基于叠前分频的AVO分析在天然气水合物识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东海是在西太平洋大陆边缘边缘海之一。因其分布于欧亚大陆的最东缘,长期以来接受了来自陆源大量的沉积物,发育厚层的沉积地层,具有丰富的油气资源。同时,东海所处的位置又位于欧亚板块和太平洋板块俯冲、碰撞、交接的地带,这里火山发育、地震频繁,蕴涵着非常丰富的构造地质内涵。既是板块构造调查研究的重点区域,同时又是海洋油气资源勘察的重点区域。
     在利用已有的地震资料、海底温度资料,从沉积物来源、沉积地层厚度、烃源岩条件、沉积速率、海底温度-压力条件等方面对东海水合物成藏条件进行了分析。认为冲绳海槽沉积物源丰富,沉积厚度大,且发育烃源岩地层。冲绳海槽盆地中普遍发育的底辟构造、背斜构造等局部构造,以及网格状断裂系统,为烃类气流体的向上及侧向运移创造了有利条件,成为天然气水合物发育的有利区带。综合地质资料,结合已经发现的BSR,认为东海地区天然气水合物前景广阔。
     应用AVO属性分析得到了AVO截距、梯度、泊松比变化率、流体因子、纵波速度变化率、横波速度变化率等属性参数剖面,通过交汇图分析和AVO特征曲线分析技术确定了AVO异常,达到了水合物检测的目的。主要研究内容为对已有的多道地震剖面特别是被认为出现BSR的多道地震剖面进行认真分析。本文在常规地震处理发现BSR的基础上开展了:(1)已有的多道地震剖面解释;(2)多属性地震特征与水合物的关系研究,建立天然气水合物多属性地震识别标志;
     (3)分析不同频率尺度空间上的AVO异常及AVO反演,获得了多属性地震特征。研究表明,经过精细处理的海上地震资料,进行的AVO反演属性能够准确的反映天然气水合物区域异常。
East China Sea is one of the continental margin sea in the Western Pacific. It is rich in oil and gas resources result from a lot of sediment from land sources and thick layers of sedimentary strata. At the same time,the East China Sea located between the Eurasian Plate and the Pacific plate subduction,collision and transition zone where volcanic and earthquakes are frequent. It is an important area of plate tectonics and marine oil and gas resources exploration.
     The accumulation of the gas hydrate is analyzed through the existing seismic data,sea temperature data from the sediment source,the thickness of sedimentary strata,source rocks,deposition rate,sea floor temperature,pressure conditions and so on. It is thought rich of sediments,thick sediment and potential of source rocks. Diapir,anticlline and the other regional structures and the gridded fault system which are common in the Okinawa Trough Basin provid favorable conditions for gas upward and lateral migration. It is a favorable zone for gas hydrate. The East China Sea has a bright prospect for gas hydrate discovery from the identified BSR.
     The research methods in the paper are applied through AVO intercept,gradient,Poisson’s ratio reflectivity,fluid factor and compression and shear wave velocity reflectivity obtained from AVO weighted stack inversion methods. AVO anomaly which is detected by cross plot analysis and AVO characteristics curve analysis is used to detect gas hydrate. The main content is careful analysis in multi-channel seismic profiles in particular the one with BSR. This paper carried out the following works based on the BSR found in conventional seismic processing. First of all,seismic data interpretation. Second , gas hydrate identification symbol deserved from the relationship between gas hydrate and seismic characteristics. Last,multi-attribute seismic characteristics obtained from frequency division AVO analysis and AVO inversion. Studies have shown the AVO inversion of the specially processed marine seismic data can accurately response the anomaly.properties of gas hydrate.
引文
Aki, K. 1980, Possibilities of Seismology in the 1980s: Bulletin of the Seismological Society of America, v. 70:1969-1976.
    Aki, K. and Richards, P.G.. 1980, Quantitative seismology: Theory and methods, Freeman.
    Andreassen K, Hart P E and Mckay M. 1997, Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates.Marine Geology, 137:25-40.
    Antonio, C., and Thomas, L. 1999,三维AVO分析和模拟用于煤层气储层的裂缝检测:国外油气勘探, 11(1):72-86.
    Bortfeld, R. 1961, Approximations to the Reflection and Transmission Coefficients of Plane Longitudinal and Transverse Waves: Geophysical Prospecting, v. 9:485-502.
    Canales L L. 1984, Random noise reduction[M].54th Annual Internat.Mtg,.Soc.Expl.Geophusics.
    Carcione, J.M., Herman, G.C., and ten Kroode, A.P.E. 2002, Seismic modeling: Geophysics, v. 67:1304-1325.
    Chopra, S., and Pruden, D. 2003, Multiattribute seismic analysis on AVO-derived parameters--A case study: The Leading Edge, v. 22:998.
    Connolly P. 1999, Elastic impedance. The leading Edge, 19(4):438-452 E.J.W.Jones.Marine Geophysics[M].John Wiley&Sons.1999
    Ecker, C., and Claerbout, J.F. 2001. Seismic characterization of methane hydrate structures.
    Hampson, D..1991, AVO inversion, theory and practice: The Leading Edge, v. 10:39. Hilterman, F. 1990, Is AVO the seismic signature of lithology? A case history of Ship Shoal?\South Addition: The Leading Edge, v. 9:15.
    Hyndman,R.,and Spence,G.. A seismic study of methane hydrate marine bottom simulating reflectors:J.Geophys.Res..1992, 97:6683–6698
    Ikelle, L.T., and Amundsen, L. 2001, AVO-A response of an anisotropic half-space bounded by a dipping surface for PP, P-SV and P-SH data: Journal of applied geophysics, v. 46:1-29.
    Katzman R,Holbrook W and Paull C. 1994, Combined vertical incidence and wide-angleseismic study of a gas hydrate zone,Blake Ridge.J.Geophys.Res , 99: 975-995.
    Koefoed, O. 1955, On the Effect of Poisson's Ratios of Rock Strata on the Reflection Coefficients of Plane WAVES*: Geophysical Prospecting, v. 3:381-387.
    Lüdmann T,Wong H K,Wang P X. 2001, Plio-Quaternary sedimentation processes andneotectonics of the northern continental margin of the South China Sea.Marine Geology,172,331-358
    Minshull T A,Singh S C and Westbrook,G K. 1994, Seismic velocity structure at a gas hydrate reflector,offshore western Columbia,from full waveform inversion:J.Geophys. Res.,99:4715–4734
    Muskat, M., and Meres, M.. 1940, Reflection and transmission coefficients for plane waves in elastic media: Geophysics, v. 5:115. Report.College Station TX,184.
    Richards, P.G., and Frasier, C.W.. 1976, Scattering of elastic of elastic wave from depth Geophysics, v. 41:441.
    Robinson, B.A., Viswanathan, H.S., and Valocchi, A.J. 2000, Efficient numerical techniques for modeling multicomponent ground-water transport based upon
    simultaneous solution of strongly coupled subsets of chemical components: Advances in Water Resources, v. 23:307-324.
    Rutherford, S.R., and Williams, R.H. 1989, Amplitude-versus-offset variations in gas sands: Geophysics, v. 54:680-688.
    Shuey, R. 1985a, A simplification of the Zoeppritz equations: Geophysics, v. 50:609-614.
    Shuey, R.T.. 1985b. A Simplification of the Zoeppritz Equations: Geophysics, v. 50:609-614.
    Smith, G., and Gidlow, P. 1987a, Weighted Stacking for Rock Property Estimation and Detection of GAS*: Geophysical Prospecting, v. 35:993-1014.
    Smith, G.C., and Gidlow, P.M. 1987b, Weighted Stacking for Rock Property Estimation and Detection of Gas: Geophysical Prospecting, v. 35:993-1014.
    Wang P,Prell W,Blum P,et al.,2000,Proceeding of the Ocean Drilling Program,Init. Wood, L.C., and Treitel, S. 1975, Seismic signal processing: Proceedings of the IEEE, v. 63:649-661.
    Wyllie, M.R.J., Gregory, A.R., and Gardner, L.W. 1956, Elastic wave velocities inheterogeneous and porous media: Geophysics, v. 21:41.
    Yamano, M., Uyeda, S., Foucher, J.P., and Sibuet, J.C. 1989, Heat flow anomaly in the middle Okinawa Trough: Tectonophysics, v. 159:307-318.
    Zoeppritz, K. 1919, Erdbebenwellen VIIIB, Ueber Reflexion and Durchgang seismischer Wellen durch Unstetigkeitsflaechen: Goettinger Nachrichten.
    方银霞,黎明碧,金翔龙. 2001,东海冲绳海槽天然气水合物的资源前景:天然气地球科学.
    郭玉贵,李延成,许东禹,刘锡清,张训华. 1997,黄东海大陆架及邻域大地构造演化史:海洋地质与第四纪地质.
    何樵登. 1986,地震勘探原理和方法[M].北京:地质出版社.
    黄徳济,贺振华,包吉山. 1990,地震勘探资料数字处理[M].北京:地质出版社.
    雷扬. 2010,礁滩储层AVO属性分析[硕士论文],成都理工大学.
    李家彪,高抒. 2005,中国边缘海海盆演化与资源效应.北京:海洋出版社
    李庆忠. 1993,走向精确勘探的道路[M].北京:石油工业出版社.
    刘光鼎. 1992,中国海区及邻域地质地球物理特征.北京:科学出版社
    陆基孟. 1993,地震勘探原理:东营,石油大学出版社.
    栾锡武,初凤友,赵一阳,秦蕴珊,陈左林. 2001,我国东海及邻近海域气体水合物可能的分布范围:沉积学报,19(2):315-319.
    栾锡武,高金耀,梁瑞才,秦蕴珊. 2006b,冲绳海槽宫古段中央地堑的形态与分布: 地质学报, 80(8):1149-1155.
    栾锡武,鲁银涛,赵克斌,孙冬胜,李军. 2008,东海陆坡及邻近槽底天然气水合物成藏条件分析及前景:现代地质, 12(2):342-355.
    栾锡武,秦蕴珊,张训华等. 2003,东海陆坡及相临槽底天然气水合物的稳定域分析.地球物理学报, 46(4):467-475
    栾锡武,岳保静,鲁银涛. 2006a,东海天然气水合物的地震特征:海洋地质与第四纪地质, 26(6)91-99.
    栾锡武. 1997,琉球沟弧盆系的海底热流分布特征及冲绳海槽热演化的数值模拟: 海洋与湖沼, 28(1):44-48.
    马在田,宋海斌,孙建国. 2000,海洋天然气水合物的地球物理探测高新技术.地球物理学进展, 15(3):1~6
    孟宪伟,刘保华,石学法,吴金龙. 2000,冲绳海槽中段西陆坡下缘天然气水合物存在的可能性分析:沉积学报, 18(4):629-633.
    秦蕴珊,翟世奎,毛雪瑛,柴之芳,马淑兰. 1987,冲绳海槽浮岩微量元素的特征及其地质意义:海洋与湖沼, 37(04):313-319.
    容娇君. 2008,弹性AVO反演[硕士论文],成都理工大学.
    沙志彬,王宏斌,张光学等. 2005.底辟构造与天然气水合物的成矿关系.地学前缘, 12(3):283-288
    宋海斌, Matsubayashi Osamu,杨胜雄,吴能友,江为为,郝天珧. 2002,含天然气水合物沉积物的岩石物性模型与似海底反射层的AVA特征.地球物理学报, 45(4):545-556.
    孙鹏远,孙建国,李彦鹏. 2005, P-SV波AVO响应特征分析:石油地球物理勘探, 13(04):417-422.
    孙鹏远,孙建国,卢秀丽. 2003, P-SV波AVO分析:石油地球物理勘探, 11(01):131-135.
    孙鹏远. 2004, P-SV转换波AVO加权叠加反演:石油地球物理勘探, 13(03):271-274.
    孙鹏远. 2006, P-SV波反射系数近似及其AVO属性特征:地球学报, 13(02): 85-89.
    王炳章. 2001,地震岩石物理学基本准则:石油物探译丛, 32(04):1-20. 熊翥. 1984,地震数据处理技术[M].北京:石油工业出版社.
    杨绍国,周熙襄. 1994, Zoeppritz方程的级数表达式及近似:石油地球物理勘探, 13(04): 399-412.
    姚正和,李言经. 1994,用先验地质信息约束的非线性AVO反演:地球物理学报. 伊尔马兹. 2006,地震资料分析-地震资料处理、反演和解释[M].刘怀山,王克斌,
    童思友,等译.北京:石油工业出版社. 喻普之. 1991,海洋地质学-海底地壳热流,海洋出版社, 214-215.
    张文,李维新,孙翠娟. 2002, AVO交汇图分析技术的应用:中国海上油气.地质.
    张宇,张关泉. 1997,小波变换用于去除高频随机噪声[J].石油地球物理勘探, 32(3):327-337
    章珂,李衍达,李贵忠等.多分辨率地震信号反褶积[J].地球物理学
    赵汗青,吴时国,徐宁等. 2006,东海与泥底辟构造有关的天然气水合物初探.现代地质,20(1):115-122.
    赵汗青,吴时国,徐宁等. 2006,东海与泥底辟构造有关的天然气水合物初探.现代地质, 20(1):115-122
    郑晓东. 1991, Zoeppritz方程的近似及其应用:石油地球物理勘探, 13(02): 129-144.
    周英,陈茂根,杨新菊,贝智敏. 2004, AVO技术在东海西湖凹陷油气预测中的应用:石油物探, 32(1): 94-97.
    朱秋影. 2006,基于叠前偏移资料的AVO反演[硕士论文],大庆石油学院.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700