冻土区天然气水合物热激法试开采系统及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入二十一世纪的中国,经济的发展已是日新月异,所以对于能源的需求也是与日俱增。作为常规能源的煤、石油及天然气已经满足不了经济的快速发展;同时常规能源的无节制使用也造成了诸多环境问题,因此寻求高效节能的能源己被我国所重点关注。
     天然气水合物就是一种高效洁净的能源,其特点是分布较广、资源量相对巨大、埋藏浅、存储层规模大、能量密度高等。我国又是世界第三大冻土区,冻土面积约215万km2,具备良好的天然气水合物形成的条件,粗略估算冻土区水合物资源量至少有350亿吨油当量,因此多年来对于天然气水合物的开发与利用都是我国所致力研究的问题。然而有效的开采方法一直是困扰着对其大规模利用的关键所在;对天然气水合物开采理论上已有几种方法:降压法、热激法、注入抑制剂法及理论上的CO:置换法。但是每种方法都有其缺点和局限性;本文在调研了国内外有关天然气水合物开采的数值计算以及有限元模拟基础之上,充分考虑了天然气水合物的热激法开采的机理,通过模拟计算改变开采介质的温度、压力和流速以及作用时间等开采参数来辨别影响天然气水合物开采的主要因素。
     本文首先建立数学模型,利用数值计算方法推导出开采天然气水合物所需的能量;其次详细介绍了由吉林大学自主研发的天然气水合物试开采系统及采气系统的工作原理以及对开采系统和采气系统的调试工作;第三有限元模拟;通过对影响天然气水合物开采的温度、压力、流速及作用时间四者的有效组合模拟优化出适合热激法开采天然气水合物的理论参数;同时依据青海木里盆地天然气水合物地层参数和吉林大学自主研发的天然气水合物试开采系统的设备能力进行有限元模拟参数设置,以达到理论模拟与实际的有效结合,模拟优化出适合冻土区热激法开采的工艺参数。
     通过上述的工作本文得到了温度是热激法开采水合物的主导因素,同时过高的温度也会带来压力的增大,反而抑制了水合物的分解,所以要将温度与压力同时考虑以作优化。通过优化得出当温度为80℃,压力8MPa,流速为2m/s时热流体影响的半径最大,其水平影响半径可达6.75m。同时将热流体加热至热蒸汽时开采效果更佳,主要是热蒸汽与水合物作用时首先是由气相变为液相时放出大量的热,其次变为液体时在常温常压下仍是100℃的热水,与80℃的热水相比具有更高的能量。但用热蒸汽开采时要充分考虑设备的承受能力。
Resource of gas hydrate of permafrost region is a great reserve, and this is a fact recognized by the world. At present China was the world's third largest country that possessed of gas hydrate. Total areas of frozen soil were 2,150,000 square kilometers, owning good conditions and resources to form natural gas hydrate. According to scientists estimated, the amount of long-term resources was at least 350 tons of oil.
     Into the twenty-first century, China's economic development was very rapid. So the demand of energy was growing as well. Therefore conventional energy sources such as coal, oil and natural gas had failed to meet the rapid economic development. At the same time the uncontrolled use of conventional energy sources also caused many environmental problems, so searching for energy-efficient has been a hot topic in the world.
     Gas hydrate is a clean and efficient energy. Its characteristic is widely distributed, a huge amount of resources, shallow reservoir scale, high energy density and so on. Therefore development and exploitation of natural gas hydrate has been committed to the countries of the world's problems over many years. However, the key of the problem was how to use it at large scales. The theory of exploitation has several methods, such as depressurization, thermal exploration, inpouring depressor and CO2 replacement. But each method has its drawbacks and limitations. This paper based on the research of the domestic and foreign exploitation of gas hydrates and finite element numerical simulation. By fully considered the regular of natural gas hydrate exploration in the mechanism of thermal excitation and with fully consider of Muli basin of Qinghai city, the major parameters of impact of exploitation were identified by changing the simulation temperature and pressure of gas hydrate and the heat fluid flow velocity and time.
     Firstly, a mathematical model was built. Then derived the energy required for gas hydrate by simulated conditions. Secondly, described exploration system, gas extraction system and the system of commissioning and debugging work by the self-test in detail. Thirdly, finite element simulation analyzed the exploitation of gas hydrate on the impact of temperature, pressure, velocity and time effective combination of the four simulation optimization methods suitable for thermal excitation of the theoretical parameters of Gas Hydrate. Jilin University combined with self-developed system of trial extraction of gas hydrates in laboratory parameters collecting by finite element simulation of mining parameters to correct to achieve the theoretical simulation and the effective integration of the actual experiment. Simulation and optimization the permafrost thermal excitation method was provided mining process parameters.
     Temperature was the dominant facto of thermal excitation in gas hydrate exploration. While high pressure would also decrease the temperature which would inhibits the decomposition of gas hydrate. Therefore considering temperature with pressure for optimization, Obtained optimizing parameters were the temperature 80℃, the pressure 8MPa, the flow velocity 2m/s. The maximum radius of impact of thermal fluids and its level of influence radius was up to 6.75m. If heating up fluid to vapour it would be better than that of fluid. Because the gas deliquesce into liquid would released quantity of heat.
     At the same time liquid at room temperature and atmospheric pressure was still 100℃hot water, compared with 80℃hot water, it had more energy. However, when using the hot vapour the extraction equipment needed to consider the bearing capacity.
引文
[1]宋召军,刘立.天然气水合物研究现状与展望[J].吉林大学地球科学学院,2003,22(4):64-68.
    [2]樊栓狮.天然气水合物储存与运输技术[J].化学工业出版社,2005.
    [3]Sloan E Dendy.Clathrate Hydrates of Natural Gases [M]. NewYork:Marcel Dekker, Inc, 1990.
    [4]Sloan E Dendy. Fundamental p rincip les and app lications of natural gas hydrates[J]. Nature,2003,426(20):353-359.
    [5]金翔龙.关于开展中国天然气水合物研究的建议[J].地球科学进展,2002,17(3):465-466.
    [6]高兴军,段鸿彦.天然气水合物勘探开发技术浅析及研究策略[J].断块油气田,2001,8(3):6-7.
    [7]罗艳托,朱建华,陈光进,郭绪强.天然气水合物资源的开发利用及环境保护[J].石油大学出版社,2005,1648-1652.
    [8]Sang-YongLee,GeraldD.Holder.Methanehydrate spotential as a future energy source.Fuel Processing Technology,2001,71:181-186.
    [9]樊栓狮.天然气水合物开发利用面临的问题及应对策略[J].中外能源,2007,12(4):9-12.
    [10]祝有海,张永勤,文怀军等.青海祁连山冻土区发现天然气水合物[J].地质学报,2009,83(11):1762-1771.
    [11]Seo, Y.-T. and Lee, H." 13C NMR Analysis and Gas Uptake Measurements of Pure and Mixed Gas Hydrates:Development of NaturalGas Transport and Storage Method using Gas Hydrate," Korean J.Chem. Eng.,20,1085 (2003).
    [12]陈月明,刘亚平,张新军,李清平,鲁轩.盐水体系中天然气水合物降压开采数值模拟[J].中国石油大学学报,2009,33(3):80-94.
    [13]Seo,Y.and Lee, H., "Phase Behavior and Structure Identification of theMixed Chlorinated Hydrocarbon Clathrate Hydrates," J.Phys. Chem.B,106,9668 (2002).
    [14]张凌,蒋国盛,宁伏龙,吴翔,窦斌.国外天然气水合物岩心处理分析技术综述[J].地质科技情报,2009,28(1):123-126.
    [15]栾锡武,赵克斌,孙冬胜,岳保静,鲁银涛,张亮,王静.海域天然气水合物勘测的地球物理方法[J].地球物理学进展,2008,23(1):210-219.
    [16]Makogon Y F, Holditch S A, Makogo T Y.Natural Gashydrates-A Potential Energy Source for the 21st Century [J]. Journal of Petroleum Science and Engineering, 2003,56(1-3):14-31.
    [17]Jean Laherrere.Oceanic Hydrates:More Questions than Answers [J]. Energy Exploration and Exploitation,2000,18(4):349-383.
    [18]唐翠萍,樊栓狮.聚乙烯吡咯烷酮抑制水合物生成研究.天然气工业,2006,26(3):125-128
    [19]Kerr R A.Gas Hydrate Resource:Smaller but Sooner.Science,2004,303(5660):946-947.
    [20]Fan SS,ZhangYZ,Tian GL,et al.Natural Gas Hydrate Dissociation by Presence of Ethylene Glycol.Energy & Fuels,2006,20(1):324-326
    [21]卢振权,祝有海,张永勤.青海省祁连山冻土区天然气水合物存在的主要证据[J].现代地质,2010,(02).
    [22]祝有海,张永勤,文怀军,卢振权,王平康.祁连山冻土区天然气水合物及其基本特征[J].地球学报,2010,(01).
    [23]张永勤,孙建华,贾志耀,王汉宝,刘秀美.中国陆地永久冻土带天然气水合物钻探技术研究与应用[J].探矿工程(岩土钻掘工程),2009,(S1).
    [24]张金华,魏伟,王红岩.天然气水合物研究进展与开发技术概述[J].天然气技术,2009,3(2):67-69.
    [25]史燕玲,熊钰.水合物气藏的开采[J].西部探矿工程,2008,3:41-44.
    [26]孙长宇,陈光进,郭天民,林万臣,陈江.甲烷水合物分解动力学[J].化工学报,2002,(09).
    [27]白玉湖,李清平,李相方.降压法开采天然气水合物藏物理模拟相似准则分析[J].中国海上油气,2008,20(3):143-147.
    [28]Hisashi O. Kono, Sridhar Narasimhan, et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing.Power Technology.2002,122:239-246.
    [29]BURSHEARSM,O'BREIENTJ,MALONERD.Amulti-phase,multi-dimensional,variabl e composition simulation of gas production from a conventional gas reservoir in contactwith hydrates[C].SPE15246.1986,:449-453.
    [30]祝道平,宁正福.利用高能气体压裂技术开采天然气水合物可行性分析[J].重庆科技学院学报,2009.11(3):37-39.
    [31]李莹,刘义兴.天然气水合物开发新视野:氟气+微波开采技术[J].国外油田工程,2009,25(2):46-48.
    [32]侯力群,吴应湘,许晶禹,孙君书.天然气水合物热激励法开采模型研究[J].西安石油大学学报,2008,23(2):44-47.
    [33]张卫东,刘永军,任韶然,王瑞和.天然气水合物注热开采能量分析[J].天然气工业,2008,28(5):77-79.
    [34]唐良广,冯自平,沈致远,杜燕.热力法开采地层天然气水合物的热动力评价[J].工程热物理学报,2007,28(1):5-8.
    [35]李 刚,唐良广,黄 冲,冯自平,樊栓狮.热盐水开采天然气水合物的热力学评价[J].化工学报,2006,57(9):2033-2038.
    [36]周锡堂,陶鲜花,庞重军.天然气水合物分解动力学研究进展[J].天然气化工,2006,31:70-73.
    [37]Sira J H, Patil S L, Kamath V A. Study of hydrate dissociation by methanol and glycol injection[C]. Proceedings2SPE Annual Technical Conference and Exhibition. Richardson, TX:Soc of Petroleum Engineers of AIME.1999.
    [38]Kawamura T,et al. Experimental study on dissociation of hydrate core sample accelerated by thermodynamic inhibitors for gas recovery from natural gas hydrate[C]. The 5th International Conference on Gas Hy2 drate.Trondheim,Norway,2005.
    [39]Fan S S, et al. Natural gas hydrate dissociation by presence of ethylene glycol [J].Energy & Fuels,2006,20(1):324-326.
    [40]李刚,李小森,唐良广,等.注乙二醇溶液分解甲烷水合物的实验研究[J].化工学报,2007,58(8):2067-2074.
    [41]EBINUMA T. Method for dumping and disposing of carbondioxide gas and apparatus therefore [J].U.S Patent,1993,5(261):490.
    [42]MASAKIOTA Y, MASAM W. Methane recovery from methane hydrate using pressurized CO2[J]. Fluid Phase Equilibria,2005,288-229:553-559.
    [43]王宏斌,张光学,梁劲,刘学伟,梁金强,龚跃华,郭依群,沙志彬.南海北部陆坡构造坡折带中的天然气水合物[J].沉积学报,2008,(02).
    [44]王宏斌,张光学,杨木壮,等.南海陆坡天然气水合物成藏的构造环境.海洋地质与第四纪地质[J].2003,23(1).81-86.
    [45]张光学,黄永样,祝有海,等.南海天然气水合物的成矿远景[J].海洋地质与第四纪地质,2002,22(1):75-811.
    [46]Milkov, A. V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology.2000,167(1):29-42.
    [47]张卫东,王瑞和,任韶然,刘永军.由麦索雅哈水合物气田的开发谈水合物的开采[J].石油钻探技术,2007,35(4):94-96.
    [48]G. G. Tsypkin. Regimes of Dissociation of Gas Hydrates Coexisting with a Gas in Natural Strata[J].Journal of Engineering Physics and Thermal physics,2001,74(5).
    [49]X. Sun, N. Nanchary, K. K. Mohanty.1-D Modeling of Hydrate Depressurization in Porous Media[J]. Transport in Porous Media,2005,58(3).
    [50]栾锡武,赵克斌,孙冬胜,岳保静.天然气水合物的开采—以马利克钻井为例[J].地球物理学进展,2007,22(4):1295-1304.
    [51]Collett T S. Alaska north slope gas hydrate energy resources[J]. USGS Open File Report, 2004.
    [52]Timothy S. Collett.阿拉斯加北部斜坡普拉德霍湾和库帕勒克河地区的天然气水合物[J].天然气地球科学,1998,9(3)
    [53]左 林,由长福.天然气水合物固定井压开采过程数值模拟[J].清华大学学报,2008,48(11):1957-1961.
    [54][李淑霞,陈月明,郝永卯,等.多孔介质中天然气水合物降压开采影响因素实验研究[J].中国石油大学学报(自然科学版),2007,31(4):56-59.
    [55]周剑秋,尹侠,李庆生,等.海洋天然气水合物模拟设备的开发及应用[J].石油机械,2006,34(7):22-24.
    [56]唐良广,李刚,冯自平,等.热力法开采天然气水合物的数值模拟[J].天然气工业,2006,26(10):105-107.
    [57]YOUSIF M H, ABASS H H, SELIM M S, et al. Experimental and theoretical investigation of methane-gas hydrate dissociation in porous media [R].SPE 18320,1991.
    [58]陈月明,张新军,杜庆军.天然气水合物渗流特征及其描述[J].中国石油大学学报:自然科学版,2007,31(4):51-55
    [59]Patrick L. McGuire. Recovery of Gas From Hydrate Deposits Using Conventional Technology[J]. SPE 10832.
    [60]吴应湘.开采地层中的天然气水合物的数学模型[J].天然气工业,2004,24(1):63-67.
    [61]李进良,李承曦,胡可喜FLUENT6.3流场分析[M].化学工业出版社,2009年10月.
    [62]张政,谢灼利.流体-固体两相流的数值模拟[J].化工学报,2000,52(1):1-11.
    [63]周光炯,严宗毅,许世雄等.流体力学[M].北京高等教育出版社,2001.
    [64]郭鸿志,张欣欣,刘向军等.传输过程数值模拟[M].北京冶金工业出版社,1998.
    [65]Toomey R D, Johnstone HF. Gaseous fluidization of solid particles [J]. Chem.Eng.prog,1952,48(5):220-226.
    [66]Davidson J F. Symposium on fluidization-discussion[J].Trans. Inst. Chem. Eng, 1961,39:230-232.
    [67]Wilhelm R H, Kwauk M. fluidization of solid particles[J]. Chem. Eng. Prog,1948, 44:201-218.
    [68]Kwauk M, Li J. Fluidization regimes [J].power technology,1996,87:193-202.
    [69]Knowlton T M, Bachovchin D M. The determination of gas-solid pressure drop and choking velocity as a function of gas density in a vertical pneumatic conveying line [J]. In:Keairns DL, ed. Fluidization Technology,1975,2:253-282.
    [70]Abrahamsen A R, Geldart D. Behavior of gas-fluidized beds of fine powers, partI [J]. homogenous expansion. Powder Technology,1980,26:35-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700