新型碲镍铬合金的耐腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
课题组开发研制的新型Te-Ni-Cr合金材料是一种优秀的耐磨、耐蚀材料。本文就元素Te对镍铬合金的耐腐蚀性及腐蚀行为的影响进行了初步研究。
     运用金相显微观察、X射线衍射、背散射观察、显微硬度检测及摩擦磨损检测等手段研究了添加Te元素的新型合金的显微组织结构及机械性能的变化。结果表明:加入碲的合金,金相组织中出现了黑色的突起相,这种相牢牢地镶嵌在基体表面。新型碲镍铬合金的相由基体α-Ni3CrFe相,β-Cr5Ni2FeB相,γ-C19Cr7Mo24相组成,添加碲元素后促使合金析出β相、γ相。材料的显微硬度有了很大的提高,耐摩擦性加强,摩擦系数随时间变化稳定。碲的加入使材料的显微结构发生变化,材料的机械性能有了很大的改善。
     通过静态浸泡腐蚀试验、扫描电镜(SEM)、X射线衍射、能谱分析等手段研究了Te含量不同的新型合金在海水(3.5%NaCl溶液)、5%H_2SO_4溶液中的耐腐蚀性及腐蚀行为。结果表明:碲镍铬合金在海水、5%H_2SO_4溶液中均具有很好的耐腐蚀性。碲加强了材料耐腐蚀性。当加入0.8%Te时,材料在海水、5%H_2SO_4溶液中的耐腐蚀性达到最好。Te-Ni-Cr合金在静态水溶液中发生电化学腐蚀,在海水中的腐蚀形态为点蚀,加碲合金比未加碲合金的腐蚀坑小且内壁较光滑,腐蚀产物排布较致密,与基体结合较紧密,抵抗材料进一步腐蚀的能力较强;在5%H_2SO_4溶液中,材料的耐腐蚀性较在海水中要好,一般腐蚀是围绕合金表面的缺陷处开始进行的。在海水中合金的腐蚀产物是镍和铁的氧化物的混合物,在5% H_2SO_4溶液中的腐蚀产物是镍的氧化物,铬、铁的硫化物及氧化物。
     高温熔盐腐蚀实验是将含Te质量分数为0.8%的碲镍铬合金试样置于750℃Na_2SO_4-25%NaCl高温熔盐中等温加热腐蚀3 h、6 h、12 h、18 h、24 h、30 h。实验结果表明,碲镍铬合金在开始腐蚀阶段是耐蚀的,随着时间的延长,腐蚀加剧,材料的耐腐蚀性失效。在腐蚀3 h、18 h、30 h这三个时间段内,合金表面都有Ni_2S_3、Fe_2O_3、Cr_2O_3腐蚀产物生成。18 h时出现NiS、CrS。30 h的时候出现NiS_2、Cr_2S_3。合金的热腐蚀是一个硫化—氧化共存的过程。碲镍铬合金在熔盐中开始腐蚀阶段,腐蚀产物能够较牢固的和基体连接在一起,随着腐蚀时间的延长,产物增多形成腐蚀层,腐蚀时间继续延长,腐蚀层将从基体上脱落下来,然后新一轮腐蚀层的形成开始。
The New Type of Te- Ni-Cr Alloy is an excellent corrosion resistant and wear resistance alloy which was developed by the researchers in our laboratory. This article probes into the influence of Te on the corrosion resistance and corrosion behavior of the New Type of Te- Ni-Cr Alloy.
     Microstructure and mechanical properties of New Type of Te- Ni-Cr Alloy samples with different mass fraction of Te were observed and analyzed by MEF3,X-ray diffraction, backscatter observation, microhardness testing and wear resistance,etc. The results indicated that:there is black protuberant phase in microstructure of the alloy with tellurium, , which are firmly embedded in the surface of the matrix. The New Type of Te- Ni-Cr Alloy phases compriseα-Ni3CrFe as matrix phase,β-Cr_5Ni_2FeB phase,γ-C_(19)Cr_7Mo_(24)phase,adding Te elements prompted alloy exhalationβphase,γphase.And micro hardness of material has been greatly improved,wear resistance,friction coefficient to strengthen stable over time.The Microscropic structure of the alloy with tellurium has been changed,mechanical properties have been greatly improved.
     The corrosion resistance and behavior of the New Type of Te- Ni-Cr Alloy with different mass fraction of Te element in seawater(3.5%NaCl solution)and 5%H_2SO_4 solution were investigated by using Static Immersing Corrosion test,scanning electron microscope (SEM), XRD,EPMA,etc. The results show that the corrosion resistance of New Type of Te- Ni-Cr Alloy is very good in seawater and 5%H_2SO_4 solution. Because of anding tellurium, the corrosion resistance becomes strengthened. When anding 0.8% Te, the corrosion resistance is the best in seawater, 5% H_2SO_4 solution. Te - Ni - Cr alloy happenes electrochemical corrosion in solution, corrosion form a pit, pitting corrosion, the corrosion pit of adding tellurium alloy is smaller,wall is smoother and organizations are denser than didn't add tellurium alloy. The ability to resist materials suffering further corrosion becomes stronger. In seawater, the corrosion products are nickel and iron oxide mixture. In 5% H_2SO_4 solution, the corrosion products are nickel ferrochrome sulfide and their oxides.
     High temperature molten salt corrosion experiment is that Te- Ni-Cr Alloy samples with mass fraction of Te 0.8% are corroded in 750℃Na2SO4- 25%NaCl, the corrosion time is 3 h, 6 h, 12 h, 18 h, 24 h, 30 h. The experimental results show that, at the start stage, Te- Ni-Cr Alloy is corrosion resistant , with the extension of time, the corrosion intensify, the corrosion resistance failure. In 3 h, 18 h, 30 h three stages, Ni_2S_3, Fe_2O_3, Cr_2O_3 corrosion products are generated in alloy surface. After 18 h, NiS、CrS occur. When 30 h, NiS_2、 Cr_2S_3 occur. Alloy heat corrosion is a vulcanizing - oxidation coexistence process. In the starte corrosion stage in plasma-nitriding on Te- Ni-Cr Alloy, the corrosion products can fairly solid connected together with substrate,with the corrosion time extension, increased corrosion layer formed product, time continue to increase, the corrosion layer off from substrate.
引文
[1]国家自然基金委战略报告.金属材料科学.北京:科学出版社,1995.156
    [2]刘秀晨,安成强,崔作兴,等.金属腐蚀学.北京:国防工业出版社,2002
    [3]赵麦群,雷阿丽.金属的腐蚀与防护.北京:国防工业出版社,2002
    [4]马国印.镍和镍基合金耐腐蚀性分析[J].化工装备技术,2007,(01)
    [5]杨武.核电工业的发展对腐蚀防护技术的需求[J].腐蚀与防护,1997,18 (3):3~7
    [6]谢明辉.碲的资源、用途与提取分离技术研究现状[J].2005,(1):5-8
    [7]刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984.407~414
    [8]邢翔,郭建秋.碲的应用及其资源分布[J].矿产保护与利用,2009,(3):18
    [9]刘晨.碲的资源、应用与开发[J].稀有金属与硬质合金,1996,(12):54-59
    [10]银剑钊.世界首例独立碲矿床的矿物学研究[J].矿物岩石地球化学通讯,1994,12(3):153-155
    [11]钱汉东,陈武,谢家东,等.碲矿物综述[J].高校地质学报,2000,6(2):178-187
    [12]银剑钊,等.世界首例独立碲矿床:中国四川石棉县大水沟碲矿的矿床的地质特征[J].地学前缘,1994,(1):3-4
    [13]马东.四川石棉碲矿床成矿的地球化学机理[D].成都:成都理工大学,2007
    [14]骆耀南.石棉县大水沟脉型碲化物矿床地球化学一世界首例独立碲矿床成因[J].四川地质学报,1996,(1):80-84
    [15]刘广哲.归来庄金矿床中金矿物与载金矿物的标型意义[J].山东地质,1994,(2):57-65
    [16]丁士应,任富根,李增慧,等.熊耳群碲化物型金矿硫铅同位素及其成矿作用探讨[J].河南地质,1995,13(4):241-247
    [17]中国地质矿产信息研究院.中国矿产[M].北京:中国建材工业出版社,1993
    [18]光电子:21世纪最具魅力朝阳产业[J].中国新技术产品,2008,(2):47-51
    [19]胡莉萍.碲及其化合物的毒性研究进展[J].卫生毒理学杂志,2002,(2):120-123
    [20] Bureau of Mines United States Department of the Interior,Mineral Commodity Summaries[R],Washington,1990
    [21]郑景熙.有机碲化合物(AS101)抑制白血病细胞增殖的效应[J].第一军医大学学报,1993,(3):268
    [22]舒马赫M.海水腐蚀手册[M].李大超,杨荫译.北京:国防工业出版社,1985.81-97
    [23]杨瑞成,王晖,郑丽平,等.高性能镍基耐蚀合金的特性与研究动向[J].材料导报,2001,15(11):21~23
    [24]于福洲编著.金属材料的耐腐蚀性,北京:科学出版社:1982
    [25] J.C.Scully.The Fundamentals of Corrosion:1975
    [26]张承忠.金属腐蚀与保护[M].北京:冶金出版社,1988.148
    [27] Hibner E L,Shoemaker L E.High-strength corrosion-resistant alloy for seawater fastener service[J].Materials Performance,2001,40(10):60-63
    [28] Mars G.Fontana,“Corrosion Engineer”New York,McGraw-Hill Book Company,1986
    [29] Bureau of Mines United States Department of the Interior,Mineral Commodity Summaries[R],Washington,1990
    [30]黄嘉琥,吴剑.耐腐蚀铸锻材料应用手册.北京:机械工业出版社,1991.103
    [31]功能材料及其应用手册编写组.功能材料及其应用手册[M].北京:机械工业出版社,1991:477-486
    [32]肖纪美,曹楚.材料腐蚀学原理.北京:化学工业出版社,2002
    [33]孙跃,胡津.金属腐蚀与控制.哈尔滨:哈尔滨工业大学出版社,2003
    [34] E.马特松著,黄建中,钟积礼,王正樵译.腐蚀基础.北京:冶金工业出版社,1990
    [35]秦紫瑞,于勇,李隆盛,等.低碳镍铝合金的析出相及其对合金腐蚀的影响[J].特种铸造及有色合金,1997,(5):3
    [36] Huang HH.Effect of chemical composition on the corrosion behavior of Ni-Cr-Mo dental casting alloys [J]. J Biomed Mater Res,2002,60:458-465
    [37] Lathe G,Rajeswari S.Suitability of high Ni-Cr-Mo alloys as construction materials in seawater[J].Corrosion Prevention & Control,1997,44(1):22-28
    [38]秦紫瑞,李隆盛,姚曼.HastelloyC合金铸造镍基合金的析出相及其对合金腐蚀行为的影响[J].材料工程,1995,(9):18-21
    [39]中国腐蚀与防护学会主编.腐蚀试验方法及防腐蚀检测技术.北京:化学工业出版社,1995
    [40]蒋金勋,张佩芳,高满同编.金属腐蚀学.北京:国防工业出版社,1986
    [41] GB10124-1988.金属材料试验室均匀腐蚀全浸试验方法1990
    [42] Singh H.Puri D,Prakash S,Ghosh T K.Mater Corros,2007,58:857
    [43] Sidhu T S,Prakash S,Agrawal R D.Mater Sci Eng,2006,A430:64
    [44] Mohanty B P,Shores D A.Corros Sci,2004,46:2893
    [45]王丹丹,李溪滨.镍基耐海水腐蚀材料的研究概况[J].粉末冶金材料科学与工程,2003,8(2):147~151
    [46] U.R.伊文思著,华保定译.金属腐蚀与氧化,机械工业出版社:1976
    [47] Chussler A,Exner H E. The Corrosion Resistance of Nickel Aluminum Bronzes in Seawater: I. Protective Layer Formation and the Passivation Mechanism.Corrosion,1993,34(11):1793
    [48] Lathe G,Rajeswari S.Suitability of high Ni-Cr-Mo alloys as construction materials in seawater[J].Corrosion Prevention & Control,1997,44(1):22-28
    [49]于福洲编著,金属材料的耐腐蚀性.北京:科学出版社,1982
    [50] Kazumi Minagawa,Hideki Kakisawa,Yoshiaki Osawa,eta1.Production of fine spherical lead-free solder powders by hybrid atomization[J].Sci Techn Adv Mater,2005,6:325
    [51]肖纪美.不锈钢的金属学问题,冶金工业出版社:2005,36(2):209
    [52]中国腐蚀与防护学会主编.有色金属的耐腐蚀性及其应用.北京:化学工业出版社,1995
    [53]《重有色金属材料加工手册》编写组.重有色金属加工手册.北京:冶金工业出版社,1979
    [54] Sadayappan M,Zavadil R,Sakoo M.Mechanical properties of aluminum bronze alloy C95400. AFS Transactions,2001,109:745-758
    [55]舒马赫M.海水腐蚀手册[M].李大超,杨荫译.北京:国防工业出版社,1985.81-97
    [56]袁超,杨洪才,王志兴.一种高强耐蚀镍铜合金的沉淀相与时效强化[J].东北大学学报,1997,18(1):82-83
    [57] Gil FJ,Sanchez LA,Espias A,et a1.In vitro corrosion behaviour and metallic ion release of different prosthodontic alloys[J].Int Dent J,1999,49:361-367
    [58]黄嘉琥,吴剑.耐腐蚀铸锻材料应用手册[M].北京:机械工业出版社,1991.103
    [59] Jason Ting,Jeffery Connor,Stephen Ridder.High-speed cinematography of gas-metal atomization[J].Mater Sci Eng A,2005,390:452
    [60] Anon.Gas atomization and the economics of blowing hot and cold[J].Metal Powder Report,2004,(7):38
    [61] Simons E L,et al.Sodium sulfate in gas turbines.Corrosion,1955,11:505-513
    [62]功能材料及其应用手册编写组.功能材料及其应用手册[M].北京:机械工业出版社,1991:477-486
    [63]袁超,杨洪才,王志兴.一种高强耐蚀镍铜合金的沉淀相与时效强化[J].东北大学学报,1997,18(1):82-83
    [64]吴蜀龙.镍铜合金(蒙乃尔合金)铸件的离心铸造[J].特种铸造及有色合金,1994,(3):32-33
    [65]李洁兰.材料科学技术百科全书[M].北京:中国大百科全书出版社,1995.770-771
    [66]陈文革铜钨系电触头材料的失效分析[J].机械工程材料,1998,21(10)47-49
    [67] Angeliu T M,Paraventl D J,Was G S. Creep and intergranular cracking behavior of nickel-chromium-iron-car-bon alloys in 360°C water [J].Corrosion,1995,51 (11) :837~848
    [68] Robertson J.The mechanism of high temperature aqueous corrosion of steel [J].Corrosion Science,1989,29 ( 11/12) :1275~1291
    [69] Frisch M A. Standard handbook of hazardous waste treatment and disposa [A].USA:McGraw-Hill publisher,1998. 176
    [70] Sidhu T S,Prakash S,Agrawal R D.Mater Sci Eng,2006,A430:64
    [71] Mohanty B P,Shores D A.Corros Sci,2004,46:2893
    [72] Brourn M W,Elraghy T. J Electrochem Soc,1997,14:2508

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700