A E, Preston C M, et al. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl. Environ. Microbiol. 1997, 63(1): 50-56.
    Michaelis W, Seiter T R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science. 2002, 297: 1 013-1 015
    Mills H J, Hodges C, Wilson K, et a1. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the gulf of Mexico. FEMS Microbiol. Ecol. 2003, 46: 39-52.
    Mills H J, Hodges C, Wilson K, et al. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol. Ecol. 2003, 46:39-52.
    Mironov A N. New taxa of stalked crinoids from the suborder Bourgueticrinina( Echinodermata, Crinoidea). Zoological Zhurnal. 2000, 79: 712-728.
    Moore T S, Murray R W, Kurtz A C, et al. Anaerobic methane oxidation and the formation of dolomite. Earth and Plaoetary Scienee Letters. 2004, 229(1-2): 141-154.
    Mullins T D, Britschgi T B, Krest R L, et al. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol. Oceanogr. 1995, 40: 148-158
    Munson M A , Nedwell D B, Embley T M. Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl. Environ. Microbiol. 1997, 63:4729-4733
    Murray A E, Preston C M, Massana R, et al. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl. Environ. Microbiol. 1998, 64(7): 2 585-2 595.
    Nakagawa S, Takai K, Horikoshi K, et a1. Aeropyrum camini sp. Nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol. 2004, 54: 329-335.
    Nauhaus K, Treude T, Boetius A, et al. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ. Microbiol. 2005, 7: 98–106
    Newberry C J, Webster G, Cragg B A et al. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 1901. Environ. Microbiol. 2004, 6 (3): 274-287
    Newman D K, Banfield J F. Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science. 2002, 296 (5570): 1 071-1 077
    Niemann H, Elvert M, Hovland M, et al. Methane emission and consumption at a North Sea gas seep (Tommeliten area). Biogeosciences. 2005, 2: 335-351.
    Nunoura T, Oida H, Toki T, et al. Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough. FEMS Microbiol. Ecol. 2006, 57: 149-157
    Odom J M, and Peck H D. Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. Annu. Rev. Microbiol.1984, 38: 551–592
    Orcutt B N, Boetius A, Elvert M. Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochimica et Cosmochimica Acta. 2005, 69: 4 267-4 281.
    Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphism of human DNA by gel electrophoresis as single strand conformation polymorphisms. Proc. Nata. Acad. Sci. USA. 1989, 86: 2766-2770
    Orphan V J, Hinrichs K U, Ussler III W, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl. Environ. Microbiol. 2001a, 67:1 922-1 934.
    Orphan V J, House C H, Hinrichs K U, et al. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl. Acad. Sci. USA. 2002, 99: 7 663–7 668
    Orphan V J, House C H, Hinrichs K-U, et a1. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science. 2001b, 293: 484-487
    Ouverney C C and Fuhrman J A. Marine planktonic archaea take up amino acids. Appl. Environ. Microbiol. 2000, 66: 4 829-4 833.
    Pancost R D, Damste J S S. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol. 2003, 195: 29-58
    Pancost R D, Zhang C, Tavacoli J, et al. Lipid biomarkers preserved in hydrate-associated authigenic carbonate rocks of the Gulf of Mexico. Palaeogeography, Palaeo climatology, Palaeoecology. 2005, 227: 48-66
    Parkes R J, Cragg B A,Wellsbury P. Recent studies on bacterial populations and processes in subseafloor sediments. Hydrogeological Journal. 2000, 8(1): 11-28
    Parkes R J, Webster G, Cragg B A, et al. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature, 2005, 436: 390–394.
    Parkes R, Cragg B, Bale S, et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature. 1994, 371: 410–413.
    Paull C K, Hecker B, Commeau C, et al. Biological communities at Floridaescarpment resemble hydrothermal vent communities. Science. 1984, 226: 965 -967.
    Pearson A, Huang Z, Ingalls A E, et a1. Non-marine crenarchaeol in Nevada hot springs. Appl. Environ. Microbiol. 2004, 70: 5 229-5 237.
    Pearson A, McNichol A P, Benitez-Nelson B C, et al. Origins of lipid biomarkers in Santa Monica Basin surface sediment: a case study using compound-specific δ14C analysis. Geochim. Cosmochim. Acta. 2001, 65: 3 123-3 137.
    Perevalova A A, Svetlichny V A, Kublanov I V, et a1. Desulfurococcus fermentans sp. Nov., a novelhyperthermophilic archaeon from a Kam chatka hot spring, and emended description of the genus Desulfuroeoeeus. Int J Syst Evol Microbiol. 2005, 55: 995-999
    Perevalova A A, Svetlichny V A, Kublanov I V, et al. Desulfurococcus fermentans sp. Nov., a novel hyperthermophilic archaeon from a Kamchatka hot Spring, and emended description of the genus Desulfuroeoeeus. Int J Syst Evol Microbiol. 2005, 55: 995-999.
    Powers L A, Werne J P, Johnson T C, et a1. Crenarehaeotal membrane lipids in lake sediments: A new paleotemperature proxy for continental paleoclimate reconstruction. Geology. 2004, 32: 613-616
    Preston C M, Wu K Y, Molinski T F, et al. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl. Acad. Sci US., 1996, 93: 6 241-6 246
    Ravenschlag K, Sahm K, Pernthaler J, et al. High bacterial diversity in permanently cold marine sediments. Appl. Environ. Microbiol. 1999, 65: 3 982–3 989
    Reeburgh W S, Alperin M J. studies on anaerobic methane oxidation. SCOPE/UNEP. 1988, 66:367-375.
    Reed D W, Fujita Y, Delwiche M E, et al. Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl. Environ. Microbiol. 2002, 68 (8): 3 759-3 770
    Santegoeds C M, Damgaard L R, Hesselink G, et al. Distribution of sulfate reducing and methanogenic bacteria in anaerobic aggregates determined by microsensorand molecular analysis. Appl. Environ. Microbiol. 1999, 65: 4618-4629
    Schink B, Thiemann V, Laue H, et al. Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphate to phosphate. Archives of Microbiology. 2002, 177: 381-391
    Schloss P D and Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 2005, 71: 1 501-1 506.
    Shouten S, Hopmans E C, Pancost R D, et al. Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proc. Natl. Acad. Sci. USA. 2000, 97: 14 421-14 426
    Smith D C, Spivack A J, Fisk M R, et al. Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol. J. 2000, 17: 207-219
    S?rensen K B, Lauer A, and Teske A. Archaeal phylotypes in a metal-rich, low-activity deep subsurface sediment of the Peru Basin, ODP Leg 201, Site 1231. Geobiology. 2004, 2: 151-161.
    S?rensen K B, Teske A. Stratified communities of active archaea in deep marine subsurface sediments. Appl. Environ. Microbiol. 2006, 72(7):4 596–4 603.
    Springer E, Sachs M S, Woese C R, et al. Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrA) as a phylogenetic tool for the family Methanosarcinaceae. Int. J. Syst. Bacteriol. 1995, 45:554–559.
    Suess E, whiticar M J. Methane-derived CO2 in pore fluids expelled from the Oregon subduction zone. Palaeogeogr Palaeoclimatol Palaeoecol, 1989, 71: 119-136
    Takai K, Horikoshi K. Diversity of archaea in deep-sea hydrothermal vent environments. Genetics. 1999, 152: 1 285-1 297
    Takai K, Komatsu T, Inagaki F, et al. Distribution of archaea in a black smoker chimney structure. Appl. Environ. Microbiol. 2001b, 67:3 618–3 629.
    Takai K, Moser D P, DeFlaun M, et al. Archaeal diversity in waters from deep South African Gold Mine. Appl. Environ. Microbiol. 2001a, 67, 5 750-5 760.
    Teske A, Hinrichs K U, Edgcomb V, et al. Microbial diversity of hydrothermalsediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 2002, 68: 1 994–2 007
    Thompson J R, Gibson T J, Plewniak F, et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 24: 4876-4882
    Tung H C, Bramall N E, Price P B. Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc. Natl. Acad. Sci USA. 2005, 102: 18 292-18 296
    Uda I, Sugai A, Itoh Y H, et a1. Variation in molecular species of polar lipids from therrnoplasma acidophilum depends on growth temperature. Lipids. 2001, 36: 103-105
    Valentine D L, Reeburgh W S. New perspectives on anaerobic methane oxidation. Environ. Microbiol. 2000, 2: 477-484.
    Vetriani C, Jannasch H W, MacGregor B J, et al. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl. Environ. Microbiol. 1999, 65(10): 4 375-4 384.
    Wagner M J, Roger A J, Flax J L, et al. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol. 1998, 180: 2 975-2 982.
    Webster G, Newberry C J, Fry J C, et al. Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: A cautionary tale. Journal of Microbiological Methods. 2003, 55: 155-164
    Whiticar M J. Carbon and hydrogen isotope systematics of bacteria1 formation and oxidation of methane. Chem Geol, 1999, 161: 291-314.
    Whiticar M J, Faber E, Schoell M. Biogenic methane formation in marine and fresh-water environments: CO2 reduction vs acetate fermentation-Isotopic evidence. Geochim Cosmochim Acta, 1986, 50: 693-709
    Widdel F, Hansen T A, In: Balows A, et al. The Prokaryotes. The dissimilatory sulfate and sulfur reducing bacteria, second ed. Springer, NewYork, 1992, 1: 583-624
    Wintzingerode F V, G?bel U B, Stackebrandt E. Determination of microbial diversityin environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev.. 1997, 2l: 213-229.
    Wuchter C, Abbas B, Coolen M J L, et al. Archaeal nitrification in the ocean. Proc. Natl. Acad. Sci USA. 2006, 103: 12 317-12 322.
    Wuchter C, Schouten S, Boschker H T S, et al. Bicarbonate uptake by marine crenarchaeota. FEMS Microbiol. Lett. 2003, 219: 203-207.
    Zverlov V, Klein M, Lin L H, et al. Lateral gene transfer of dissimilatory (bi) sulfite reductase revisited. J. Bacteriol. 2005, 187: 2 203–2 208
    陈骏,姚素平.地质微生物学及其发展方向.高校地质学报. 2005,11(2):154-166.
    陈秀兰,张玉忠,高培基深海微生物研究进展.海洋科学,2004, 28(1): 61-66.
    陈忠,杨华平,黄奇瑜,等.海底甲烷冷泉特征与冷泉生态系统的群落结构.热带海洋学报. 2007,26(6):73-82
    党宏月,李铁钢,曾志刚,等.深海极端环境深部生物圈微生物学研究综述.海洋科学集刊,2006,47:41-60.
    党宏月,宋林生,李铁刚,秦蕴珊.海底深部生物圈微生物的研究进展.地球科学进展,2005,20(12):1306-1313
    方金瑞,黄维真.深海微生物的研究进展.海洋通报,1995,14(2):65-69
    郭志刚,杨作升,范得江,等.长江口泥质区的季节性沉积效应.地理学报. 2003, 58(4):591-597
    郭志刚,杨作升,曲艳慧,等.东海陆架泥质区沉积地球化学比较研究.沉积学报. 2000,18(2):284-289
    金文标,姚建军,陈孟晋,等.天然气微生物勘探指示菌的筛选.天然气工业. 2002,22(5):20-22
    金翔龙.东海海洋地质.北京:海洋出版社. 1992,196-215.
    栾锡武,鲁银涛,赵克斌,等.东海陆坡及临近槽底天然气水合物成藏条件分析及前景.现代地质. 2008,22(3):342-345
    栾锡武,赵克斌,孙冬胜,等.鄂霍次克海天然气水合物成藏条件分析.海洋地质与第四季地质. 2006,26(6):91-100.
    潘晓驹,焦念志.海洋古菌的研究进展.海洋科学,2001,25(2):20-23.
    秦蕴珊,郑铁民.东海大陆架沉积物分布特征的初步探讨.见:中国科学院海洋研究所海洋地质研究室编.黄东海地质.北京:科学出版社,1982. 31-51
    萨姆布鲁克,D W拉塞尔.分子克隆实验指南.北京:科学出版社,2002
    王鹏.深海沉积物微生物多样性及其与环境相互关系的研究:(博士学位论文).2005,青岛:中国海洋大学.
    徐美香,王风平,肖湘.深海沉积物样品中古菌的16S rDNA分析.自然科学进展,2003,13(6):598-603
    臧红梅,樊景凤,王斌,周一兵.海洋微生物多样性的研究进展.海洋环境科学,2006,35(3):96-100
    赵昌会,叶德赞,魏文铃.深海微生物的研究进展.微生物学通报,2006,33(3):142-146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700