机织建筑膜材料非线性粘弹塑拉伸性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着膜结构建筑的发展与膜材料的广泛应用,建筑膜材料的力学性能愈来愈受到关注。由平纹或方平组织为基布的机织建筑膜材料,因织造工艺简单、价格适中等优点倍受青睐。机织建筑膜材料不同于一般性的其它建筑材料,它是一种基布处于中间、而两侧进行涂层所组成的柔性复合材料,其拉伸力学性能具有自身独特的特点。而膜材料在膜结构的建筑中需要依据其在特定的张拉形状来承受载荷或变形,因此,充分理解与把握膜材料在拉伸时和随后的使用过程中的力学性能,对指导膜结构的设计与构建十分必要。本课题将围绕机织建筑膜材料经纬向在拉伸时的非线性粘弹塑性能进行研究。
     通过对机织建筑膜材料经纬向在拉伸时的非线性粘弹塑性能的研究,以期达到如下的目标:(1)给出膜材料在不同应力与不同作用时间条件下出现塑性变形的合理模型;(2)给出膜材料在蠕变条件下合理的非线性粘弹塑元件模型;(3)给出膜材料在不同应变与不现作用时间条件下出现塑性变形的合理模型;(4)给出膜材料在应力松弛条件下合理的非线性粘弹塑元件模型;(5)在考虑塑性变形的基础上给出膜材料合理的非线性粘弹塑性单积分模型。
     在蠕变条件下,通过选择不同的作用应力与不同的作用时间,对机织建筑膜材料经纬向的塑性变形进行了试验,从中找出,开始出现塑性变形的临界值,并将机织建筑膜材料经纬向的塑性变形看成是:应力差(应力值-应力临界值)的幂函数与作用时间幂函数的乘积,对试验数据进行了多元回归分析,结果发现:该模型可以很好地预测出材料的塑性变形量,进而再利用该模型对塑性变形中的瞬时塑性与推迟塑性进行的分析,结果显示:开始阶段的瞬时塑性变形明显高于在随后的推迟塑性变形,而就推迟塑性变形而言,在先前时间段的塑性变形量又高于随后时间段的塑性变形量,即:推迟塑性变形量随作用时间的增加而较大幅度的减少。
     论文给出了机织建筑膜材料经纬向各自五种不同应力9,000s的蠕变试验,利用四个线性粘弹性模型,包括:四参数Burgers流体模型、三参数固体模型、五参数广义Kelvin-Voigt固体模型与七参数广义Kelvin-Voigt固体模型,对试验数据进行了拟合,从中发现:七参数广义Kelvin-Voigt线性粘弹性固体模型具有最好的拟合效果,且对于同类同方向膜材料而言,各个不同应力间与三个推迟时间相关的三个参数保持不变,以此为基础,将该线性粘弹性模型修改为七参数非线性粘弹性模型与十四参数非线性粘弹塑型模型,同时,将十四参数非线性粘弹塑元件模型中的六个与推迟时间相关的参数合并为三个,其它与应力大小相关的八个参数合并为四个,再假定修改后的两种非线性蠕变元件模型中与推迟时间相关的三个参数与七参数线性粘弹性广义Kelvin-Voigt固体模型中的三个与推迟时间的参数保持相同,将建筑膜材料的非线性原因看成仅来自于与应力相关的四个不同的参数,假定这些参数与不同的应力之间满足四阶多项式函数,借助上述五种不同应力条件下蠕变试验的数据对四阶多项式函数进行了拟合,并将拟合后的函数与机织建筑膜材料经纬向的三种不同的其它应力、作用时间为1,200s的蠕变试验进行了比较,结果发现:该方法可以很好地预测不同应力间的蠕变特性。
     在应力松弛条件下,通过选择不同的应变与不同的作用时间,对机织建筑膜材料经纬向的塑性变形进行了试验,从中找出,开始出现塑性变形的临界值,并将机织建筑膜材料经纬向的塑性变形看成是:应变差(应变值-应变临界值)的幂函数与作用时间幂函数的乘积,对试验数据进行了多元回归分析,结果发现:该模型可以很好的预测出材料的塑性变形量,进而再利用该模型对塑性变形中的瞬时塑性与松弛塑性进行的分析,结果显示:开始阶段的瞬时塑性变形明显高于在随后的松弛塑性变形,而就松弛塑性变形而言,在先前时间段的塑性变形量又高于随后时间段的塑性变形量,即:松弛塑性变形量随作用时间的增加而较大幅度的减少。
     论文给出了机织建筑膜材料经纬向各自五种不同应变9,000s的应力松弛试验,利用四个线性粘弹性模型,包括:三参数固体模型、三参数广义Maxwell模型、五参数广义Maxwell模型与七参数广义Maxwell模型,对试验数据进行了拟合,从中发现:七参数广义Maxwell线性粘弹性模型具有最好的拟合效果,且对于同类同方向膜材料而言,各个不同应变间与三个松弛时间相关的三个参数保持不变,以此为基础,将该线性粘弹性模型修改为七参数非线性粘弹性模型与十四参数非线性粘弹塑型模型,同时,将十四参数非线性粘弹塑元件模型中的六个与松弛时间相关的参数合并为三个,其它与应变大小相关的八个参数合并为四个,再假定修改后的两种非线性应力松弛元件模型中与松弛时间相关的三个参数与七参数线性粘弹性广义Maxwell模型中的三个与松弛时间相关的参数保持相同,将建筑膜材料的非线性原因看成仅来自于与应变相关的四个不同的参数,假定这些参数与不同的应变之间满足四阶多项式函数,借助上述五种不同应力条件下应力松弛试验的数据对四阶多项式函数进行了拟合,并将拟合后的函数与机织建筑膜材料经纬向的三种不同的其它应变、作用时间为1,500s的应力松弛试验进行了比较,结果发现:该方法可以很好地预测不同应变间的应力松弛特性。
     论文给出了机织建筑膜材料经纬向六种不同的应力与作用时间分别为9,000s的蠕变试验与回复试验,在考虑机织建筑膜材料在蠕变条件下可能产生的瞬时塑性与推迟塑性变形,将塑性变形叠加到Schapery非线性粘弹性单积分本构方程上,利用试验数据对修改后的非线性粘弹塑型单积分模型中的材料常数与非线性应力依赖参数进行了求解,并将这些求解后的材料常数与非线性应力依赖参数代入蠕变与回复方程中,结果发现:该方法可以较好地预测出蠕变试验与回复试验的试验数据。
Along with membrane structure construction development and membrane material widespread application, the mechanical performance of architectural membrane material is more and more emphasized. Because of simple technology and moderate prices, the architectural woven membrane material composed of plain or panama fabric is very popular. The architectural woven membrane material differs from general architectural material, it is a flexible composite material which is made up of fabric in the middle and coating on both sides, its mechanical performance has its own distinguishing features. The membrane material needs to sustain load or defonnation depending on a specific tensile shape in construction, therefore, on the sufficient understanding and grasping mechanical performance of membrane material in tension or in the course of using is important to instruct the membrane structure the design. This study focuses on tensile nonlinear visco-elastic-plastic performance of woven membrane material.
     Through the tensile nonlinear visco-elastic-plastic performance study of woven membrane material in warp and weft direction, the objectives of the study are as follows:(1) to present rational plastic model under the conditions of different stresses and time; (2) to present rational nonlinear visco-elastic-plastic element model under creep conditions; (3) to present rational plastic model under the conditions of different strain and time; (4) to present rational nonlinear visco-elastic-plastic element model under stress relaxation conditions; (5) on the basis of considering plastic defonnation, to present rational nonlinear visco-elastic-plastic integral model.
     The creep tests are carried out on the architectural woven membrane material along the warp and weft direction at different stresses and time, stress critical value of plastic deformation is found. According to a function of several variables from the product of both the stress difference (stress-stress critical value) power function and the time power function, the experiment datum are studied by using a multiple regression analysis. It is concluded that the model has better fitting results. Then the instantaneous and transient parts of the plastic deformation are analyzed by using this model, it is showed that the instantaneous plastic deformation is higher than transient part, as far as the transient plastic deformation is concerned, the plastic deformation at an initial stage is higher than the one at a later stage, namely:the increment of the transient plastic strain will be a significant decrease.
     The creep tests for architectural woven membrane material are carried out along the warp and weft directions at five different stresses. By mean of four linear viscoelastic element models:Burgers fluid one with four parameters, a solid one with three parameters, a generalized Kelvin-Voigt solid one with five parameters and a generalized Kelvin-Voigt solid one with seven parameters, the experimental datum are analyzed. The results revealed that there is better fitting effect for the generalized Kelvin-Voigt solid model with seven parameters, and as far as the membrane material of the same kind and direction is concerned, three parameters of or relating to retarded time keep unchanged at various stresses. Based on these properties, the linear viscoelastic element model with seven parameters was modified into a nonlinear viscoelastic element one with seven parameters and a nonlinear visco-elastic-plastic element one with fourteen parameters. Then six parameters of or relating to retarded time are amalgamated into three ones and eight parameters of or relating to stress are amalgamated into four ones for the nonlinear viscoelastic element model with fourteen parameters. Considering that the three retarded time of the two nonlinear models were the same as the linear model, that the nonlinear factors are come from four parameters of or relating to stress, to assume between the four parameters of or relating to stress and different stresses meets 4th degree polynomial function, the creep test datum at five different stresses are fitted and then the fitted polynomial function is compared to a creep test at three other stresses and 1,200s.It is concluded that this method can predict the creep performance of different stresses well.
     The stress relaxed tests are carried out on the architectural woven membrane material along the warp and weft direction at different strain and time, strain critical value of plastic deformation is found. According to a function of several variables from the product of both the strain difference (strain- strain critical value) power function and the time power function, the experiment datum are studied by using a multiple regression analysis. It is concluded that the model has better fitting results. Then the instantaneous and relaxed parts of the plastic deformation are analyzed by using this model, it is showed that the instantaneous plastic deformation is higher than relaxed part, as far as the relaxed plastic deformation is concerned, the plastic deformation at an initial stage is higher than the one at a later stage, namely:the increment of the relaxed plastic strain will be a significant decrease.
     The stress relaxed tests for architectural woven membrane material are carried out along the warp and weft directions at five different strain. By mean of four linear viscoelastic element models:a solid one with there parameters, a generalized Maxwell one with three parameters, a generalized Maxwell one with five parameters and a generalized Maxwell one with seven parameters, the experimental datum are analyzed. The results revealed that there is better fitting effect for the generalized Maxwell model with seven parameters, and as far as the membrane material of the same kind and direction is concerned, three parameters of or relating to relaxed time keep unchanged at various strain. Based on these properties, the linear viscoelastic element model with seven parameters was modified into a nonlinear viscoelastic element one with seven parameters and a nonlinear visco-elastic-plastic element one with fourteen parameters. Then six parameters of or relating to relaxed time are amalgamated into three ones and eight parameters of or relating to strain are amalgamated into four ones for the nonlinear viscoelastic element model with fourteen parameters. Considering that the three relaxed time of the two nonlinear models are the same as the linear model, that the nonlinear factors are come from four parameters of or relating to strain, to assume between the four parameters of or relating to strain and different strain meets 4th degree polynomial function, the stress relaxed test datum at five different strain are fitted and then the fitted polynomial function is compared to a stress relaxed test at three other strain and 1,500s.It is concluded that this method can predict the stress relaxed performance of different strain well.
     The creep and recovery tests for architectural woven membrane material are carried out along the warp and weft directions at six different stresses and respective 9,000s. Considering possible instantaneous and transient plastic deformation under the condition of creep, the plastic deformation is combined into nonlinear viscoelastic integral Schapery's constitutive equation. The material constants and nonlinear stress depended parameters of the new model are solved with the aid of test datum, and these constants and parameters substitute the creep and recovery equation. It is found that this method can predict the creep and recovery datum well.
引文
1. 易洪雷.建筑膜材料的应用基础研究.上海:东华大学博士后研究工作报告.2004,6-7.
    2. Mewes H. Current world status of PVC coated fabrics for architectural structures and related textile developments. Journal of Industrial Textiles.1993, 22(3):188-212.
    3. Wilkinson C L. A review of industrial coated fabric substrates. Journal of Industrial Textiles.1996,26(1):45-64.
    4. 陈守辉.机织建筑膜材料拉伸性能研究—从单轴、双轴到多轴.上海:东华大学博士学位论文.2008,5-18.
    5. Alley V A J, Faison R W. Decelerator fabric constants required by the generalized from of Hooke's Law. Journal of Aircraft.1972,9(3):211-216.
    6. 卫东,王臣,向阳等.建筑膜材的材性试验研究.空间结构.2002,8(1):37-43.
    7. Minami H, Toyotaka H, Kotera K, et al. Some reviews on methods for evaluation of performance of membrane materials being used for membrane structures. Proc Shells, Membranes, and Space Frames:Proceedings of the IASS Symposium on Membrane Structures and Spaces Frames. Osaka, Japan, 1986. p201-208.
    8. Szostkiewicz C, Hamelin P. Stiffness identification and tearing analysis for coated membranes under biaxial loads. Journal of Industrial Textiles,2002, 30(2):128-145.
    9. Blum R, Bogner H. Evaluation method for the elastic moduli. Tensinews Newsletter,2002, No.3:3.
    10. Chen Y, Lloyd D W, Harlock S C. Mechanical characteristics of coated fabrics. Journal of the Textile Institute.1995,86(4):690-700.
    11. Sinjib H. The behavior of coated fabrics as thin membrane structures under biaxial stress. M. Sc. Thesis. The City University of London.1984.
    12. Day A S. Stress strain equations of nonlinear behaviour of coated woven of woven fabrics. In:Proc Shells, Membranes, and Space Frames:Proceedings of the IASS Symposium on Membrane Structures and Space Frames. Osaka, Japan,1986, p17-24.
    13. Bridgens B N, Gosling O D. Direct stress-strain representation for coated woven fabrics. Computers and Structures.2004,82(23-26):1913-1927.
    14. Minami H, Nakahara Y. Application of finite-element method to the deformation analysis of coated plain weave fabrics. Journal of Coated Fabrics. 1981,10(4):310-327.
    15. Peirce F T. The geometry of cloth structure. Journal of the Textile Institute, 1937,28:45-96.
    16. Freeston W D, Platt M M, Schoppee M M. Stress-strain response of fabrics under two-dimensional loading. Textile Research Journal.1967,37(11): 948-974.
    17. Kawabata S, Niwa M, Kawai H. The finite-deformation theory of plain weave fabrics, part I:the biaxial-deformation theory. Journal of the Textile Institute. 1973,64(2):21-46.
    18. Kawabata S, Niwa M, Kawai H. The finite-deformation theory of plain weave fabrics, part II:the uniaxial-deformation theory. Journal of the Textile Institute. 1973,64(2):47-61.
    19. Testa R B, Stubbs N, Spiilers W R. Bilinear model for coated square fabrics. Journal of Engineering Mechanics Division.1978,104(EM5):1027-1942.
    20. Testa R B, Yu L W. Stress-strain relation for coated fabrics. Journal of Engineering Mechanics.1987,113(11):1631-1646.
    21. Menges G, Meffert, B. Mechanical behaviour of PVC-Coated polyester fabrics under biaxial stress. Kunststoffe.1976,66(11):741-745.
    22. Stubbs N, Fluss H. A nonlinear anisotropic constitutive law for fabric. In:Proc Long Span Roof Structures:Proceedings of a Symposium Held at the 1981 Annual Convention and Exhibit. St. Louis, Missouri,1981. p259-295.
    23. Thomas S, Stubbs N. Inelastic biaxial constitutive model for fabric-reinforced composites. Journal of Coated Fabrics.1984,13(13):144-160.
    24. Stubbs N, Fluss H. A space-truss model for plain-weave coated fabrics. Applied Mathematics Modelling.1980,4(1):51-58.
    25. Stubbs N, Thomas S. A Nonlinear elastic constitutive model for coated fabrics. Mechanics of Materials.1984,3(2):157-168.
    26. Stubbs N. Elastic and inelastic response of coated fabrics to arbitrary loading paths. Chou T W, Frank K K, editors. New York:Elsevier Science Publishing Company Inc.1989.
    27. Schock H J. On the structural behavior and material characteristics of PTFE-coated glass-fiber fabric. Journal of Industrial Textiles.1991,20(4): 277-288.
    28. Kato S, Yoshino T, Minami H. Formulation of constitutive equations for fabric membrane based on the concept of fabric lattice model. Engineering Structures. 1999,21(8):691-708.
    29. Pargana J B, Lloyd-Smith D, Izzuddian B A. Advanced material model for coated fabric used in tensioned fabric structures. Engineering Structures.2007, 29(7):1323-1336.
    30. Luo S Y, Mitra A. Finite elastic behavior of flexile fabric composite under biaxial loading. Journal of Applied Mechanics.1999,66(9):631-638.
    31. Luo S Y, Chou T W. Finite deformation of flexile composites. In:Cambridge University Press.1992.
    32. Leaf G A V, Anandjiwala, P D. A generalized model of plain-woven fabrics. Textile Research Journal.1985,55(2):92-99.
    33. Sun F, Seyam A M, Gupta B S. A generalized model of for predicting loading-extension properties of woven fabrics. Textile Research Journal.1997, 67(12):866-874.
    34. Tan P, Tong L, Steven G P. Modelling for predicting the mechanical properties of textile composites:A review. Composites Part A, Applied Science and Manufacturing.1997,28(11):903-922.
    35. Boisse P, Borr M, Buet K, et al. Finite element simulations of textile composite forming including the biaxial fabric behaviour. Composites Part B:Engineering. 1997,28(4):453-464.
    36. 罗建国,丁辛,陈守辉等.涂层过程中织物拉伸对膜材料拉伸性能的影响.纺织学报.2007,28(7):47-51.
    37. Potluri P, Thammandra V S. Influence of uniaxial and biaxial tension on meso-scale geometry and strain fields in a woven composite. Composite Structures.2007,77(3):405-418.
    38. Tarfaoui M, Akesbi S. A finite element model of mechanical properties of plain weave. Colloids and Surfaces A:Physicochemical Engineering Aspects.2001, 187-188:439-448.
    39. Gasser A, Boisse P, Hanklar S. Mechanical behaviour of dry fabric reinforcements 3D simulations versus biaxial tests. Computational Materials Science.2000,17(1):7-20.
    40. 刘海卿,王玥,李忠献.基于Buegers四元件模型的索膜结构蠕变性能分析.哈尔滨工程大学学报.2006,27(2):204-207.
    41. 于波,王玥,刘国富,等.索膜结构的蠕变性能研究.科学技术与工程.2006,6(15):2301-2305.
    42. 朱勇奕,刘晓明,陈南梁.PVC压延柔性复合材料应力松弛的力学模型.纺织学报.2007,28(17):36-39.
    43. 郭郁,席时平,沈为.篷盖类柔性复合材料应力松弛性能的模拟及探讨.东华大学学报(自然科学版).2005,31(6):94-96.
    44. 孙宝忠.土工布力学性能的模型及其应用初探.产业用纺织品.2002,20(137):29-32.
    45. Pang F, Wang C H. Activation theory for creep of woven composites. Composites Part B.1999,30:613-620.
    46. Branca F O, Guillermo J, et al. An analytical-numerical framework for the study of ageing in fibre reinforced polymer composites. Composite Structure. 2004,65:443-457.
    47. Yunfa Z, Zihui X, Fernand E. Nonlinear viscoelastic micromechanical analysis of fibre-reinforced polymer laminates with damage evolution. Solids and Structures.2005,42:591-604.
    48. Schapery, R A. On the characterization of nonlinear viscoelastic materials. Polymer Engineering and Science.1969,9:295-310.
    49. Schapery, RA. A theory of non-linear thermoviscoelasticity based on irreversible thermodynamics. ASME Proceedings of 5th US National Congress on Applied Mechanics.1966,511-530.
    50. Lou Y C, Schapery R A. Viscoelastic characterization of a nonlinear fiber-reinforced plastic. Journal of Composite Material.1971,5:208-234.
    51. Qi Z, Shrotriya P, Sottos N R, et al. Viscoelastic response of woven composite substrates. Composites Science and Technology.2005 65:621-634.
    52. Shrotriya P, Sottos N R. There-dimensional viscoelastic simulation of woven composite substrates for multilayer circuit boards. Composites Science and Technology.2003 63:1-12.
    53. Li J, Weng G J. Effect of a viscoelastic interphase on the creep and stress/strain behavior of fiber-reinforced polymer matrix composites. Composites Part B. 1996,27:589-598.
    54. Guedes R M. Lifetime predictions of polymer matrix composites under constant or monotonic load. Composites Part A.2006,37:703-715.
    55. Anastasia M, Aravind N, Kamran A. Characterization of thermo-mechanical and long-term behaviors of multi-layered composite materials. Composites Science and Technology.2006 66:2907-2924.
    56. Arun P, David A D, Mark E T. Effect of physical aging and variable stress history on the strain response of polymeric composites. Composites Science and Technology.1997 57:1271-1279.
    57. Rui M G, Josea J L, Antonio T M, et al. Prediction of long-term behaviour of composite materials. Computers & Structures.2000 76:183-194.
    58. Schjudt-Thomsen J, Pyrz R. Non-linear creep modelling of single-fibre model composites. Composites Science and Technology.2000 60:1791-1800.
    59. Papanicolaou G C, Zaoutsos S P, Kontou E A. Fiber orientation dependence of continuous carbon/epoxy composites nonlinear viscoelastic behavior. Composites Science and Technology.2004 64:2535-2545.
    60. Timothy C, Kennedy, Min W. Three-dimensional, nonlinear viscoelastic analysis of laminated composites. Journal of composite materials.1994 28(10): 902-925.
    61. Akhtar S K, Oscar L P, Rehan K. Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures. International Journal of Plasticity.2006 22: 581-601.
    62. Chunyuan Z H, Weimin Z H. Elasticity recovery correspondence principles of for physically nonlinear viscoelastic problems for a class of materials. International Journal of Plasticity.2001 38:8359-8373.
    63. 周光泉,刘孝敏编著.粘弹性理论.合肥:中国科技大学出版社,1996.
    64. Modris M, Janis V. Micromechanics based modeling of nonlinear viscoplastic response of unidirectional composite. Composites Science and Technology. 200363:19-31.
    65. Anastasia H, Muliana R M, Haj A. Nested nonlinear viscoelastic and micromechanical models for the analysis of pultruded composite materials and structures. Mechanics of Materials.200436:1087-1110.
    66. Rami M, Anastasia H. Muliana R M. A micromechanical constitutive framework for the nonlinear viscoelastic behavior of pultruded composite materials. International Journal of Solids and Structures.200340:1037-1057.
    67. Rami M, Anastasia H. Muliana R M. A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures. International Journal of Solids and Structures.200441:3461-3490.
    68. Anastasia H, Muliana R M, Haj A. Analysis for creep behavior and collapse of hick-section composite structures. Composite Structures.200673:331-341.
    69. Zaoutsos S P, Papanicolaou G C, Cardon A H. On the non-linear viscoealstic behaviour of polymer-matrix composites. Composites Science and Technology. 199858:883-889.
    70. Papanicolaou G C, Zaoutsos S P, Cardon A H. Prediction of the non-linear viscoelastic response of unidirectional fiber composites. Composites Science and Technology.1999 59:1311-1319.
    71. Papanicolaou G C, Zaoutsos S P, Cardon A H. Further development of a data reduction method for the nonlinear viscoelastic characterization of FRPs. Composites Part A.199930:839-848.
    72. Arun P, Mark E T, Ashley F E. Time-dependent response of IM7/5260 composites subjected to cyclic thermo-mechanical loading. Composites Science and Technology.1996 56:55-62.
    73. Cui S Z, Wang S Y. Nonlinear creep characterization of textile fabrics. Textile Research Journal.1999,69(12):931-9934.
    74. 同济大学计算数学教研室编著.现代数值数学和计算.上海:同济大学出版社,2003.
    75. 孙荣恒,尹亨云,刘琼荪等编著.概率论与数理统计.重庆:重庆大学出版社,2000.
    76. 张涛,鲍文斌,俞建勇.竹纤维力学性能的模拟分析.纺织学报.2005,26(1):28-32.
    77. 彭涛.非织造土工布蠕变性能的测试分析.纺织学报.2001,22(4):63-65.
    78. 肖丰,李营建.氨纶包芯纱蠕变性能测试与分析.纺织学报.2007,28(6):48-51.
    79. 李营建,肖丰.大豆蛋白纤维氨纶包芯纱的蠕变性能.纺织学报.2005,26(1):78-83.
    80. 朱明娟,高亚英,俞建勇等Tencel织物蠕变规律研究一.东华大学学报(自然科学版).2003,29(5):122-126.
    81. 刘保生,顾肇文,王其.十字形PTT与PET长丝的力学性能模型.纺织学报2007,28(10):4-8.
    82. 管新海,陈宇岳,周舜华.十字形PTT与PET长丝的力学性能模型.纺织学报2007,23(6):26-27.
    83. Lars-Olof N, Janis V. Nonlinear viscoelastic behavior of paper fiber composites. Composites Science and Technology.2005 65:1609-1625.
    84. Lars-Olof N, Janis V. Nonlinear viscoplastic and nonlinear viscoelastic material model for paper fiber composites in compression. Composites Part A. 200637:344-355.
    85. 孙宝忠,张洪弟.非织造布粘结剂含量和粘弹性模型参数的关系.东华大学学报(自然科学版).2003,29(3):97-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700