西太平洋深海沉积物古菌多样性垂直分布特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海生物圈有着不同于陆地和浅海的典型特点,例如高压、低温、永久黑暗及寡营养,并且深海微生物具有特殊的代谢途径及庞大的生物量,这使得深海成为一个巨大的有待开发利用的生物资源宝库。
     本文研究的深海沉积物样品来自IMAGESⅪⅤ航次采集MD06-3057站位的沉积物柱表层样品。该站位位于菲律宾中央的锡布延海(13°00.15′N,122°22.22′E),水深1666米。该岩芯全长9.6m,每0.5m作为一个研究尺度。
     本文以提取并纯化的西太平洋深海沉积物DNA为模板,利用古菌PCR特异性引物扩增出样品中古菌的16S rDNA片段,构建其克隆文库,建立阳性克隆子的RFLP (Restriction Fragment Length Polymor-phism)酶切图谱。根据酶切图谱对所获得的119个克隆子进行测序,并与数据库中的序列进行比对,从而进行古菌的多样性和系统发育分析。结果表明,沉积物中扩增的16S rDNA古菌序列分别来自泉古生菌(Crenarchaeota)和广古生菌(Euryarchaeota),以Marine Benthic Group B (11.8%)、Marine Benthic Group D (13.6%)、Marine Crenarchaeotic Group (68.69%)为主。少量序列为South African Gold Mine Euryarchaeotic Group (1.07%)、Deep-Sea Hydrothermal Vent Euryarchaeotic Group (1.61%)、UCIIB (125%)、VALIII (1.79%)、Marine Benthic Group E (0.18%)。
     以上结果表明,西太平洋深海沉积物中有丰富多样的古菌群落。在小尺度上古菌群落垂直分布明显,其结果也可从侧面反映深海沉积物近表层处的环境条件在小尺度上垂直变化显著。
Due to the special environment characteristics of the deep-sea such as cold, high pressure, dark and poor organic carbon, the biosphere in the deep-sea environments was markedly different from the continent and the shallow sea. In addition, because of the rich abundance and special metabolism pathways of microorganisms inhabiting in the deep-sea environments, the deep-sea has been considered as an important reservoir of biological resources for exploration.
     The sediment samples used in this study were collected from the MD06-3057 site in the West Pacific Ocean (12°36'39"N,104°19'28"W).The stations located in the central Philippines, sibuyan sea, depth of 1666 meters. The core was 9.6 meters long, each 0.5m as a research scale.
     Diversity of archaeal was studied in deep-sea sediments from the Western Pacific by PCR-RFLP and sequence analysis of 16S rDNA and comparing with the published sequences in GenBank data-base. Archaeal 16S rDNA sequences were within phylums of Crenarchaeota and Euryarchaeota, respectively. The majority of archaeal phylotypes were Marine Benthic Group B (MBGB), Marine Benthic Group D (MBGD) and Marine Crenarchaeotic Group (MCG).Additional sequences grouped with the South African Gold Mine Euryarchaeotic Group (SAGMEG)、Deep-Sea Hydrothermal Vent Euryarchaeotic Group (DHVEG)、UCIIB、VALIII and Marine Benthic Group E (MBGE). These results indicate that archaea are abundant and diversified in surface environment of subseafloor sediments.
引文
1 Alain K, Holler T, Musat F, et al. Microbiological investigation of methane and hydrocarbon discharging mud volcanoes in the Carpathian Mountains [J], Romania. Environ. Microbiol.2006,8:574-590.
    2 Altschul S, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997,25:3389-3402.
    3 Bahr M, Crump B C, Klepac-Ceraj V, et al. Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ. Microbiol.2005,7:1175-1185.
    4 Bale S J, Goodman K, Rochelle PA, et al. Desulfovibrio profundus sp. nov. a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Syst. Bacteriol.1997,47:515 521
    5 Barnes S P, Bradbrook S D, Cragg B A, et al. Isolation of sulfate-reducing bacteria from deep sediment layers of the Pacific Ocean. Geomicrobiol. J.1998,15:67-83.
    6 Barns S M, Delwiche C F, Palmer J D, et al. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequenees. Proc. Natl. Acad. Sci. USA.1996,93:9188-919
    7 Biddle J F, Lipp J S, Lever M A, et al. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl. Acad. Sci. USA. 2006,103:3846-3851.
    8 Bidle K A, Kastner M, Bartlett D H. A phylogenetic analysis of microbial communities associated with methane hydrate Containing marine fluids and sediments in the Cascadia margin (ODP site 892B). FEMS Microbiol. Lett. 1999,177 (1):101-108
    9 Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia [J]. Proc. Natl. Acad. Sci. USA.2004,101:11 111 11 116.
    10 Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 2000,407:623-626.
    11 Bogdanov Y A. Submarine hydrothermal vents as a habitat for marine organisms/Gebruk A V. Biology Hydrothermal Systems. Moscow:KMK Press 2002:72-112 (in Russian) 12 Brandao P F, Torimura M, Kurane R, et al. Dereplication for biotechnology screening:PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial act inomycetes. Appl Microbiol Biotechnol. 2002,58 (1):77-83 13 Buckley D H, Graber J R, Schmidt T M. Phylogenetic Analysis of Nonthermophilic Members of the Kingdom Crenarchaeota and Their Diversity and Abundance in Soils [J]. Appl. Environ. Microbiol.1998,64:4333-4 339 14 Chappe B, Albereeht P, Michaelis W. Polar lipids of Archaebacteria in the sediments and petroleums. Science.1982,217:65-66
    15 Coolen M J L, Cypionka H, Sass A M, et al. Ongoing modification of Mediterranean sapropels mediated by prokaryotes. Science.2002,296:2 407-2410.
    16 Dang H Y, Lovell C R. Numerical dominance and phylotype diversity of marine Rhodobacter species during early colonization of submerged surfaces in coastal marine waters as determined by 16S ribosomal DNA sequence analysis and fluorescence in situ hybridization[J]. Appl. Environ. Microbiol.2002,68:496-504
    17 De Medici D, Croci L. Delibato E, et al. Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype enteritidis in poultry. Appl. Environ. Microbiol.2003,69:3456-3461
    18 Delong E F, Wu K Y, Prezelin B B, et al. High abundance of Archaea in Antarctic marine picoplankton. Nature.1994,371:695-697.
    19 Delong E F. Archaea in coastal marine environments. Proc. Natl. Acad. Sci USA.1992,89(12):5685-5689.
    20 DeMaster D J. Mckee B A. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research.1985,4: 143-158
    21 Deming J W, Baross J A. Deep-sea smokers:Windows to a subsurface biosphere? Geochimica et Cosmochimica Acta.1993,57:3219-3230.
    22 Diaz R J, Trefry J H. Comparison of sediment profile image data with profiles of oxygen and Eh from sediment cores. Journal of Marine Systems. 200,62:164-172
    23 Felsenstein J. PHYLIP-phylogeny inference package (version 3.2). Cladistics.1989,5:164-166
    24 Fuhrman J A, Ouverney C C. Marine microbial diversity studied via 16S RNA sequences:cloning results from coastal waters and counting of native archaea with fluorescent single cell probes. Aquatic Ecology.1998,32: 3-15.
    25 Girguis P R, Cozen A, DeLong E F. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous flow Bioreactor [J]. Appl. Environ. Microbiol.2005,71:3 725-3733.
    26 Glud R, Ramsing N B, Gundersen J K, et al. Planar optrodes:A new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities. Mar. Ecol. Prog. Ser.1996,140:217-226
    27 Goffredi S K, Wilpiszeski R, Lee R, et al. Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California. ISME Journal.2008, 2(2):204-220
    28 Hales B A, Edwards C, Ritchie D A, et al. Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification [J]. Appl. Environ. Microbiol.1996,62:668 675.
    29 Hallam S J, Girguis P R, Preston C M, et al. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea[J]. Appl. Environ. Microbiol.2003,69:5483 5491
    30 Hansen T A. Carbon metabolism of sulfate-reducing bacteria. In The Sulfate-Reducing Bacteria. Odum J M and Singleton R (eds). New York: Springer Verlag.1993,21-40
    31 Hensen C H, Zabel M, Pfeier K, et al. Control of sulfate Pore-water Profiles by sedimentary events and the significance of anaerobic oxidation of methane for burial of sulfur in marine sediments. Ceochimica et Cosmochimica Acta.2003,67(14):2631-2647.
    32 Hill T C A, Walsh KA, Harris J A, et al. Using ecological diversity measures with bacterial communities. FEMS Microbiol. Ecol.2003,43:1-11
    33 Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments. Nature.1999,398:802-805.
    34 Hinrichs K-U, Hayes J M, Sylva S P, et al. Methane consuming archaebacteria in marine sediments. Nature.1999,398:802-805
    35 Hoefs M J L, Shouten S, De Leeuw J W, et al. Ether lipids of planktonic archaea in the marine water column. Appl. Environ. Microbiol.1997,63: 3090 3095
    36 Huh C A, Su C C. Sedimentation dynamics in the East China Sea elucidated from 210Pb,137Cs and 239,240Pu. Marine Geology.1999,160:183-196.
    37 Inagaki F, Nunoura T, Nakagawa S, et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific ocean margin. Proc. Natl. Acad. Sci. USA.2006,103(8): 2815-2820.
    38 Inagaki F, Sakihama Y, Takai K, et al. Profile of microbial community structure and presence of endolithic microorganisms inside a deep-sea rock. Geomicrobiol. J.2002,19:535 552.
    39 Inagaki F, Suzuki M. Takai K, et al. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk [J]. Appl. Environ. Microbiol.2003,69:7224 7235
    40 Inagaki F, Takai K, Komatsu T, et al. Archaeology of Archaea; geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment. Extremophiles.2001,5:385 392.
    41 Inagaki F, Tsunogai U, Suzuki M, et al. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes [J]. Appl. Environ. Microbiol.2004,70:7445 7 455.
    42 Itoh T, Suzuki K, Sanchez P C, et al. Caldisphaera lagunensis gen. nov. sp. Nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. Int J Syst Evol Microbiol,2003, 53:1149-1154
    43 Jergensen B B, BottcherM E, Lusehen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediment. Geochimica et cosmochimica Acta.2004,68(9):2095-2118.
    44 Kaneko R, Hayashi T, Tanahashi M, et al. Phylogenetic diversity and distribution of dissimi latory sulfite reductase genes from deep-sea sediments cores. Marine Biotechnology.2007,9:429-436
    45 Karner M B, DeLong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature.2001,409:507-510.
    46 Kashefi K, Lovley D R. Extending the upper temperature limit for life. Science.2003,301:934
    47 Kato C, Inoue A, Horikoshi K. Isolating and characterizing deep-sea marine microorganisms. Trends in Biotechnology.1996,14(1):6-12
    48 Kato C, Li L, Tamaoka J, et al. Molecular analyses of the sediment of the 11,000 m deep Mariana Trench. Extremophiles.1997,1 (3):117-123
    49 Klepac-Ceraj, Bahr M, Crump B C, et al. High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Environ. Microbiol.2004,6:686 698
    50 Knittel K, Boetius A, Lemke A, et al. Activity, distribution and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol. J.2003,20:269-294
    51 Knittel K, Losekann T, Boetius A, et al. Diversity and distribution of methanotrophic archaea at cold seeps[J]. Appl. Environ. Microbiol.2005, 71:467 479.
    52 Koga Y, Morii H, Akagawa-Matsushita M, et al. Correlation of polarlipid composition with 16S rRNA phylogeny in methanogens, further analysis of lipid component parts. Biosci Biotechnol Biochem.1998,62:230-236
    53 KonnekeM, Bern-hard A E, dela Torre J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature.2005,437:543-546
    54 Konneke M, Bernhard A E, dela Torre J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature.2005,437:543-546
    55 Kruger M, Meyerdierks A, Glockner F O, et al. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature.2003,426: 878 881
    56 Kuypers M M M. Blokker P, Erbacher J, et al. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event. Science.2001,293: 92-94.
    57 Kvenvolden K A. Gas hydrates-geological perspectives and global change. Geophys Rev.1993,31:173 187
    58 Kvenvolden K A. Potential effects of gas hydrate on human welfare. Proc. Natl. Acad. Sci USA.1999,96(7):3420-3426.
    59 Kvenvolden K. Methane hydrate:A major reservoir of carbon in the shallow geosphere. Chem. Geol.1988,71:41-51
    60 Lanoil B D, Sassen R, La Due M T, et al. Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates. Appl. Environ. Microbiol. 2001,67:5143-5153.
    61 Leloup J, Loy A, Knab N J, et al. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ. Microbiol.2007,9 (1):131-142
    62 Liu J P, Xu K H, LiAC, et al. Flux fate of Yangtze River sediment delivered to the East China Sea. Geomorphology.2007,85:208-224
    63 Lloyd K G, Lapham L, Teske A. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl. Environ. Microbiol.2006,72:7218-7230.
    64 Losekann T, Knittel K, Nadalig T, et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl. Environ. Microbiol.2007,73:3348-3362.
    65 Lozupone C, Hamady M, Knight R. UniFrac-An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics.2006,7:371-385
    66 Luan X W, Jin Y K, Anatoly O, et al. Characteristics of shallow gas hydrate in Okhotsk Sea. Sci. China Ser. D-Earth Sci.2008,51:415-421
    67 Luton P E, Wayne J M, Sharp R J, et al. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology.2002,148:3521 3530.
    68 Macalady J L, Vestling M M, Baumler D, et al. Tetraether-linked membrane monolayers in Ferroplasma spp:a key to survival in acid. Extremophiles. 2004,8:411-419.
    69 Marchesi J R, Weightman A J, Cragg B A, et al. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol. Ecol.2001,34:221-228.
    70 Martens C S, Albert D B, Alperin M J. Biogeochemical process controlling methane in gassy coastal sediment-part Ⅱ. A model coupling organic matter flux to gas production, oxidation and trabsport. Continental shelf research.1998,18:1741-1770.
    71 Martens C S, Blair N E, Green C D. Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment. Science. 1986,233:1300-1303.
    72 Massana R, Murray A E, Preston C M, et al. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl. Environ. Microbiol.1997,63(1):50-56.
    73 Michaelis W, Seiter T R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science.2002,297:1013-1 015
    74 Mills H J, Hodges C, Wilson K, et al. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the gulf of Mexico. FEMS Microbiol. Ecol.2003,46:39-52.
    75 Mills H J, Hodges C, Wilson K, et al. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol. Ecol.2003,46:39-52.
    76 Mironov A N. New taxa of stalked crinoids from the suborder Bourgueticrinina ( Echinodermata, Crinoidea). Zoological Zhurnal.2000, 79:712-728.
    77 Moore T S, Murray R W, Kurtz A C, et al. Anaerobic methane oxidation and the formation of dolomite. Earth and Plaoetary Scienee Letters.2004, 229(1-2):141-154.
    78 Mullins T D, Britschgi T B, Krest R L, et al. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol. Oceanogr.1995,40:148-158
    79 Munson M A, Nedwell D B, Embley T M. Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl. Environ. Microbiol. 1997,63:4729-4733
    80 Murray A E, Preston CM, Massana R, et al. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl. Environ. Microbiol.1998,64(7):2585-2595.
    81 Nakagawa S, Takai K, Horikoshi K, et al. Aeropyrum camini sp. Nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol.2004,54:329-335.
    82 Nauhaus K, Treude T, Boetius A, et al. Environmental regulation of the anaerobic oxidation of methane:a comparison of ANME-Ⅰ and ANME-Ⅱ communities. Environ. Microbiol.2005,7:98 106
    83 Newberry C J, Webster G, Cragg B A et al. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 1901. Environ. Microbiol.2004,6 (3):274-287
    84 Newman D K, Banfield J F. Geomicrobiology:how molecular-scale interact ions underpin biogeochemical systems. Science.2002,296 (5570): 1071-1077
    85 Niemann H, Elvert M, Hovland M, et al. Methane emission and consumption at a North Sea gas seep (Tommeliten area). Biogeosciences.2005,2: 335-351.
    86 Nunoura T. Oida H, Toki T, et al. Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough. FEMS Microbiol. Ecol.2006.57:149-157
    87 Odom JM. and Peck H D. Hydrogenase, e lectron-transfer proteins, and energy coupling in the sulfate-reduc ing bacteria Desul fovibrio. Annu. Rev. Microbiol.1984,38:551 592
    88 Orcutt B N. Boetius A, Elvert M. Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochimica et Cosmochimica Acta.2005,69: 4267-4281.
    89 Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphism of human DNA by gel electrophoresis as single strand conformation polymorphisms. Proc. Nata. Acad. Sci. USA.1989,86:2766-2770
    90 Orphan V J, Hinrichs K U. Ussier III W, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments [J]. Appl. Environ. Microbiol.2001a,67:1922-1934.
    91 Orphan V J, House C H. Hinrichs K U, et al. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl. Acad. Sci. USA.2002,99:7663 7668
    92 Orphan V J, House C H, Hinrichs K-U, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science. 2001b,293:484-487
    93 Ouverney C C and Fuhrman J A. Marine planktonic archaea take up amino acids. Appl. Environ. Microbiol.2000,66:4829-4833.
    94 Pancost R D, Damste J S S. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chew Ceol.2003, 195:29-58
    95 Pancost R D, Zhang C, Tavacoli J, et al. Lipid biomarkers preserved in hydrate-associated authigenic carbonate rocks of the Gulf of Mexico. Palaeogeography, Palaeo climatology, Palaeoecology.2005,227:48-66
    96 Parkes R J, Cragg B A,Wellsbury P. Recent studies on bacterial populations and processes in subseafloor sediments. Hydrogeological Journal.2000, 8(1):11-28
    97 Parkes R J, Webster G, Cragg B A. et al. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature,2005,436:390 394.
    98 Parkes R, Cragg B, Bale S, et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature.1994,371:410 413.
    99 Paull C K, Hecker B, Commeau C, et al. Biological communities at Florida escarpment resemble hydrothermal vent communities. Science.1984,226: 965-967.
    100 Pearson A, Huang Z, Ingalls A E, et al. Non-marine crenarchaeol in Nevada hot springs. Appl. Environ. Microbiol.2004,70:5229-5237.
    101 Pearson A, McNichol A P, Benitez-Nelson B C, et al. Origins of lipid biomarkers in Santa Monica Basin surface sediment:a case study using compound-specific δC analysis. Geochim. Cosmochim. Acta.2001,65: 3123-3137.
    102 Perevalova A A, Svetlichny V A, Kublanov I V, et al. Desulfurococcus fermentans sp. Nov., a novelhyperthermophilic archaeon from a Kam chatka hot spring, and emended description of the genus Desulfuroeoeeus. Int J Syst Evol Microbiol.2005,55:995-999
    103 Perevalova A A, Svetlichny V A, Kublanov 1 V, et al. Desulfurococcus fermentans sp, Nov., a novel hyperthermophilic archaeon from a Kamchatka hot Spring, and emended description of the genus Desulfuroeoeeus. Int J Syst Evol Microbiol.2005,55:995-999.
    104 Powers L A, Werne J P, Johnson T C, et al. Crenarehaeotal membrane lipids in lake sediments:A new paleotemperature proxy for continental paleoclimate reconstruction. Geology.2004,32:613-616
    105 Preston C M, Wu K Y, Molinski T F, et al. A psychrophilic crenarchaeon inhabits a marine sponge:Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Matl. Acad. Sci US.,1996,93:6241-6246
    106 Ravenschlag K, Sahm K, Pernthaler J, et al. High bacterial diversity in permanently cold marine sediments. Appl. Environ. Microbiol.1999,65: 3982 3989
    107 Reeburgh W S, Alperin M J. studies on anaerobic methane oxidation. SCOPE/VNEP.1988,66:367-375.
    108 Reed DW, Fujita Y, Delwiche ME, et al. Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl. Environ. Microbiol.2002,68 (8):3759-3770
    109 Santegoeds C M, Damgaard L R, Hesselink G, et al. Distribution of sulfate reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analysis, Appl. Environ. Microbiol.1999, 65:4618-4629
    110 Schink B, Thiemann V, Laue H, et al. Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphate to phosphate. Archives of Microbiology.2002,177:381-391
    111 陈骏,姚素平.地质微生物学及其发展方向.高校地质学报,2005,11(2):154-166.
    112 陈秀兰,张玉忠,高培基深海微生物研究进展.海洋科学,2004,28(1):61-66.
    113 陈忠.杨华平,黄奇瑜,等.海底甲烷冷泉特征与冷泉生态系统的群落结构.热带海洋学报.2007,26(6):73-82
    114 党宏月,李铁钢,曾志刚,等.深海极端环境深部生物圈微生物学研究综述.海洋科学集刊,2006,47:41-60.
    115 党宏月,宋林生,李铁刚,秦蕴珊.海底深部生物圈微生物的研究进展.地球 科学进展,2005,20(12):1306-1313
    116 方金瑞,黄维真.深海微生物的研究进展.海洋通报,1995,14(2):65-69
    117 郭志刚,杨作升,范得江,等.长江口泥质区的季节性沉积效应.地理学报.2003,58(4): 591-597
    118 郭志刚.杨作升,曲艳慧,等.东海陆架泥质区沉积地球化学比较研究.沉积学报.2000,18(2):284-289
    119 金文标.姚建军,陈孟晋,等.天然气微生物勘探指示菌的筛选.天然气工业.2002.22(5): 20-22
    120 金翔龙.东海海洋地质.北京:海洋出版社.1992,196-215.
    121 栾锡武,鲁银涛.赵克斌,等.东海陆坡及临近槽底天然气水合物成藏条件分析及前景.现代地质.2008.22(3):342-345
    122 栾锡武,赵克斌.孙冬胜,等.鄂霍次克海天然气水合物成藏条件分析.海洋地质与第四季地质.2006,26(6):91-100.
    123 潘晓驹,焦念志.海洋古菌的研究进展.海洋科学,2001,25(2):20-23.
    124 秦蕴珊,郑铁民.东海大陆架沉积物分布特征的初步探讨.见:中国科学院海洋研究所海洋地质研究室编.黄东海地质.北京:科学出版社,1982.31-51
    125 萨姆布鲁克,D W 拉塞尔.分子克隆实验指南.北京:科学出版社,2002
    126 王鹏.深海沉积物微生物多样性及其与环境相互关系的研究:[博士学位论文].2005,青岛:中国海洋大学.
    127 徐美香,王风平,肖湘.深海沉积物样品中古菌的16S rDNA分析. 自然科学进展,2003,13(6):598-603
    129 臧红梅,樊景凤,王斌,周一兵.海洋微生物多样性的研究进展.海洋环境科学,2006,35(3):96-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700