复杂环境下大断面群洞交叉部位洞桩法施工力学行为及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京地铁10号线工体北路站为分离岛式车站,地处环境复杂,洞室交叉部位多,群洞效应明显。本论文以该工程为研究背景,采用理论分析、数值模拟计算和现场测试等研究方法,对复杂环境下大断面群洞交叉部位洞桩法施工力学行为及关键技术进行了研究。通过研究,得出以下主要结论:
     1、针对处于复杂环境下的地铁车站,提出二次衬砌顺逆筑相结合的地铁车站整体洞桩法施工技术,研究了洞桩法施工桩、梁、拱之间的相互作用机理,并给出了相应的施工措施,有效降低了地层位移。具体表现为:
     (1)主洞和联络通道扣拱的先后次序直接影响两者刚度差异,造成两者变形不协调,导致相交处应力集中,尤其是拉应力和剪应力集中程度较高,在施工过程中需要引起重视,因此施工中应尽量缩短主洞和联络通道扣拱的时间差。
     (2)在联络通道导洞高度变化区域和各导洞几何转折区域,由于刚度的变化,其应力应变值比较高,应力应变的峰值出现在联络通道导洞和主洞导洞交汇区域,特别是转角部位。
     (3)冠梁、桩、交叉口初支圈梁和折梁施作完毕且在主拱成形之前,冠梁和桩的应力水平较低,但仍然会在交叉口处出现应力集中;附加梁施工完成且在联络通道开口之前,圈梁承受大部分交叉口处各个方向的荷载,但由于其自身几何尺寸相对较大,可将这些荷载传递给冠梁和桩,保证了荷载传递的连续性。
     (4)由于折梁和初支圈梁同时施工,从结构几何模型上看,类似于拱桥结构,折梁与初支圈梁共同受力,因此折梁施作后各方向应力集中现象均不明显;从各方向的应力分布来看,应力比较大的区域主要分布在折梁水平段和倾斜段的偏中间部位和两段相连的转折部位。
     2、采用整体洞桩法施工地铁车站,提出了有限导洞空间内、深厚大粒径(h>8m、D>20cm)卵石地层、深桩综合施工技术,初步解决了深厚大粒径卵石地层深桩施工难题。
     3、提出了大断面群洞交叉部位主辅洞同时采用洞桩法施工的双向扣拱综合技术,施设的附加梁构件初步解决了地下复杂洞室交叉部位的施工难题。
Gongtibeilu Station of Beijing Metro Line 10 which have complex environment、multi-chamber cross and multi-cavern effect obviously is separated island platform station. Construction mechanical behavior and key technologies of caven-PBA method applied to cross position of group large section tunnels have been studied in the thesis, with the methods of theoretical analysis、numerical simulation and field test. The main results are as follows:
     1. For the metro station in complex environment, the whole caven-PBA construction method is proposed, which combines the down straight method and top-down method of secondary lining. The interaction mechanism of piles、beams and arches in caven-PBA method is studied, and the corresponding construction measure which effectively reduce the formation of displacement is given. Specifically as follows:
     (1) The construction order of main tunnel and the arch buckle of connect tunnel direct influence their stiffness, and cause lack of co-ordination of deformation, stress concentration in the interface, especially tensile stress and a higher degree of shear stress concentration. So in the construction the time difference of main tunnel and the arch buckle of connect tunnel must as short as possible.
     (2) As the changes in stiffness, the stress-strain values, in the depth changes region of guide tunnel and geometric turning point region of all the guide tunnels the of connect tunnel, is relatively high, and the peak stress-strain appear the intersection of the main tunnel and the connect guide tunnel, especially the corner.
     (3) The top beams、piles、primary support ring beam of the intersection and the folded beam is constructed before the main arch completed, the stress of the top beam and pile is lower, but stress concentration is still appear in the intersection. The ring beam bear the all directions load before the additional beam completed and the connect tunnel opened, but the geometry is more bigger, the ring beam could delivery the load to the top beams and piles, and ensure the continuity of load transfer.
     (4) As the folded beam and primary support ring beam construct contemporarily, and from the geometry structural point, the folded beam and primary support ring beam, as arch bridge structure, are co-stressing, and the stress concentration is not obvious after the folded beam constructed. From all direction stress distribution, the regions of the high stress appear in the horizontal section the Partial middle tilt section and the corner of the two section intersection of the folded beam.
     2. The new integrated construction technology which based on the situation of limited hole space、deep large-size (h>8m、D>20cm) gravel strata and deep-pile is proposed in the metro station constructed by whole caven-PBA construction method, and the technology solve initially the deep-pile construction problem in deep large-size gravel strata.
     3. The bidirectional arch buckle integrated technology which means the primary and secondary tunnels adopt the caven-PBA method at the same time in cross position of group large section tunnels is proposed, and additional beam elements solve initially the construction problem of cross position of underground complex cavern.
引文
[1]GB 50299-1999,地下铁道工程施工及验收规范[S].
    [2]GB50157-92,地下铁道设计规范[S].
    [3]宋汉甫.浅埋暗挖洞桩法施上发展综述及探讨[J].中国水运.2008.8(8):221-223.
    [4]刘钊.地铁工程设计与施工[M],北京:人民交通出版社,2004年.
    [5]铁道第二勘察设计院.地铁工程设计指南[M],北京:中国铁道出版社,2002年.
    [6]钟茂华.地铁施工围岩稳定性数值分析[M],北京:科学出版社,2006年.
    [7]张庆贺,朱合华,庄荣.地铁与轻轨[M],北京:人民交通出版社,2006年.
    [8]黄克戬.地下洞室群开挖数值仿真研究与工程应用[D],武汉大学硕士学位论文,2004年5月.
    [9]Han Boli,Chen Xialing. Three-dimensional model test research for tunnel group, Proc international symposium tunnelling for water resources and power projects, New Delhi, 19-23 January 1988, p83-87.
    [10]杜建华,鲍薇,刘志娜等.北京地铁十号线光华路站开挖群洞效应的数值模拟研究[J].北京科技大学学报.2007.29(增2):36-41.
    [11]王暖堂,陈瑞阳,谢菁.城市地铁复杂洞群浅埋暗挖法施工技术[J].岩土力学.2002.23(2):208-212.
    [12]吴波,高波,漆泰岳等.城市地铁区间隧道洞群开挖顺序优化分析[J].中国铁道科学.2003.24(5):23-28.
    [13]E. Hoek and D. Wood. A modified Hoek-Brown failure criterion for jointed rock masses [J], Proc. Int. Conf. Eurock'92, Chest, England,1992,202-214.
    [14]Ya-Ching Liu, Chao-Shi Chen. A new approach for application of rock mass classification on rock slope stability assessment [J], Engineering Geology,89(2007), 129-143.
    [15]M.S.Diederichs, P.K.Kaiser, E.Eberhardt. Damage initiation and propagation in hard rock during tunneling and the influence of near-face stress rotation [J], International Journal of Rock Mechanics and Mining Sciences,41(2004),785-812.
    [16]Makoto Obata, Michio Inoue, Yoshiaki Goto. The failure mechanism and the pull-out strength of a bond-type anchor near a free edge [J], Mechanics of Materials,28(1998), 113-122.
    [17]Japan Tunnelling Association. Single-shell in-situ concrete tunnel lining:experience in Japan [J],25(1988),51-54.
    [18]夏志强.城市地铁群洞隧道施工地表沉降研究[D],西南交通大学硕士学位论文,2007年4月.
    [19]刘彩虹.大跨度浅埋暗挖洞群施工监控量测技术[J].铁道建筑.1999.(2):7-10.
    [20]姜谙男.大型洞室群开挖与加固方案反馈优化分析集成智能方法研究[D],东北大学博士学位论文,2004年12月.
    [21]安红刚,冯夏庭.大型洞室群稳定性与优化的进化有限元方法[J].岩土力学.2001.22(4):373-377.
    [22]Hongqiang Xie, Chuan He. Analysis of excavation stability in hard rock tunnel by brittle elastoplasticity damage FEM. Tunnelling and Underground Space Technology, Volume 21, Issues 3-4, May-July 2006,345-346.
    [23]张志强,李宁,徐彬.大规模引水隧洞群施工方案三维有限元分析[J].水力发电学报.2004.23(6):84-87.
    [24]田政海,曹文贵,程晔.地下洞室群开挖过程的有限元模拟方法研究[J].中南公路工程.2004.29(3):27-30.
    [25]C.B. Kooi, A.Verruijt. Interaction of circular holes in an infinite elastic medium. Tunnelling and Underground Space Technology.2001(16) 59-62
    [26]Zimmerman, R.W.,1988. Second-order approximation for the compressionof an elastic plate containing a pair of circular holes.ZAMM 68:575-577
    [27]J.S.Sharma A.M.Hefny.Effect of large excavation on deformation of adjacentMRT tunnels. Tunnelling and Underground Space Technology.2001 16:93-98
    [28]D. Wen, J. Poh, Y.W. Ng.Design considerations for bored tunnels at close proximity. Tunnelling and Underground Space Technology.2004,19:468-469.
    [29]Chi-Te Chang, Chieh-Wen Sun.Response of a Taipei Rapid Transit System TRTS tunnel to adjacent excavation. Tunnelling and Underground Space Technology. 2001,16:151-158.
    [30]M.Jao,M.C.Wang.Stability of stip footing above concrete-lined soft ground tunnels. Tunnelling and Underground Space Technology.2003,13(4):427-434
    [31]宋月光,杨慧林,李涛.地铁洞桩法施工阶段地下洞室的受力分析[J].铁道标准设计.2005.(7):97-99.
    [32]米德才.浅埋大跨度洞室群围岩稳定性工程地质研究[D],成都理工大学博士学位论文,2006年5月.
    [33]Michael J. Kavvadas. Monitoring ground deformation in tunnelling:Current practice in transportation tunnels. Engineering Geology, Volume 79, Issues 1-2,3 June 2005,93-113
    [34]王绍军.洞桩法及CRD工法地铁施工对地表沉降影响研究[D],哈尔滨工业大学博士学位论文,2007年12月.
    [35]穆创国,张宏,夏浩军.开挖方案对洞群围岩稳定性的影响研究)[J].西北农林科技大学学报(自然科学版).2004.32(增刊):139-144.
    [36]胡国伟,王炳华,张宇宁等.浅埋暗挖大跨地铁车站群洞隧道施工控制技术[J].铁道建筑.2007.(8):41-43.
    [37]汪易森,李小群.地下洞室群围岩弹塑性有限元分析及施工优化[J].水力发电.2001.(6):35-38,75.
    [38]H. Mroueh, I. Shahrour.A. full 3-D finite element analysis of tunneling-adjacent structures interaction.Computers and Geotechnics.2003,30:245-253.
    [39]H.S. Shin, C.Y. Kim, K.Y. Kim, G.J. Bae, S.W. Hong.A new strategy for monitoring of adjacent structures to tunnel construction in urban area. Tunnelling and Underground Space Technology.2006,21:461-462.
    [40]Y.J.Lee, C.S.Yoo.Behaviour of a bored tunnel adjacent to a line of loaded piles. Tunnelling and Underground Space Technology.2006.21:370
    [41]Ito T,Hisatake M.Three dimensional surface subsidence caused by tunnel driving[A].In:Balke ma A Z.Processings of the Fourth International Conference on Numerical Methods in Gomethanicals[C].Rotterdam.1982:551-559.
    [42]Lee K M, Rowe R K. Finite element modeling of the three-dimensional ground deformations due to tunnelling in son cohesive soils:pant Ⅰ-method of analysis[J]. Computers and Geotechnics,1990, (10):87-109.
    [43]Lee K M, Rowe R K. Finite element modelling of the three-dimensional ground deformations due to tunnelling in soft cohesive soils:part Ⅱ-results[J]. Computers and Geotechnics,1990.10:111-138.
    [44]郭龙,刘牧宇.浅埋暗挖群洞法施工中结构受力的合理转换[J].铁道建筑.2004.(5):24-27.
    [45]Zhang Xuefu, Yu Wenbing, Wang Cheng, Liu Zhiqiang. Three-dimensional nonlinear analysis of coupled problem of heat transfer in the surrounding rock and heat convection between the air and the surrounding rock in the Fenghuo mountain tunnel. Cold Regions Science and Technology, Volume 44, Issue 1, January 2006,38-51.
    [46]A. Ozsan, H. Basanr. Support capacity estimation of a diversion tunnel in weak rock. Engineering Geology, Volume 68, Issues 3-4, March 2003,319-331
    [47]徐治中,王恒,殷文华等.邻近建筑物暗挖地铁车站采用洞桩法的技术探讨[J].铁道标准设计.2004.(4):82-84.
    [48]余卫平,江小刚,杨健等.地下洞室群围岩稳定分析[J].矿山压力与顶板管理.2005.(3): 14-17.
    [49]吕波.分离岛式地铁车站群洞效应分析与施工优化[J].铁道建筑.2006.(12):48-50.
    [50]A. Ozsan, C. Karpuz. Preliminary support design for Ankara subway extension tunnel. Engineering Geology, Volume 59, Issues 1-2, January 2001,161-172
    [51]Maosong Huang, Chenrong Zhang, Zao Li. A simplified analysis method for the influence of tunneling on grouped piles. Tunnelling and Underground Space Technology, In Press, Corrected Proof, Available online 8 January 2009.
    [52]关宝树.隧道工程施工要点集[M],北京:人民交通出版社,2003年.
    [53]李志业,曾艳华.地下结构设计原理与方法[M].成都:西南交通大学出版社,2003年.
    [54]关宝树.隧道力学概论[M].成都:西南交通大学出版社,1993年.
    [55]李世辉.隧道围岩稳定系统分析[M].北京:中国铁道出版社,1991年.
    [56]徐干成,白洪才,郑颖人等.地下工程支护结构[M].北京:中国水利水电出版社,2002年.
    [57]Japan Tunnelling Association. Single-shell In-situ concrete tunnel lining:Experience in Japan [J], Tunnelling and Underground Space Technology,1988, Volume 3, Issue 1,51-54.
    [58]Alfred Haack. Single-shell In-situ concrete tunnel lining:Experience in the Federal Republic of Germany [J], Tunnelling and Underground Space Technology,1988, Volume 3,Issue 1,55-66.
    [59]Chao-Shi Chen and Ya-Ching Liu. A methodology for evaluation and classification of rock mass quality on tunnel engineering [J], Tunnelling and Underground Space Technology, Volume 22, Issue 4, July 2007, Pages 377-387.
    [60]Vladimir Yu. Sokolov, Chin-Hsiung Loh and Wen-Yu Jean. Application of horizontal-to-vertical (H/V) Fourier spectral ratio for analysis of site effect on rock (NEHRP-class B) sites in Taiwan [J], Soil Dynamics and Earthquake Engineering, Volume 27, Issue 4, April 2007, Pages 314-323.
    [61]Arild Palmstrom, Hakan Stille. Ground behaviour and rock engineering tools for underground excavations [J], Tunnelling and Underground Space Technology, Volume 22, Issue 4, July 2007, Pages 363-376.
    [62]张强勇,李术才,焦玉勇.岩体数值分析方法与地质力学模型试验原理及工程应用[M],北京:中国水利水电出版社,2005年.
    [63]王思敬.地下工程岩体稳定分析[M],北京:科学出版社,1984年.
    [64]朱汉华,孙红月,杨建辉.公路隧道围岩稳定与支护技术[M],北京:科学出版社,2007年.
    [65]孙钧.地下工程设计理论与实践[M],上海:上海科学技术出版社,1996年.
    [66]陈胜宏.计算岩体力学与工程[M],北京:中国水利水电出版社,2006年.
    [67]傅鹤林,彭思甜,韩汝才等.岩土工程数值分析新方法[M],长沙:中南大学出版社,2006年.
    [68]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999年.
    [69]H.J.Kim, Z.Eisenstein. Prediction of tunnel lining loads using correction factors [J], Engineering Geology,85(2006),302-312.
    [70]Arild Palmstrom, Einar Broch. Use and misuse of rock mass classification systems with particular reference to the Q-system [J], Tunnelling and Underground Space Technology, 21(2006),575-593.
    [71]A. Tugrul. The application of rock mass classification systems to underground excavation in weak limestone, Ataturk dam, Turkey [J], Engineering Geology,50(1998),337-345.
    [72]Roman Lackner, Jurgen Macht, Herbert A, Mang. Hybrid analysis method for on-line quantification of stress states in tunnel shells [J], Computer methods in applied mechanics and engineering,195(2006),5361-5376.
    [73]A.Aydin, A.Ozbek, I. Cobanoglu. Tunnelling in difficult ground:a case study from Dranaz tunnel, Sinop, Turkey [J], Engineering Geology,74(2004),293-301.
    [74]J.B.Martino, N.A. Chandler. Excavation-induced damage studies at the Underground Research Labotatory [J], International Journal of Rock Mechanics and Mining Sciences, 41(2004),1413-1426.
    [75]王萱,赵星明,王慧等.基于ANSYS的钢筋混凝土结构三维实体建模技术探讨[J].山东农业大学学报(自然科学版),2004.35(1):113-117.
    [76]王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1998年.
    [77]王学理.“PBA”洞桩法在地铁暗挖车站中的应用[J].现代城市轨道交通,2006.(1): 35-37,43
    [78]黄瑞金.地铁浅埋暗挖洞桩法车站扣拱施工技术[J].地下空间与工程学报,2007.3(2):268-271,276
    [79]朱泽民.地铁暗挖车站洞桩法(PBA)施工技术[J].隧道建设,2006.26(5):63-65,100.
    [80]刘明忠,黄瑞金,范京玲.北京地铁10号线团结湖站洞桩法交叉部位扣拱施工技术[J].铁道标准设计,2008.(12):209-211.
    [81]Lee K M,Rowe K.Analysis of three-dimensional ground movements:the Thunder Bay tunnel[J].Can Geotech J,1991,28(1):25-41.
    [82]Rowe R.K.,Lee K.M.,An evaluation of simplified techniques for estimating three-dimensional undrained ground movements due to tunneling in soft soils.Can.Geotech.J.1992,29:39-52
    [83]E.Hoek and E.Brown. Underground excavations in rock [J]. The institute of Mining and Metallurgy, London,1980,382-395.
    [84]Zhao, J., "Geothermal testing and measurements of rock and rock fractures, Geothermics, 1994 Vol.23,215-231.
    [85]郑颖人,龚晓南.岩土塑性力学基础[M].北京:中国建筑工业出版社,1989年.
    [86]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002年.
    [87]E. Hoek and E.T.Brown. Underground Excavations in Rock [M]. Austin & Sons Ltd, Hertford, England,1980.
    [88]E. Hoek and E.T.Brown著.连志升等译.岩石地下开挖[M].北京:冶金工业出版社,1983年.
    [89]董方庭等著.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001年.
    [90]宋宏伟,郭志宏,周荣章,董方庭.围岩松动圈支护理论的基本观点[J].建井技术,1994(4,5):3-9.
    [91]董方庭,宋宏伟,郭志宏,鹿守敏,梁士杰.巷道围岩松动圈支护理论[J].煤炭学报,1994.19(1):21-32.
    [92]刘刚.非连续岩体破裂机理及其工程稳定性研究[D].中国矿业大学博士学位论文,2006年11月.
    [93]杨永杰,刘传孝,蒋金泉.巷道围岩松动圈的地质雷达探测及应用[J].工程地质学报,1997.5(3):276-281.
    [94]车平,杨志强.雷达实测围岩松动圈的研究[J].山西建筑,2004.30(2):19-20.
    [95]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M],北京:科学出版社,2002年.
    [96]张强勇,李术才,焦玉勇.岩体数值分析方法与地质力学模型试验原理及工程应用[M],北京:中国水利水电出版社,2005年.
    [97]王宏坤.多孔小角度斜交框架桥的顶进施工[J].铁道建筑.2003,8:9-11.
    [98]游励晖.道路下穿既有铁路箱形框架桥顶进法施工技术[J].铁道标准设计.2004,9:49-59.
    [99]郭玉梅.盾构穿越铁路的沉降综合控制技术[J].市政技术.2003,21(4):203-207.
    [100]丛恩伟.并行双洞小净距公路隧道施工技术[J].铁道标准设计.2003,10:71-74
    [101]赖德良.金旗山小净距隧道施工技术探讨[J].华东公路.2003,140:32-37.
    [102]黄波.小净距隧道施工技术要点[J].公路.2003,12:132-136.
    [103]刘洪伟,李建华.交叉口段相邻隧道施工方法及稳定性分析[J].西部探矿工程.2001,68:56-57.
    [104]吴焕通.小间距地铁区间隧道施工工序模拟分析[J].现代隧道技术.2002,39(5):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700