三角帆蚌珍珠质微观结构、矿化机制以及珍珠质涂层生长的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
珍珠质是一种天然的生物复合材料,它是由大约95%的文石碳酸钙和5%的有机基质交替叠加,层层复合而成,形成高度有序的微观结构,类似于建筑上的砖墙。得益于这种高度有序的无机-有机复合结构,珍珠质表现出优异的机械性能,尤其是抗断裂韧性,比合成的文石高3000倍。不但如此,珍珠质还具有较高的生物相容性和成骨活性,是一种理想的骨修复和骨替代材料。因此,珍珠质的结构和性能以及其生物矿化机制吸引了众多科学工作者的关注。
     本文采用扫描电镜(SEM),透射电镜(TEM),X-ray衍射分析(XRD),电子能谱(EDS),喇曼光谱(Raman spectrum),光学金相显微镜等分析测试方法,系统地研究了三角帆蚌贝壳的珍珠质层微观结构和生长方式,并用气氛扩散法体外模拟珍珠质的形成过程。本文利用贝壳的珍珠囊,成功地在钛金属牙种植体表面制备出珍珠质生物活性涂层。
     对贝壳珍珠质微观结构的广泛观察发现,正常的珍珠结构具有有机-无机层层交叠的高度有序结构,无机相为文石碳酸钙构成。有机基质层的厚度和文石板片的厚度分别为20nm和500nm。TEM研究发现相邻板片的晶体取向存在一定的差异。除了正常的珍珠质结构外,还存在3种比较常见的异常结构带,包括柱状珍珠质结构带,针状晶体结构带和球状晶体结构带。柱状珍珠质结构带中,柱状珍珠质形貌酷似鲍鱼贝壳的珍珠质形貌,但是单个板片的厚度在1000-1300nm之间,为文石单晶。针状晶体结构带和球状晶体结构带由文石多晶构成。球状晶体结构带与鲍鱼贝壳的生长线结构非常相似,球状晶体由棒状文石晶体以放射状方式组装而成,SAD分析表明球状晶体为文石多晶构成。异常结构的形成可能跟有机质异常分泌,导致文石晶体c轴方向生长失控有关。而从相应的贝壳中取得的珍珠的珍珠质微观结构中却未观察到类似的异常结构,这个可能是由矿化微环境的不同导致的。
     文石板片的形核位置一般在下层文石板片的边缘区域或者位于板片的边界处。形核后,单个文石板片迅速呈现层状结构。这种结构特征伴随文石板片生长的整个过程。HRTEM分析发现,文石板片的晶体内部存在许多晶格缺陷,而且这些缺陷都发生在文石晶体的(001)晶面上,结合前人的研究后,我们认为这些晶格缺陷可能是由于文石板片生长过程中包埋进晶体内部的有机大分子引起的,并且跟文石板片的层状结构有一定的关联。在体外模拟碳酸钙沉积中,未经去有机质处理的珍珠质表面沉积的碳酸钙晶体由文石构成,取向与珍珠质的文石晶体一致,而且呈现出板层结构;而在去有机质处理的珍珠质表面,尽管沉积的碳酸钙晶体的晶型和取向都与珍珠质的文石一致,但是其晶体形貌呈现出屋脊状,而非板层状;载波片基底上沉积的碳酸钙是方解石、文石和球文石晶体的混合物。这些结果表明,有机大分子能吸附到文石晶体的(001)晶面上,控制文石晶体沿c轴方向生长,从而导致板层结构的文石晶体的形成。
     在本文的研究中,开发了一种新的涂层制备方法,即用生物法在钛金属牙种植体表面制备出天然的珍珠质涂层。将钛金属种植体植入到三角帆蚌的圆形珍珠囊中45天后,可以在种植体的表面沉积上珍珠质涂层。但是观察发现,珍珠质涂层表面有飞边的现象,而且涂层与钛螺钉的界面处存在空隙,说明涂层与种植体的界面处未到达紧密结合。改用圆柱状珍珠囊作为珍珠质涂层制备“反应室”后,可以得到光滑的珍珠质涂层,无飞边现象,而且钛金属螺钉表面和珍珠质涂层紧密结合,无空隙存在。这可能是圆柱状珍珠囊的外套膜与钛金属螺钉的拓扑表面能达到高度匹配的结果。
Nacre (mother of pearl), a natural biocomposite material, is composed of about 95% inorganic aragonite, with only a few percent of organic biopolymer. It has high ordered microstructures in which the crystals and organic matrix exhibit interdigitating array like brick-mortar in architecture. Nacre has excellent mechanical properties due to its laminated microstructures, particularly in its toughness (work of fracture) being 3000 times higher than that of the artificial aragonite. On the other hand, nacre has a high biocompatibility and an ability of inducing growth of bone, and thus is believed to be a new material for bone repairing and substitution. Therefore, nacre has attracted many scientists to study its microstructure and mechanical properties aiming to unveil the biomineralization mechanism by which nacre is formed in mollusk shell.
     In the present study, SEM, TEM, XRD, EDS, Raman spectrum and optical microscope were used to systemically research the microstructures and formation process of the nacre of freshwater H. cumingii Lea shells and the corresponding pearls. Based on the studies, a formation mechanism of nacre was suggested. Nacreous biocoatings were fabricated successfully on surface of titanium implants by inserting titanium implants into mantle sacs of shells.
     SEM observations showed that the cross-section of the normal nacre in the shells exhibits the interdigitating array of tablets and organic biopolymer matrix, about 500nm and 30nm in thickness, respectively. XRD analysis showed that nacre was composed of aragonite crystals with a preferential orientation in [001] direction. SAD showed that the individual tablet was diffracted as aragonite single crystal pattern. However, the disorientation of a- and b-axis exists between adjacent tablets of aragonite in normal nacre. Beside the normal nacre, three kinds of abnormal structure band, columnar nacre structure, needle-like structure and spherulitic structure, were frequently observed to be sandwiched inside the nacreous layer on the cross section of shells. The columnar nacre structure band whose structure is similar with the nacre of abalone is proved to be composed of aragonite tablets with preferential orientation of [001] direction, which is identical with the aragonite tablets in normal nacre. Needle-like structure band and spherulitic structure band were composed of aragonite polycrystals. A spherulitic crystal in spherulitic structure band, whose structure is similar with the growth line of abalone shell, is composed of rod-like crystals. The abnormal structure observed in preset study may be induced by abnormal secretion of organic matrix. To our surprise, the similar abnormal structure bands have never been observed in the nacre of pearls which were obtained from the corresponding shells. This may result from the fact that the formation of pearls' nacre occurs in closed space of mantle sacs.
     Nucleation of aragonite tablets occurs at the edge of underlying tablets or the boundary region of adjacent tablets. At various stage of growth, the individual aragonite tablets all exhibit laminated structure. The sub-layers are about 20-50nm in thickness. HRTEM showed that many lattice defects existed on the (001) plane of aragonite crystal. These lattice defects are isolated and the spacing in the [001] direction between two neighboring defects is about 5-20nm, a dimension comparable with the thickness of sub-layers, indicating that the laminated structure of individual aragonite tablet may be closely related with these lattice defects. It is believed that these lattice defects may result from the adsorption of organic macromolecules on the (001) plane of aragonite crystal during the growth of individual aragonite tablet. Simulated growth of CaCO_3 in vitro showed that the deposits formed on the native nacre surface were composed of aragonite crystals with laminated structure, while the deposits formed on nacre surfaces which were pre-treated with sodium hypochlorite were composed of aragonite crystals with ridge-like morphology. In the control experiment, the deposits formed on the glass slices were composed of mixture of calcite, aragonite and vaterite. In control experiment, the deposits forming on glass slices were composed of mixture of calcite, aragonite and vaterite. These results suggest that some kind of organic macromolecules that have property to stabilize the (001) plane of aragonite crystals in order to regulate the growth along the c-axis of aragonite crystals, and consequently, form individual aragonite tablet with laminated structure.
     A new coating technique was developed to fabricate the nacreous biocoatings on titanium implants. All specimens were found to be coated with a layer of natural nacre after implantation for 45 days in spherical mantle sac. However, the mismatching between the local topography of titanium implant surface and spherical mantle sac not only resulted in the formation of a fin along the long-axis of implant, but also led to formation of a gap between the coating and the implant. To solve these problems, we designed a cylindrical pearl sac in order to match the cylindrical titanium implant. Using this cylindrical pearl sac as a reaction room, the nacreous coatings grew smoothly around the whole cylindrical surface of titanium implant. Moreover, the gap between the coating and the titanium implant was disappeared when nacreous coating was fabricated in cylindrical sac, indicating that the close apposition between the coating and the titanium implant was achieved.
引文
[1] Weiner S. Biomineralization: A structural perspective. J Struct Biol 2008; 163:229-234.
    
    [2] 崔福斋,冯庆玲.生物材料学. 北京:清华大学出版社; 2004.
    
    [3] Fay RR. The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 1984;225:951-954
    
    [4] Berry C. Hearing the sermons in stones. Q J Med 2004;97:109-110.
    
    [5] Sollner C, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C, Nicolson T Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science 2003;302:282-286.
    
    [6] Parmentier E, Cloots R, Warin R, Henrist C. Otolith crystals (in Carapidae): Growth and habit. J Struct Biol 2007;159:462-473.
    
    [7] Bauerlein E. Biomineralization of unicellular organisms: Anunusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew Chem Int Ed 2003;42:614-641.
    
    [8] Addadi L, Raz S, Weiner S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv Mater 2003; 15:959-970.
    
    [9] Mann S. Biominetalization: Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press; New York, 2001.
    
    [10]Estroff L A, Hamilton A D. At the interface of organic and inorganic chemistry: Bioinspired synthesis of composite materials. Chem Mater 2001;13:3227-3235.
    
    [11] Sanchez C, Arribert H, Guille M, Madeleine G Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 2005;4:277-288.
    
    [12]Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, et al. Skeleton of euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 2005;309:275-278.
    
    [13] Spring S, Amann R, Ludwig W, Schleifer KH, Gemerden H, Petersen N. Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl Environ Microbiol 1993;59:2397-2401.
    
    [14]Sone ED, Weiner S, Addadi L. Morphology of goethite crystals in developing limpet teeth: Assessing biological control over mineral formation. Cryst Growth & Des 2005;5:2131-2138.
    
    [15] Webb J, Brooker LR, Lee AP, Hockridge JG, et al. Biomineralization-controlled microarchitecture in the radula teeth of chitons and limpets. Aust J Chem 2001;54:611-613.
    [16]Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed 2002;41:3130-3146.
    
    [17] Meyers M A, Chen P Y, Lin A Y M, Seki Y. Biological materials: Structure and mechanical properties. Pro Mater Sci 2008;53:1-206.
    
    [18] Maria VR, Jose MGC. Calcium phosphates as substitution of bone tissues. Pro Solid Stat Chem 2004;32:1-31.
    
    [19]Weiner S, Wagner HD. The material bone: structure-mechanical function relationship. Annu Rev Mater Sci 1998;28:271-298.
    
    [20] Weiner S, Arad T, Traub W. Crystal organization in rat bone lamellae. FEBS Lett 1991;285:49-54.
    
    [21]Busch S. Regeneration of human tooth enamel. Angew Chem Int Ed 2004;43:1428-1431.
    
    [22]Busch S, Schwarz U, Kniep R. Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite-gelatine composites. Chem Mater 2001; 13:3260-3271.
    
    [23]Yang QD, Cox BN, Nalla RK, Ritchie RO. Fracture length scales in human cortical bone: The necessity of nonlinear fracture models. Biomaterials 2006;27:2095-2113.
    
    [24]Imbeni V, Kruzic JJ, Marshall GW, Marshall SJ, Ritchie RO. The dentin-enamel junction and the fracture of human teeth. Nat Mater 2005;4:229-232.
    
    [25] Stupp SI, Braun PV. Molecular Manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science 1997;227:1242-1248.
    
    [26]Mann S. The chemistry of form. Angew Chem Int Ed 2000;39:3392-3409.
    
    [27]Meldrum FC. Calcium carbonate in biomineralisation and biomimetic chemistry. Int Mater Rev 2003;48:187-224.
    
    [28]Cusack M, Freer A. Biomineralization: Elemental and organic influence in carbonate systems. Chem Rew 2008; 108:4433-4454.
    
    [29]Kobayashi I, Samata T. Bivalve shell structure and organic matrix. Mater Science Eng C 2006;26:692-698.
    
    [30]Lin A, Meyers A. Growth and structure in abalone shell. Mater Science Eng A 2005;390:27-41.
    
    [31]Wise S W. Microarchitecture and deposition of gastropod nacre. Science 1970;167:1486-1488.
    
    [32]Nudelman F, Gotliv BA, Addadi A, Weiner S. Mollusk shell formation: Mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J Struct Biol 2006;153:176-187
    
    [33]Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA. Deformation mechanisms in nacre. J Mater Res 2001; 16:2485-2493.
    [34]Chateignera D,Hedegaard C,Wenk HR.Mollusc shell microstructures and crystallographic textures.J Strust Biol 2000;22:1723-1735.
    [35]崔福斋,郑传林.仿生材料.北京:化学工业出版社;2004.
    [36]Sch(a|¨)ffer TE,Zanetti CI,Proksch R,Fritz M,Waiters DA,Almqvist N,Zaremba CM,Belcher AM,Smith BL,Stucky GD,Morse DE,Hansma PK.Does abalone nacre formed by hetereoepitaxial nucleation or by growth through mineral bridge?Chem Mater 1997;9:1731-1740.
    [37]张刚生,谢先德.贝壳珍珠层微结构及成因理论.矿物岩石2000;20:11-16.
    [38]Su X,Belcher AM,Zaremba CM,Morse DE,Stucky GD,Heuer AH.Structural and microstructural characterization of the growth lines and prismatic microarchitecture in red Abalone shell and the microstructures of abalone "flat pearls".Chem Mater 2002;14:3106-3177.
    [39]Rousseau M,Lopeza E,Stempfle E,Brendle M,Franked L,Guetted A,Naslaind R,Bourrat X.Multiscale structure of sheet nacre.Biomaterials 2005;26:6254-6262.
    [40]Feng QL,Cui FZ,Pu G,Wang RZ,Li HD.Crystal orientation,toughening mechanisms and a mimic of nacre.Mater Science Eng C 2000;11:19-25.
    [41]Hou WT,Feng QL.Crystal orientation preference and formation mechanism of nacreous layer in musse.J Cryst Growth 200;258:402-408.
    [42]DiMasi E,Sarikaya M.Synchrotron x-ray microbeam diffraction from abalone shell.J Mater Res 2004;19:1471-1476.
    [43]Metzler RA,Abrecht M,Olabisi RM,Ariosa D,Johnson CJ,Frazer BH.Architecture of columnar nacre,and implications for its formation mechanism.Phys Rev Lett 2007;98:268102.
    [44]Watabe N.Decalcification of thin sections for electron microscope studies of crystal-matrix relationships in mollusc shells.J Cell Biol 1963;18:701-703.
    [45]Watabe N.Crystal-matrix relationships in the inner layers of mollusk shells.J Ultrastruct Res 1965;12:351-355.
    [46]Heuer A H,Fink D J,Karaia V J,Arias J L,et al.Innovative materials processing strategies:A biominetic approach.Science 1992;255:1098-1105.
    [47]Barthelat F,Li CM,Comi C,Espinosa HD.Mechanical properties of nacre constituents and their impact on mechanical performance.J Mater Res 2006;21:1977-1986.
    [48]Li X D,Chang W C,Chao Y J,Wang R Z,Chang M.Nanoscale structural and mechanical characterization of a natural nanocomposite material:The shell of red abalone.Nano Lett 2004;4:613-617.
    [49]Bruet BJF,Qi HJ,Boyce MC,Panas R,Tai K,Frick L,Ortiz C.Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus.J Mater Res.2005;20:2400-2419.
    [50]Li X, Xu ZH, Wang RZ. In situ observation of nanograin rotation and deformation in nacre. Nano Lett 2006;6:2301-2304.
    
    [51]Mohanty B, Katti KS, Katti DR, Verma D. Dynamic nanomechanical response of nacre. J Mater Res 2006;21:2045-2051.
    
    [52]Mohanty B, Verma D, Katti KS, Katti DR. Time dependent nanomechanical response of nacre. Mater Res Soc Symp Proc 2007;975:0975-DD03-03.
    
    [53] Sumitomo T, Kakisawa H, Owaki Y, Kagawa Y. Transmission electron microscopy observation of nanoscale deformation structures in nacre. J Mater Res 2008;23:3213-3221.
    
    [54] Oaki Y, Imai H. The hierarchical architecture of nacre and its mimetic material. Angew Chem Int Ed 2005;44:6571-6575.
    
    [55]Zhan J, Lin HP, Mou CY. Biomimetic formation of porous single-crystalline CaCO_3 via nanocrystal aggregation. Adv Mater 2003;15:621-623.
    
    [56]Takahashi K, Yamamoto H, Onoda A, Doi M, Inaba T, Chiba M, Kobayashi A, Taguchi T, Okamura T, Ueyama N. Highly oriented aragonite nanocrystal-biopolymer composites in an aragonite brick of the nacreous layer of Pinctadafucata. Chem Commun 2004;996-997.
    
    [57]Levi-Kalisman Y, Falini G, Weiner S. Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol2001;135:8-17.
    
    [58] Weiner S, Traub W. Macromolecules in mollusk shells and their functions in biomineralization. Phil Trans R Soc Lond Ser B 1984;304:421-438.
    
    [59] Weiner S, Talmon Y, Traub W. Electron diffraction of mollusk shell organic matrices and their relationship to the mineral phase. Int J Biol Macromol 1983;5:325-328.
    
    [60] Weiner S, Traub W. X-ray diffraction study of the insoluble organic matrix of mollusk shells. FEBS Lett 1980; 111:311-316.
    
    [61] Huang LJ, Li HD. Observation of the phase transformation in the growth of a biomineralized calcium carbonate. Biochem Biophys 1991;176:654-657.
    
    [62] Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A. A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA 1996;93:9657-9660.
    
    [63]Kono M, Hayashi N, Samata T. Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem Biophys Res Commun 2000;269:213-218.
    
    [64] Miyashita T, Takagi R, Miyamoto H, Matsushiro A. Identical carbonic anhydrase contributes to nacreous or prismatic layer formation in Pinctada fucata (Mollusca: Bivalvia). Veliger 2002;45:250-255.
    
    [65] Miyamoto H, Miyoshi F, Kohno J. The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusk Pinctada fucata. Zool Sci 2005 ;22:311-315.
    
    [66]Gong N, Shangguan J, Liu X, Yan Z, Ma Z, Xie L, Zhang R. Immunolocalization of matrix proteins in nacre lamellae and their in vivo effects on aragonitic tablet growth. J Struct Biol 2008;164:33-40.
    
    [67]Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K, Takahashi T. Structures of mollusc shell framework proteins. Nature 1997;387:563-564.
    
    [68] Takeuchi T, Endo K. Biphasic and dually coordinated expression of the genes encoding major shell matrix proteins in the pearl oyster Pinctada fucata. Mar Biotechnol 2006;8:52-61.
    
    [69]Samata T, Hayashi N, Kono M, Hasegawa K, Horita C, Akera S. A new matrix protein family related to the nacreous layer formation of Pinctada fucata FEBS Lett 1999;462:225-229.
    
    [70]Miyashita T, Takaki R, Okushima M, Nakano S, Miyamoto H, Neshikawa E, Matsushiro A. Complementary DNA cloning and characterization of pearlin, a new class of matrix protein in the nacreous layer of oyster pearls. Mar Biotechnol 2000;2:409-418.
    
    [71]Yano M, Nagai K, Morimoto K, Miyamoto H. A novel nacre protein N19 in the pearl oyster Pinctada fucata. Biochem Biophys Res Commun 2007;362:158-163.
    
    [72]Marin F, Corstjens P, Gaulejac B, Vrind-De Jong E D, Westbroek P J. Molecular characterization of mucoperlin, a novel mucin-like protein from thenacreous shell layer of the fan mussel Pinna nobilis (bivalvia, pteriomorphia). J Biol Chem 2000;275:20667-20675.
    
    [73]Marin F, Groot K, Westbroek P. Screening molluscan cDNA expression libraries with anti-shell matrix antibodies. Protein Expr Purif 2003;30:246-252.
    
    [74]Michenfelder M, Fu G, Lawrence C, Weaver JC, Wustman BA, Taranto L, Evans JS, Morse DE. Characterization of two molluscan crystal-modulating biomineralization proteins and identification of putative mineral binding domains. Biopolymers 2003;70:522-533.
    
    [75]Fu G, Qiu SR, Orme CA, Morse DE, De Yoreo JJ. Acceleration of calcite kinetics by abalone nacre proteins. Adv. Mater. 2005;17:2678-2683.
    
    [76]Shen X, Belcher AM, Hansma PK, Stucky GD, Morse DE. Molecular cloning and characterization of lustrin A: A matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem 1997;272:32472-32481.
    
    [77] Smith BL, Schaffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher AM, Stucky GD, Morse DE, Hasma PK. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 1999;399:761-763.
    [78]Wustman BA,Morse DE,Evans J S.Structural analyses of polyelectrolyte sequence domains within the adhesive elastomeric biomineralization protein Lustrin A.Langmuir 2002;18:9901-9906.
    [79]Wustman BA,Weaver JC,Morse DE,Evans JS.Characterization of a ca(Ⅱ)-,mineral-interactive polyelectrolyte sequence from the adhesive elastomeric biomineralization protein Lustfin A.Langmuir 2003;19:9373-9381.
    [80]Currey JD.Mechanical properties of mother of pearl in tension.Proc Roy Soc Lond B 1977;196:443-463.
    [81]Jackson AP,Vincent JFV,Turner RM.The mechanical design of nacre.Proc Roy Soc London B 1988;234:415-440.
    [82]Bond GM,Richman RH,McNaughton WP.Mimicry of natural material designs and processes.J Mater Eng Perform 1995;4:334-345.
    [83]张刚生.生物矿化材料及仿生材料工程.矿产与地质2002;16:98-102.
    [84]Sarikaya M,Gunnison KE,Yasrebi M,Aksay JA.Mechanical property-microstructural relationships in abalone shell.Mater Res Soc 1990;174:109-116.
    [85]Menig R,Meyers MH,Meyers MA,Vecchio KS.Quasi-static and dynamic mechanical response of Haliotis rufescens(abalone) shells.Acta Mater 2000;45:2383-2398.
    [86]Okumura K,Gennes PG.Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures.Eur Phys J E 2001;4:121-127.
    [87]李恒德,冯庆玲,崔福斋,马春来,李文治,毛传斌.贝壳珍珠层及仿生制备研究.清华大学学报(自然科学版)2001;41:41-47.
    [88]郑全英,毛叶盟.海水珍珠与淡水珍珠的成分、药理作用及功效.上海中医药杂志2004;38:54-55.
    [89]Westbroek P,Marin F.A marriage of bone and nacre.Nature 1998;392:861-862.
    [90]Atlan G,Delattre O,Berland S,LeFaou A,Nabias G,Cot D,Lopez E.Interface between bone and nacre implants in sheep.Biomaterials 1999;20:1017-1022.
    [91]Liao H,Mutvei H,Sj(o|¨)str(o|¨)m M,Hammarstr(o|¨)m L,Li J.Tissue responses to natural aragonite(Margaritifera shell) implants in vivo.Biomaterials 2000;21:457-468.
    [92]Liao H,Mutveib H,Hammarstr(o|¨)m L,Wurtz T,Li J.Tissue responses to nacreous implants in rat femur:an in situ hybridization and histochemical study.Biomaterials 2002;23:2693-2801.
    [93]Liao H,Brandsten C,Lundmark C,Wurtz T,Li J.Responses of bone to titania-hydroxyapatite,composite and nacreous implants:A preliminary comparison by in situ hybridization.J Mater Sci:Mater Med 1997;8:823-827.
    [94]]Lamghari M, Berland S, Laurent A. Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials 2001;22:555-562.
    
    [95]Shen Y, Zhu J, Zhang H, Zhao F. In vitro osteogenetic activity of pearl. Biomaterials 2006;27:281-287.
    
    [96]Duplat D, Chabadel A, Gallet M, Berland S, Bedouet L, Rousseau M, Kamel S, Milet C, Jurdic P, Brazier M, Lopez E. The in vitro osteoclastic degradation of nacre. Biomaterials 2007;28:2155-2162.
    
    [97]Addadi L, Joester D, Nudelman F, Weiner S. Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chem Eur J 2006;12:980-987.
    
    [98] Wheeler AP, George JW, Evans C A.Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science 1981;212:1397-1398.
    
    [99]Addadi L, Weiner S. Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization. Proc Natl Acad Sci 1985;82:4110-4114.
    
    [100] Falini G, Albeck S, Weiner S, Addadi L. Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules. Science 1996;271:67-69.
    
    [101] Falini G, Fermani S, Gazzano M, Ripamonti A. Biomimetic crystallization of calcium carbonate polymorphs by means of collagenous matrices. Chem Eur J 1997;3:1807-1814.
    
    [102] Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE. Control of crystal phase switching and orientation by soluble mollusk-shell proteins. Nature 1996:381:56-58.
    
    [103] Feng Q L, Li B, Cui Z, Li D. Crystal orientation domains found in the single lamina in nacre of the Mytilus edulis shell. J Mater Sci Lett 1999;18:1547-1549.
    
    [104] Neff JM. Ultrastructure of the outer epithelium of the mantle in the clam mercenaria mercenaria in relation to calcification of the shell. Tissue & Cell 1972;4:591-600.
    
    [105] Marsh ME. Biomineralization in the presence of calcium-binding phosphoprotein particles. J Exp Zool 1986;239:207-220.
    
    [106] Mount AP, Wheeler AP, Paradkar RP, Snider D. Hemocyte-mediated shell mineralization in the eastern oyster. Science 2004;304:297-300.
    
    [107] Weiss IM, Tuross N, Addadi L, Weiner S. Mollusc larval shell formation: Amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 2002;293:478-491.
    
    [108] Nassif N, Pinna N, Gehrke N, Antonietti M, Jager C, Colfen H. Amorphous layer around aragonite platelets in nacre. Proc Natl Acad Sci USA 2005;102:12653-12655.
    
    [109] Loste E, Park RJ, Warren F, Meldrum FC. Precipitation of calcium carbonate in confinement. Adv Funct Mater 2004;14:1212-1220.
    
    [110] Loste E. Wilson RM, Seshadri R, Meldrum, FC. The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. J Cryst Growth 2003;254: 206-218.
    
    [111] Checa A G, Rodriguez-Navarro A B. Self-organisation of nacre in the shells of Pterioida (Bivalvia: Mollusca). Biomaterials 2005;26:1071-1079.
    
    [112] Rousseaua M, Lopez E, Couteb A, Mascarel G, Smithc DC, Naslaind R, Bourratd X. Sheet nacre growth mechanism: A Voronoi model. J Struct Boil 2005;149:149-157.
    
    [113] Rousseau M, Meibom A, Geze M, Bourrat X, Angellier M, Lopez E. Dynamics of sheet nacre formation in bivalves. J Struct Biol 2009;165:190-195.
    
    [114] Weiner S, Hood L. Soluble protein of the organic matrix of mollusk shells: A potential template for shell formation. Science 1975:190:987-989.
    
    [115] Heywood BR, Mann S. Template-directed nucleation and growth of inorganic materials. Adv Mater 1994;6:9-20.
    
    [116] Loste E, Daz-Mart E, Zarbakhsh A, Meldrum FC. Study of calcium carbonate precipitation under a series of fatty acid Langmuir monolayers using brewster angle microscopy. Langmuir 2003;19:2830-2837.
    
    [117] Aizenberg J. Patterned crystallisation on self-assembled monolayers with integrated regions of disorder. J Chem Soc Dalton Trans 2000;3963-3968.
    
    [118] Park RJ, Meldrum FC. Synthesis of single crystals of calcite with complex morphologies. Adv Mater 2002;14:l 167-1169.
    
    [119] Buijnsters PJ, Dormers JJ, Hill SJ, Heywood BR, Nolte RJ, Zwanenburg B, Sommerdijk NA. Oriented crystallization of calcium carbonate under self-organized monolayers of amide-containing phospholipids. Langmuir 2001;17:3623-3628.
    
    [120] Lin AY, Chen PY, Meyers A. The growth of nacre in the abalone shell. Acta Biomater 2008;4:131-138.
    
    [121] Song F, Zhang XH, Bai YL. Microstructure and characteristics in the organic matrix layers of nacre. J Mater Res 2002;17:1567-1570.
    
    [122] Song F, Soh AK, Bai YL. Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 2003;24:3621-3631.
    
    [123] Weiner S, Addadi L. Design strategies in mineralized biological materials. J Mater Chem 1997;7:689-702.
    
    [124] Nudelman F, Shimoni E, Klein E, Rousseau M, Bourrat X, Lopez E, Addadi L, Weiner S. Forming nacreous layer of the shells of the bivalves Atrina rigida and Pinctada margaritifera: An environmental- and cryo-scanning electron microscopy study. J Struct Biol 2008;162:290-300.
    [125]Li XD,Huang ZW.Unveiling the formation mechanism of pseudo-single-crystal aragonite platelets in nacre.Phys Rev Lett 2009;102:075502(1-4).
    [126]张刚生,谢先德,王英.三角帆蚌贝壳珍珠层中类胡萝卜素的激光拉曼光谱研究.矿物学报.2001;21;389-392.
    [127]张刚生,谢先德,戚绍祺,胡萍春.贝壳珍珠层的X射线衍射研究.矿物岩石.2002;22:8-11.
    [128]张刚生,谢先德.贝壳珍珠层中文石晶体择优取向研究.无机材料学报.2000;15:765-768.
    [129]谢先德,张刚生.珍珠层中文石晶体择优取向的XRD极图分析.矿物学报.2001:21:299-302.
    [130]张刚生,谢先德,王德强,童银洪.我国主要育珠贝蚌贝壳珍珠层的扫描电子显微镜研究.热带海洋学报.2003;22:55-60.
    [131]余炼钢,杨明星.蚌壳珍珠层的特殊生长形态和成因探讨-以湖北鄂州梁子湖淡水三角帆蚌为例.宝石和宝石学杂志.2006;8:25-29.
    [132]朱丽琴,王慧明,徐俊华,魏栋,赵文权,王小祥,吴南屏.珍珠质自然涂层钛种植体表面对MC3T3E1成骨样细胞的作用.生物化学与生物物理进展.2008;35:671-675.
    [133]Blank S,Arnoldi M,Khoshnavaz S,Treccani L,Kuntz M,Mann K,Grathwohl G,Fritz M.The nacre protein perlucin nucleates growth of calcium carbonate crystals.J Micros 2003;212:280-91.
    [134]Zaremba CM,Belcher AM,Fritz M,Li Y,Mann S,Hansma PK,Morse DE,Speck JS,Stucky GD.Critical transitions in the biofabrication of abalone shells and flat pearls.Chem Mater 1998;8:679-690.
    [135]Kamat S,Su X,Ballarini R,Heuer H.Structural basis for the fracture toughness of the shell of the conch Strombus gigas.Nature 2000;405:1036-1040.
    [136]Gao HJ,Ji BH,J(a|¨)ger IL,Arzt E,Fratzl P.Materials become insensitive to flaws at nanoscale:lessons from nature.Proc Natl Acad Sci USA 2003;100:5597-5600.
    [137]Qiao L,Feng QL,Li Z.Special vaterite found in freshwater lackluster pearls.Cryst Growth & Des 2007;7:275-279.
    [138]Wada K.Crystal growth of molluscan shells.Bull Natl Pearl Res Lab 1961;7:703-828.
    [139]孙小明.淡水贝类贝壳多层构造形成研究.动物学报.1994;40:221-225.
    [140]Dujardin E,Mann S.Bio-inspired materials chemistry.Adv Mater 2002;14:775-788.
    [141]Currey J D.Hierarchies in biomineral structures.Science 2005;309:253-254.
    [142]Pokroy B,Quintana JP,Caspi EN,Berner A,Zolotoyabko E.Anisotropic lattice distortions in biogenic aragonite.Nat Mater 2004;3:900-902.
    [143] Pokroy B, Fieramosca JS, Dreele RB, Fitch AN, Caspi EN, Zolotoyabko E. Atomic structure of biogenic aragonite. Chem Mater 2007;19:3244-3251.
    
    [144] Pokroy B, Zolotoyabko E. Aragonite growth on single-crystal substrates displaying a threefold axis. Chem Commun 2005;2140-2142.
    
    [145] Dandeu A, Humbert B, Carteret C, Muhr H, Plasari E, Bossoutrot JM. Raman spectroscopy-a powerful tool for the quantitative determination of the composition of polymorph mixtures: application to CaCO_3 polymorph mixtures. Chem Eng. & Technol 2006;29:221-225.
    
    [146] Gehrke N, Colfen H, Pinna N, Antonietti M, Nassif N. Superstructures of calcium carbonate crystals by oriented attachment. Cryst Growth & Des 2005;4:1317-1319.
    
    [147] Levi Y, Albeck S, Brack A, Weiner S, Addadi L. Control over aragonite crystal nucleation and growth: An in vitro study of biomineralization. Chem Eur J 1998;4:389-396.
    
    [148] Yu S H, Colfen H, Hartmann J, Antonietti M. Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers. Adv Funct Mater 2002;12:541-545.
    
    [149] Chen SF, Yu SH, Wang TX, Jiang J, Colfen H, Hu B, Yu B. Polymer-directed formation of unusual CaCO_3 pancakes with controlled surface structures. Adv Mater 2005;17:1461-1465.
    
    [150] Yu SH, Colfen H, Tauer M, Antonietti M. Tectonic arrangement of BaCO_3 nanocrystals into helices induced by a racemic block copolymer. Nat Mater 2005;4:51-55.
    
    [151] Wang T X, Colfen H, Antonietti M, Nonclassical crystallization: mesocrystals and morphology change of CaCO_3 crystals in the presence of a polyelectrolyte additive. J Am Chem Soc 2005; 127:3246-3247.
    
    [152] Xu AW, Antonietti M, Colfen H, Fang YP. Uniform hexagonal plates of vaterite CaCO_3 mesocrystals formed by biomimetic ,mneralization. Adv Funct Mater 2006;16:903-908.
    
    [153] Nassif N, Gehrke N, Pinna N, Shirshova N, Tauer K, Antonietti M, Colfen H. Synthesis of stable aragonite superstructures by a biomimetic crystallization pathway. Angew Chem Int Ed 2005;44:6004-6009.
    
    [154] Faatz M, Grohn F, Wegner G. Amorphous calcium carbonate synthesis and potential intermediate in biomineralization. Adv Mater 2004;16:996-1000.
    
    [155] Michel FM, MacDonald J, Feng J, Phillips BL, Ehm L, Tarabrella C, Parise JB, Reeder RJ. Structural characteristics of synthetic amorphous calcium carbonate. Chem Mater 2008;20: 4720-4728.
    
    [156] Qiao L, Feng QL, Lu SS. In vitro growth of nacre-like tablet forming: from amorphous calcium carbonate, nanostacks to hexagonal tablets. Cryst Growth & Des2008;8:1509-1514.
    
    [157] Politi L, Arad T, Klein E, Weiner S, Addadi L. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 2004;306:1161-1164.
    
    [158] Velazquez-Castillo RR, Reyes-Gasga J, Garcia-Gutierrez DI, Jose-Yacaman M. Crystal structure characterization of nautilus shell at different length scales. Biomaterials 2006;27:4508-4517.
    
    [159] Wang XX, Hayakawa S, Tsuru K, Osaka A. Improvement of bioactivity of H_2O_2/TaCl_5-treated titanium after subsequent heat treatments. J Biomed Mater Res 2000;52:171-176.
    
    [160] Sun L, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. J Biomed Mater Res (Appl Biomater) 2001;58:570-592.
    
    [161] Yang Y Z, Kim K H, Ong J L. A review on calcium phosphate coatings produced using a sputtering process;an-alternative to plasma spraying. Biomaterials 2005;26:327-337.
    
    [162] Zhitomirsky I, Galor L. Electrophoretic deposition of hydroxyapatite. J Mater Sic Mater Med 1997;8:213-219.
    
    [163] Wie H, Hero H, Solheim T. Hot isostatic pressing-processed hydroxyapatite-coated titanium implants: light microscopic and scanning electron microscopic investigation. Int J Oral Maxillofac Implants 1998; 13:837-844.
    
    [164] Bigi A, Boanini E, Bracci B, Facchini A, Panzavolta S, Segatti F, Sturba L. Nanocrystalline hydroxyapatite coatings on titanium: A new fast biomimetic method. Biomaterials 2005;26:4085-4089.
    
    [165] Kim HW, Kim HE, Knowles JC. Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. Biomaterials 2004;25:3351-3358.
    
    [166] Sung YM, Shin YK. Nanocrystal formation in hydroxyapatite films electrochemically coated on Ti-6A1-4V alloys. Cryst Growth & Des 2005;5:29-32.
    
    [167] Li P J, Ducheyne P. Quasi-biological apatite film induced by titanium in a simulated body fluid. J Biomed Mater Res 1998;41:341-348.
    
    [168] Fritz M, Belcher AM, Radmacher M, Walters DA, Hansma PK, Stucky GD, Morse DE, Mann S. Flat pearls from biofabrication of organized composites on inorganic substrates. Nature 1994;371:49-51.
    
    [169] Wilbur KM, Watabe N. Experimental studies on calcification in mollusk and the alga Coccolittius iiuxleyi. Ann NY Acad Sci 1963;109:82-112.
    
    [170] Wang R. Pearl powder bio-coating and patterning by electrophoretic deposition. J Mater Sci 2004;39:4961-4964.
    
    [171] Tang Z, Kotov N A, Magonov S, Ozturk B. Nanostructured artificial nacre. Nat Mater 2003;2:413-418.
    [172]Wei H,Ma N,Shi F,Wang ZQ,Zhang X.Artificial nacre by alternating preparation of layer-by-layer polymer films and CaCO_3 strata.Chem Mater 2007;19:1974-1978.
    [173]Volkmer D,Harms M,Gower L,Ziegler A.Morphosynthesis of nacre-type laminated CaCO_3 thin films and coatings.Angew Chem Int Ed 2005;44:639-644.
    [174]Han JT,Xu XR,Kim DH,Cho K.Biomimetic fabrication of vaterite film from amorphous calcium carbonate on polymer melt:Effect of polymer chain mobility and functionality.Chem Mater 2005;17:136-141.
    [175]马红艳.海水珍珠微结构棱柱层的新认识.矿物学报.2003;23:241-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700