牛奶、竹浆、天丝等多组份服用面料的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据对牛奶蛋白、竹浆、天丝、莫代尔等多种纤维性能特征的了解,选用了牛奶蛋白/莫代尔/羊毛/绢丝(40/40/10/10)、牛奶蛋白/莫代尔/长绒棉/羊毛(40/30/20/10)、牛奶蛋白/天丝/竹浆纤维(40/30/30)、牛奶蛋白/竹浆纤维/PLA/羊毛(40/20/20/20)、牛奶蛋白/PLA/粘胶/天丝/绵羊绒(40/15/20/15/10)这5种多组份混纺纱线并选用了两种不同粗细的棉纱作为一个测试比较和依据的标准。
     首先为了能很好的体现和分析多组份纱线及其织物的性能,在确定经线密度、经线原料和织物组织的情况下,试样织物采用相似模化设计法中的以相对总紧密率为主要设计目标的相似设计法,设计不同组织结构的纬线密度,同一种纬纱织制得到平纹、2/2斜纹、8枚缎纹三种不同组织的试样,试样的织物相对总紧密率一致。
     其次对牛奶、竹浆、天丝等多组份混纺织物的各项机械性能和织物风格进行了研究和分析,结果表明含有竹浆纤维的纱线和织物的强度明显降低。混纺纱线含有绢丝的织物的抗皱性能较差,含有牛奶蛋白、莫代尔、天丝等原料的混纺纱线的织物相对比较柔软。服用性能方面,牛奶蛋白/莫代尔/羊毛/绢丝混纺织物比较柔软、丰厚,织物的成型性与棉相近。牛奶蛋白/莫代尔/长绒棉/羊毛混纺织物的柔软度与棉接近,成型性比棉好。牛奶蛋白/天丝/竹浆纤维混纺织物比棉柔软,手感爽滑,纱线之间较易发生滑移。牛奶蛋白/竹浆纤维/PLA/羊毛混纺织物的成型性较好,但是手感较硬。牛奶蛋白/PLA/粘胶/天丝/绵羊绒混纺织物的手感和织物成型性都与棉接近,整体的风格接近于棉。
     最后,对多组份混纺织物的热湿舒适性能进行了测试与分析,包括织物的透气性、保暖性、输水性和透湿性的测试。牛奶、竹浆、天丝等多组份混纺织物的透气性比棉纱织物好,保暖性比棉差易于散热,输水性远好于棉纱织物,透湿性也远好于棉。在对这些性能进行分析的基础上,采用灰色关联度分析法,对多组份混纺织物的热湿舒适性进行综合评判,从而得出本文中的试样织物热湿舒适性最好的是牛奶蛋白/竹浆纤维/PLA/羊毛这种混纺织物。
     通过对混纺织物的热湿舒适性能的研究,了解到牛奶、竹浆、天丝等多组份混纺面料都具有很好的热湿舒适性,比较适合用于春夏季服饰。
Based on understanding performance characteristics of milk protein fiber, bamboo pulp fiber, tencel, modal fibers etc. To use milk protein fiber/ modal/ wool/ silk (40/40/10/10), milk protein fiber/ modal/ long-staple cotton/ wool (40/30/20/10), milk protein fiber/ tencel/ bamboo pulp fiber (40/30/30), milk protein fiber/ bamboo pulp fiber/ PLA/ wool (40/20/20/20), milk protein fiber/ PLA/ viscose/ tencel/ sheep cashmere (40/15/20/15/10), which five kinds of multi-component blended yarn. And select two different yarn fineness of the cotton yarn, as a standard of test comparison and basis.
     First of all, In order to reflect and analysis of multi-component yarn and fabric properties very well, in determining the warp density, warp of raw materials and fabric case, Sample fabrics are similar to design, the sample fabrics are adapting the similar design method is part of similar model-based design method, design the different weft density of fabric structure. weaving plain weave, 2/2 twill and eight heddle satin ,samples of three different organizations using the same kind of weft.
     Second, the thesis researches and analyzes milk protein fiber, bamboo pulp fiber, tencel etc. multi-component fabric's physical performances and wearability. Results show that yarn and fabric containing bamboo pulp fiber, its strength decreased significantly. Yarn and fabric containing silk, its anti-wrinkle performance is poor, containing milk protein, Modal, Tencel blended yarn, fabric is relatively soft. In terms of the wearability, milk protein fiber/ modal / wool / silk blend fabric more soft and rich, its fabric formability and cotton fabrics formability similar. Milk protein fiber / modal / long-staple cotton / wool blend fabric with cotton close to flexibility, its formability better than cotton. Milk protein / tencel / bamboo pulp fiber blended fabric more soft and hand smoothness than cotton fabric, prone to slippage between the yarn. Milk protein fiber / bamboo pulp fiber / PLA / wool blend fabric formability very well, but it feels hard. Milk protein fiber / PLA / viscose / tencel / sheep cashmere blended fabric’s handle and fabric formability is close to cotton fabric, overall style is close to cotton fabric.
     Finally, the thesis mainly tests and analyzes the thermal-wet comfort of the blend fabrics, including testing the air permeability, warmth retention property, wick ability and water vapor transmission. Milk protein fiber, bamboo pulp fiber, tencel etc. multi-component fabric can breathe better than cotton fabrics, warmth retention property worse than the cotton fabrics, wick ability much better than cotton fabrics, also the water vapor transmission are better than cotton fabrics. Adapting the grey correlation degree, a brief evaluation had been made which included thermal-wet comfort properties of different kinds of fabrics.? In this article the samples which include milk protein fiber, bamboo pulp fiber, PLA and wool the fabric thermal-wet comfort is the best.
     Study blended fabric’s performance of thermal-wet comfort, learned that multi-component blended fabrics include milk protein fiber, bamboo pulp fiber, tencel and so on, which have a very good thermal-wet comfort, and more suitable for spring and summer clothing.
引文
[1]杨建忠.新型纺织材料及应用[M].上海:东华人学出版,2005.
    [2]刘海洋.生物制品开发绿色可生物降解纤维.山东纺织经济.2002(6): 32-35.
    [3]邢声远,江锡夏,文永奋等.纺织新材料及其识别[M].北京:中国纺织出版社,2002:287-292.
    [4]郑宇.牛奶蛋白纤维的特性、应用和定性检测[J].上海纺织科技,2006(6).
    [5]李瑞洲,刘亚利,孙占宾.竹浆纤维性能分析[J].纺织学报,2004,25(3):76-77.
    [6]刘京丽.天丝织物主要质量问题分析[J].陕西纺织,2007(2).
    [7]齐文玉,朱文兵.莫代尔织物的服用性能与测试[J].上海丝绸,2008(1):19-23.
    [8]汪天静.牛奶蛋白纤维的发展[J].中国纺织报,2007(5).
    [9]刘艳君,王亚妮,刘云.竹棉混纺针织物服用性能的研究[J].针织工业,2007(12).35-37.
    [10]滑钧凯等.天丝(Tencel1)及其混纺品的染色[J].毛纺科技,2004(3).
    [11]王统杰,赵宗泽,王素娟.开发竹厌丝混纺斜纹织物的点滴体会[J].河北纺织,2004(3).43-37
    [12]章水龙,蒋建清,杨新勇.Tencel纤维牛奶蛋白纤维混纺纱的生产[J].棉纺织技术,2006.34(8):485-487.
    [13]张宝华.葆莱绒纤维/牛奶蛋白纤维/天丝/棉混纺针织纱的开发[J].山东纺织科技.2007(2):6-7.
    [14]肖丰等.牛奶/竹/棉纤维混纺针织纱的纺制[J].纺织科技进展.2007(3):46-47.
    [15]韩学政等.竹炭纤维/天丝/圣麻混纺面料的研制[J].上海纺织科技.2008,36(6):45-46.
    [16]唐佃花,赵明良,王秀燕等.竹、棉、天丝三组分新型针织面料的开发[J].针织工业.2007(4):19-20.
    [17]徐日曦.服装面料的发展趋势与开发前景[J].北京纺织,1995(6):51-53.
    [18]陆曦.新世纪服装面料的开发与发展[J].天津纺织科技,2001(3):2-4.
    [19]朱松文.服装面料的新发展[J].棉纺织技术,1999(8):5-8.
    [20]田俊莹,顾振亚.多种纤维混纺织物的研究动向[J].针织工业,2000(3):60-61.
    [21]蒋建新,杨中开,朱莉伟等.竹纤维结构及其性能研究[J].北京林业大学学报,2008(1).
    [22]张涛,鲍文斌,俞建勇.竹浆纤维鉴别方法的研究[J].纺织学报,2004,25(5):28-29.
    [23]曲广才.LYOCELL——天丝纤维概述[J].辽宁丝绸,2000(3).
    [24]李栋高.纺织品设计学[M].北京:中国纺织出版社,2006,142-146.
    [25]李栋高.纺织品设计-原理与方法[M].上海:东华大学出版社,2005:243-246.
    [26]顾平.织物结构与设计学[J].东华大学出版社,2004:153-157,164-168,196-198.
    [27]吴汉金、郑佩芳.关于织物松紧指标的探讨[J].东华大学学报,1990(1):57-62.
    [28]马芹、刘学锋.利用直径交叉理论进行织物密度设计的研究[J].棉纺织科技,1997(5):33-35.
    [29]马芹,刘学锋,王秋霞.利用紧密率判断织物的可织性.郑州纺织工学院学报,2000(4):43-46.
    [30]蔡陛霞.织物结构与设计(第二版)[M].北京:中国纺织出版社,1986:122-127,216-218.
    [31]英宝臣,吕军.织物紧密程度和组织松紧关系的探讨.毛纺科技,2001(2):49-51.
    [32]李艰,严顺景.织物风格及其测试新技术[J].江苏丝绸,1997(1):40-42.
    [33]汪学骞,金世伟.织物弯曲性能的测试及基本风格的分析[J].纺织学报,1999(5):270-273.
    [34] A.G.De Boos,A.F.Rocznicok.Communications:”engineering”the extensibility and formability of wool fabrics to improve garment appearance.International Journal of Clothing Science and Technology,08:5 1996,51-59.
    [35] CSIRO Australia.Fabric Assurance by Simple Testing.Instruction manual.1995.
    [36]李南.FAST-织物性能快速测试系统[J].河南防治高等专科学校学报,2001(4):3-5.
    [37]刘侃.基于面料力学性能的服装缝纫平整度等级客观评价系统的建立[D]:博士论文.中国:东华大学,2005年.
    [38]朱红.精纺羊毛双层织物性能测试分析[J].毛纺科技,2001(3):17-19.
    [39]沈艳琴,万明,本德萍.织物的热湿舒适性探讨[J].广西纺织科技,2001,30(3):47-49.
    [40] L.福特,N.R.S,霍利斯著;曹俊周译.服装的舒溉性与功能[M].北京:纺织工业出版社,1984.
    [41]刘君妹,贾立霞,王联军.服装(织物)热湿舒适性主客观评判的探讨[J].天津纺织科技.2005(3):43-46.
    [42]蒋培清等.服装热湿舒适性的研究方法综述[J].北京纺织.1998(5):24-26.
    [43]施嵋梧.纺织材料热湿传递性能的理论与实践研究[D]:博士学位论文.上海:中国纺织大学,1994年.
    [44]刘琳.织物组织结构与性能关系的研究[J].中国纤检,2008 (9):43-46.
    [45]陈志铭,周美凤.功能性整理对织物透气性和湿传递性的影响初探[J].纺织标准与质量,2007 (6): 4-7.
    [46]赵书经等.纺织材料实验教程[M].北京:中国纺织出版社,1989.
    [47]朱进忠等.纺织材料学实验[M].北京:中国纺织出版社,1997.
    [48]王其,冯勋伟.织物液态水传导测试方法研究[J].北京纺织.2001,22(5):48-51.
    [49]王府梅.服装面料的性能设计[M].上海:中国纺织大学出版社,2000.
    [50]姚穆等.纺织材料学[M].北京:中国纺织出版社,1990.
    [51] GB/T 12704-91.透湿杯法.中华人民共和国国家标准.
    [52]汪学蓦.模糊数学在纺织工业中的应用[M].香港:开益出版社,1992. ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700