用户名: 密码: 验证码:
多基因化构建重组工业酿酒酵母及其在木薯酒精发酵中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化石能源日益枯竭和纤维素、木质素燃料酒精生产技术尚不完善的背景下,我国已将热带能源植物木薯(Manihot esulenta Crantz)列为燃料酒精生产的重要原料。木薯酒精应用受限因素主要是生产成本高。酵母是酒精工业的“灵魂”,在酵母细胞中构建淀粉代谢途径和纤维素代谢途径,部分替代木薯酒精生产过程外源酶制剂的功能,就可节省酶制剂,同时提高淀粉化率和酒精产率,降低成本。
     本研究以工业酿酒酵母Saccharomyces cerevisiae NY-K为研究对象,以提高木薯基质利用率为目标,最终构建含有三个独立表达盒的多基因酵母整合型表达载体,通过化将葡萄糖淀粉酶基因、葡聚糖内切酶基因和β-葡萄糖苷酶基因整合到NY-K基因组,从而赋予NY-K多底物代谢活性,从而在酒精发酵阶段兼具有水解淀粉的后糖化作用和降解纤维素活性,从而达到有效利用木薯基质中的淀粉和一定程度的降解进而利用纤维素的目的,最终提高木薯发酵酒精产率。
     首先,构建了一个新型酵母整合型表达载体pYES2M。根据酿酒酵母(S. cerevisiae)磷酸甘油酸激酶基因启动子Ppgk碱基序列、核糖体rDNA碱基序列、酿酒酵母抗铜基因CUP1序列和毕赤氏酵母表达载体pPIC9K为模板设计引物,分别进行PCR,扩增得到Ppgk (GenBank accession No. FJ415226)、rDNA、CUP1和信号肽α-MF片段。以酵母附加型质粒pYES2为出发质粒,将扩增得到的4个片段依次引入pYES2中,构建得到表达载体pYES2M。以铜抗性作为筛选标记,避免了新的抗药性标记的引入,在源头上提高了安全性。
     建立了以铜抗性为筛选标记的工业酿酒酵母转化子筛选方法,以及菌落PCR快速鉴定工业酿酒酵母转化子的方法。
     之后,通过PCR方法从泡盛曲霉(Aspergillus awamori)中扩增得到葡萄糖淀粉酶基因gal,从绿色木霉(Trichoderma viride)中扩增得到葡聚糖内切酶基因eg3和p-葡萄糖苷酶基因bgl1。
     通过点突变去除gal片段上Sph Ⅰ位点,通过PCR将eg3和bgl1内含子去除,分别将修饰后的gal、eg3和bgl1插入载体pYES2M的多克隆位点,构建得到三个酵母整合型单价表达载体pYES2M-ga1、pYES2M-eg3和pYES2M-bgl1。通过电化将上述三个线性化载体整合到宿主菌S. cerevisiae NY-K基因组。功能鉴定及SDS-PAGE电泳检测表明三个重组酵母均向胞外表达了活性重组酶蛋白
     其次,通过重叠延伸PCR将特定的基因串联起来,插入pYES2M的多克隆位点,构建了2个酵母双价整合型载体pYES2M-eg3-bgl1和pYES2M-eg3-ga1。其中eg3、bgl1和gal均自带完整表达盒。通过电化方法将线性化载体pYES2M-eg3-bgl1、pYES2M-eg3-ga1分别整合到宿主菌S.cerevisiae NY-K基因组。酶活测定及SDS-PAGE电泳检测表明两个重组酵母均向胞外表达了独立的(非融合)有活性的重组酶蛋白。
     最后,将葡萄糖淀粉酶表达盒pMFgaT插入载体pYES2M-eg3-bgl1中,得到含有3个独立表达盒的酵母整合型三价表达载体pYES2M-eg3-ga1-bgl1。通过电化将线性化多基因表达载体pYES2M-eg3-ga1-bgl1整合到宿主菌S.cerevisiaeNY-K基因组。酶活测定及SDS-PAGE电泳检测表明重组酵母向胞外表达了独立的(非融合)有活性的重组酶蛋白。
     整合gal基因的重组酿酒酵母能以可溶性淀粉为底物进行酒精发酵,发酵终点时酒精浓度为1.595g/00mL~1.614g/100mL,高于整合空载体的菌株NY-K/pYES2M和对照NY-K。整合了eg3基因的重组酿酒酵母能以为羧甲基纤维素底物进行酒精发酵,发酵终点时酒精浓度为0.220~0.259g/100mL,略高于整合空载体的菌株NY-K/pYES2M和对照NY-K。整合了bgl1基因的重组酿酒酵母能以为纤维二糖底物进行酒精发酵,发酵终点时酒精浓度为0.323-0.340g/100mL,略高于整合空载体的菌株NY-K/pYES2M和对照NY-K。
     三价重组酿酒酵母NY-K/pYES2M-eg3-ga1-bgl1直接发酵木薯基质,发酵终点酒精浓度为1.64g/100mL,对照宿主菌为0.42g/100mL。木薯基质中添加外源酶制剂的基础上进行酒精发酵,三价工程菌NY-K/pYES2M-eg3-ga1-bgl1发酵终点时酒精浓度为9.14g/100mL,与双价工程菌NY-K/pYES2M-eg3-ga1酒精浓度(9.17g/100mL)无明显差别,其他单价和双价重组酿酒酵母发酵木薯基质酒精浓度在8.93~9.20g/100mL之间,对照宿主菌为8.68g/100mL。
     以NY-K/pYES2M-eg3-eg3-bgl1通过SSF模式和SHF模式发酵木薯基质,产生的酒精浓度分别为9.27g/100mL和9.10g/100mL,SSF出酒率高于SHF。
     综合以上结果认为,SSF发酵模式下重组酿酒酵母NY-K/pYES2M-eg3-ga1-bgl1的酒精度(9.27g/100mL)、淀粉利用率(93.79%)和出酒率(53.26%)基本达到酒精工业的要求,且生产过程能节约糖化酶等酶制剂用量,具有一定的应用价值。
Under the background of fossil energy is going to be exhausted and cellulose, lignin fuel ethanol production technology is not perfect, cassava will be used as important material for fuel ethanol production in China in the present and a period of future. The main limited factor for the application of cassava ethanol is the high cost of production. Yeast is the "soul" in the ethanol industries. If constructing new metabolic pathways of starch and cellulose in yeast cells to partial substitution the function of exogenous enzymes in cassava ethanol production, then exogenous enzymes would be saved. Starch conversion and ethanol yield would be improved and production costs would be reduced.
     The strain used in our study was industrial Saccharomyces cerevisiae NY-K The purpose was to improve the utilization ratio of cassava matrix. A multi-gene integrated yeast expression vector with three indivial expression cassette was constructed. Amylase gene, endoglucanase gene and β-glucosidase gene were integrated into the NY-K genome and multi-substrate metabolic activity was added to the transformants. So the transformants could perform post-saccharification to starch in alcoholic fermentation stage and have the function of degrading cellulose. The conversion of starch in cassava matrix was more efficient and cellulose could be degrade in certain degreen. At last ethanol yield was improved.
     At first, a new integrated yeast expression vector pYES2M was contructed. Primers were designed based on the sequence of promoter (Ppgk) of phosphogly cerate kinase gene, ribosomal gene rDNA, copper resistance gene CUP1in S. cerevisiae and signal peptide a-MF in Pichia pastoris expression vector pPIC9K. PCR was performed and four fragments including Ppgk, rDNA,CUP1and a-MF were obtained. Ppgk sequence cloned has been submitted to GenBank, accession nummber was FJ415226. Episomal plasmid pYES2was used as the parent plasmid and the four amplified fragments were introduced into pYES2one by one. Expression vector pYES2M was contructed. Copper resistance gene was used as a selection marker in pYES2M for avoiding the introduction of a new drug-resistance selection marker. Biological security was improved in the source.
     A methods of copper resistance as selection marker for screenig industrial yeast transformants was established. And a rapid identification method for industrial Saccharomyces cerevisiae transformants by colony PCR was established.
     Then glucoarnylase gene gal was amplified by PCR based on Aspergillus awamori genomic DNA. Endolucanase gene eg3and β-glucosidase gene bgll were amplified by PCR based on Trichoderma viride totol RNA.
     Restriction enzyme Sph I site in gal fragment was deleted. The intron in eg3and bgll was deleted individually. Then gal,eg3and bgll was inserted into the multiple cloning site of the vector pYES2M individually. Three yeast integrated expression vector pYES2M-gal,pYES2M-eg3and pYES2M-bgll were constructed and were introduced into the host strain S. cerevisiae NY-K by electroporation method. Functional identification and SDS-PAGE electrophoresis were performed and the three recombinant yeasts were found to produce functional extracellular recombinant enzyme.
     Second, the special genes were spiced through overlap extension PCR and inserted into the multiple cloning site of the vector pYES2M. Two yeast integrated expression vector pYES2M-eg3-ga1and pYES2M-eg3-bgl1were constructed. In every vector the gene eg3,bgl1and ga1contained complete expression cassette. The linear pYES2M-eg3-ga1and pYES2M-eg3-bgl1were introduced into the host strain S.cerevisiae NY-K by electroporation method. Enzyme activity detection and SDS-PAGE electrophoresis were performed and both two recombinant yeast were found to produce independent (non-fusion) functional extracellular recombinant enzyme.
     At last, expression cassette PMFgaT was inserted into the vector pYES2M-eg3-bgll and a yeast trivalent integrated expression vector pYES2M-eg3-gal-bgll was constructed. The linear pYES2M-eg3-gal-bgll was introduced into the host strain S.cerevisiae NY-K by electroporation method. Enzyme activity detection and SDS-PAGE electrophoresis were performed and recombinant yeast was found to produce independent (non-fusion) functional extracellular recombinant enzyme.
     Recombinant yeast integrated gal could performed alcoholic fermentation on soluble starch, ethanol concentration was1.595~1.614g/100mL at the end of fermentation. The value was higher than the strain NY-K/pYES2M and NY-K. Recombinant yeast integrated eg3could performed alcoholic fermentation on CMC. ethanol concentration was0.220~0.259g/100mL at the end of fermentation. The value was a little higher than the strain NY-K/pYES2M and NY-K. Recombinant yeast integrated bgll could performed alcoholic fermentation on cellobiose. ethanol concentration was0.323~0.340g/100mL at the end of fermentation. The value was a little higher than the strain NY-K/pYES2M and NY-K.
     Trivalent recombinant S. cerevisiae NY-K/pYES2M-eg3-gal-bgl1performed alcohol fermentation on cassava matrix directly, ethanol concentration was1.64g/100mL and0.42g/100mL at the end of fermentation for recombinant and parent strain individually. Alcoholic fermentation was performed again after enzyme were added into cassava matrix, ethanol concentration was9.14g/100mL and9.17g/100mL at the end of fermentation for recombinant strain NY-K/pYES2M-eg3-gal-bgl1and NY-K/pYES2M-eg3-ga1individually, ethanol concentration was8.93~9.20g/100mL at the end of fermentation for other recombinants and8.68g/100mL for parent strain.
     NY-K/pYES2M-eg3-eg3-bgll was transfer in cassava matrix and alcoholic fermentation was performed by SSF and SHF mode, ethanol concentration of the liquor was9.27g/100mL and9.10g/100mL for SSF and SHF. ethanol concentration of SSF was higher than SHF.
     Based on the results,the conclusion was that ethanol concentration (9.27g/100mL), starch utilization rate (93.79%) and ethanol production rate (53.26%) for recombinant yeast NY-K/pYES2M-eg3-eg3-bgl1arrived the requirement of ethanol industris under SSF model, and glucoamylase and other enzymes can be saved in the process of production. Transgenic yeast strain NY-K/pYES2M-eg3-eg3-bgl1might be useful for cassava ethanol industries.
引文
Ahmed A S, Hamdan S, Annaluru N, et al. Conversion of waste agriculture biomass to bioethanol by recombinant Saccharomyces cerevisiae. Journal of Scientific Research,2010,2(2):351-361
    Kosugi A, Kondo A, Ueda M,et al.Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renewable Energy, 2009,34(5):1354-1358
    Chambers A, Stanway C, Kingsman AJ,et al. The UAS of the yeast PGK gene is composed of multiple functional elements. Nucleic Acids Research.1988,16(17):8245-8260
    Rudolf A, Karhumaa K and Hahn-Hagerdal B. Ethanol Production from Traditional and Emerging Raw Materials. Yeast Biotechnology:Diversity and Applications 2009, Ⅲ, 489-513,
    Kotaka A, Bando H, Kaya M,et al. Direct ethanol production from barley (3-glucan by sake yeast displaying Aspergillus oryzae (3-glucosidase and endoglucanase. Journal of Bioscience and Bioengineering,2008,105(6):622-627
    Stroobants A, Delroisse JM, Delvigne F,et al. Isolation and biomass production of a Saccharomyces cerevisiae strain binding copper and zinc ions. Applied Biochemistry and Biotechnology,2008,157(1):85-97
    Ganley ARD, Ide S, Saka K,et al. The effect of replication initiation on gene amplification in the rDNA and its relationship to aging. Molecular Cell,2009,35(11):683-693
    Korona B, Korona D, Bielecki S. Efficient expression and secretion of two co-produced xylanases from Aspergillus niger in Pichia pastoris directed by their native signal peptides and the Saccharomyces cerevisiae α-mating factor. Enzyme and Microbial Technology 2006,39:683-689
    Hadfied C, Jordan BE, Mount RC, et al. G418-resistance as a dominant marker and reporter for gene expression in Saccharomyces carevisiae. Genet,1990,18:303-313
    Lee CC. Screening assays for biomass-degrading enzymes. Biofuels,2010,1(4):575-588
    Jansson C, Westerbergh A, Zhang JM,et al. Cassava, a potential biofuel crop in (the) People's Republic of China. Applied Energy,2009,86(1):S95-S99
    Yasokawa D, Murata S, Kitagawa E,et al. Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis. Environmental Toxicology,2008, 23(5):561-656
    Greber D and Fussenegger M. Multi-gene engineering:Simultaneous expression and
    knockdown of six genes off a single platform. Biotechnology and Bioengineering.2007, 96(5):821-834
    Dobson MJ, Tuite MF, Roberts NA, et al. Conservation of high efficiency promoter sequences in Saccharomyces cerevisiae. Nucl. Acids Res.1982,10,2625-2637
    Wong D, Batt S, Robertson G,et al. Chromosomal integration of both an a-amylase and a glucoamylase gene in Saccharomyces cerevisiae for starch conversion. Industrial Biotechnology.2010,6(2):112-118
    Xiao DG, Wu S, Zhu XD,et al. Effects of soya fatty acids on cassava ethanol fermentation. Applied Biochemistry and Biotechnology,2010,160(2):410-420
    Ghang DM, Yu L, Lim MH,et al.Efficient one-step starch utilization by industrial strains of Saccharomyces cerevisiae expressing the glucoamylase and a-amylase genes from Debaryomyces occidentalis Biotechnology Letters,2007,29(8):1203-1208,
    Fernandez-Gonzalez M, Ubeda JF, Cordero-Otero RR, et al. Engineering of an oenological Saccharomyces cerevisiae strain with pectinolytic activity and its effect on wine. Int. J. Food. Microbiol.,2005,102(2):173-83.
    Gundllapalli SB, Pretorius IS and Cordero Otero RR. Effect of the cellulose-binding domain on the catalytic activity of a beta-glucosidase from Saccharomycopsis fibuligera. J. Ind. Microbiol. Biotechnol.,2007;34(6):413-421.
    Henry VB. GCR of Saccharomyces cerevisiae encodes a DNA binding protein whose binding is abolished by mutations in the CTTCC sequence motif. Proc. Nail. Acad. Sci., 1991,88,9443-9447
    Nakazawa H, Okada K, Kobayashi R,et al. Characterization of the catalytic domains of Trichoderma reesei endoglucanase Ⅰ, Ⅱ, and Ⅲ, expressed in Escherichia coli. Applied Microbiology and Biotechnology,2010,81(4):681-689
    Nakazawa H, Okada K, Onodera T,et al. Directed evolution of endoglucanase III (Cell 2A) from Trichoderma reesei. Applied Microbiology and Biotechnology,2011,83(4):649-657
    Toda H, Takada S, Oda M, et al. Gene cloning of an endoglucanase from the basidiomycete Irpex lacteus and its cDNA expression in Saccharomyces cerevisiae. Biosci. Biotechnol. Biiochem.,2005,69(7); 1262-1269
    Hitzeman RA, Hagie FE, Hayflick JS, et al. The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase. Nucleic Acids Res.,1982,10 (23),7791-7808
    Klabunde J, Diesel A, Waschk D, et al. Single-step co-integration of multiple expressible heterologous genes into the ribosomal DNA of the methylotrophic yeast Hansenula polymorpha. Appl. Microbiol. Biotechnol., (2002) 58:797-805
    Rathjen J and Mellor J. Characterisation of sequences required for RNA initiation from the PGK promoter of Saccharomyces cerevisiae. Nucleic Acids Research,1990,18 (11) 3219-3223
    Klabunde J, Kunze G, Gellissen G, et al. Intergation of heterologous genes in several yeast species using vectors containing a hansellula polymorpha-derived rDNA-targeting element. FEMS Yeast Research,2003(4):185-193
    Jia XN, Li W, Shen JL,et al. Construction of multi-gene expression vector and tobacco transformation based on Cre-LoxP recombination system. Journal of Beijing Forestry University,2010,32(5):121-125
    Kim JH, Kim HR, Lim MH,et al. Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, α-amylase and debranching enzyme. Biotechnology Letters,2010,32(5):713-719
    Song JZ, Liu BD, Liu ZH,et al. Cloning of two cellobiohydrolase genes from Trichodermaviride and heterogenous expression in yeast Saccharomyces cerevisiae. Molecular Biology Reports,2011,37(4):2135-2140
    Skryabin KG, Eldarov MA, Larionov VL, et al. Structure and function of the nontranscribed spacer regions of yeast rDNA. Nucleic Acids Research,1984,12(6):2954-2968
    Karube I, Timiya E, Matsuoka H. Transformation of Saccharomyces serevisiae spheroplasts by high electric pulse. FEBS Letters,1985,182(1):90-94
    Reddy LVA, Reddy OVS and Basappa SC. Potentiality of yeasts in the direct conversion of starchy materials to ethanol and its relevance in the New Millennium. Yeast Biotechnology: Diversity and Applications,2009, Ⅲ,515-549
    Ziskaa LH, Runionb GB, Tomeceka M,et al. An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass and Bioenergy,2009,33(11):1503-1508
    Lopes TS, Hakkaart GJAJ, Koerts BL,et al. Mechanism of high-copy-number integration of pMIRY-type vectors into the ribosomal DNA of Saccharomyces recevisiae.Gene,1991,105:83-90
    Lopes TS, Klootwijk J,Veenstra A. High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae:a new vector for high-level expression.Gene,1989,79:199-206
    Macarron R, Henrissat B, Claeyssens M. Family A cellulases:two essential tryptophan residues in endoglucanase Ⅲ from Trichoderma reesei. Biochem. Biophys. Acta.,1995, 1245 (2):187-190.
    Macreadie IG, Horaitis O, Vaughan PR, Clark-Walker GD. Constitutive expression of the Saccharomyces cerevisiae CUP1 gene in Kluyveromyces lactis. Yeast,1991,7(2):127-135
    Agard MJ and Jeffries TW. Recombineering for multiple gene expression in Saccharomyces cerevisiae for cellulose and hemicellulose utilization. The 32nd Symposium on Biotechnology for Fuels and Chemicals (April 19-22,2010)
    Harrison MD, Geijskes J, Coleman HD,et al. Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnology Journal,2011. Early View (Articles online in advance of print)
    Mertens JA, Skory CD and Ibrahim AS. Plasmids for expression of heterologous proteins in Rhizopus oryzae. Arch Microbiol,2006,186(1):41-50
    Karin M, Najarian R, Haslinger A, et al. Primary structure and transcription of an amplified genetic locus:The CUPI locus of yeast. Proc. Natl. Acad. Sci. USA.,1984,81:337-341
    Mumberg D, Muller R and Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene,1995,156 (1):119-122
    Grindley NDF and Joyce CM. Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903. Proc. Natl. Acad. Sci. USA.,1980,77(12):7176-7180
    Ogden JE, Stanway C, Kim S, et al. Efficient expression of the Saccharomyces cerevisiae PGK gene depends on an upstream activation sequence but does not require TATA sequences Molecular and Cellular Biology,1986(10):4335-4343
    Okada H, Kohji T, Tadashi S, et al. Molecular characterization and heterologous expression of the gene encoding a low molecular mass endoglucanase from Trichodermc reesei QM9414. Applied and environmental microbiology,1998,64 (2):555-563
    Sanchez OJ and Cardona CA,et al. Trends in biotechnological production of fuel ethanol frorr different feedstocks. Bioresource Technology,2008,99(3):5270-5295
    Yao Q, Sun TT, Liu WF,et al. Gene cloning and heterologous expression of a nove endoglucanase, Swollenin, from Trichoderma pseudokoningii S38. Bioscience Biotechnology, and Biochemistry.2008,72(11):2799-2805
    Saxena RC, Adhikari DK and Goyal HB. Biomass-based energy fuel through biochemica routes:A review. Renewable and Sustainable Energy Reviews,2009,13(1):167-178
    Haan RD, Rose SH, Lynd LR, et al. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic engineering,2007 (9):87-93
    Ward RJ. Cellulase Engineering for biomass saccharification. Routes to Cellulosic Ethanol 2011(2):135-151
    Leng R, Wang CT, Zhang C,et al. Life cycle inventory and energy analysis of cassava-base(?) fuel ethanol in China. Journal of Cleaner Production,2008,6(3):374-384
    Yamada R, Bito Y, Adachi T,et al. Efficient production of ethanol from raw starch by a mate(?)
    diploid Saccharomyces cerevisiae with integrated a-amylase and glucoamylase genes. Enzyme and Microbial Technology,2009,44(5):344-349
    Saloheimo M, Lehtovaara P, Penttila M, et al. EGⅢ, a new endoglucanase from Trichoderma reesei:the characterization of both gene and enzyme. Gene,1988,63:(1), 11-22
    Sandgren M, Shaw A, Ropp TH,et al. The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3,Cel12A, at 1.9 A resolution. J Mol Biol.,2001,308 (2):295-310
    Mishra S and Baranwal R. Yeast genetics and biotechnological applications. Yeast Biotechnology:Diversity and Applications,2009,Ⅱ,323-355
    Seorer C, Clare J and McCombie W. Rapid seleetion using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnology (NY) 1994,12:181-184
    Li SJ, Du J, Sun J,et al. Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae. Molecular BioSystems,2010(6):2129-2132
    Saerens SMG, Duong CT, Nevoigt E,et al. Genetic improvement of brewer's yeast:current state, perspectives and limits. Applied Microbiology and Biotechnology,2010,86(5): 1195-1212
    Stearman R, Dancis A and Klausner RD. YIpDCE1 - an integrating plasmid for dual constitutive expression in yeast. Gene,1998,212 (2),197-202
    Matsubara T, Ammar YB, Anindyawati T,et al. Molecular cloning and determination of the nucleotide sequence of raw starch digesting a-amylase from Aspergillus awamori KT-11. Journal of Biochemistry and Molecular Biology,2004,37(4):429-438
    Sone T, Yahata K, Sasaki Y,et al. Multi-gene gateway clone design for expression of multiple heterologous genes in living cells:modular construction of multiple cDNA expression elements using recombinant cloning. Journal of Biotechnology,2008,136(3-4):113-121
    Lopes TS, Klootwijk J, Veenstra AE, et al. High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae:a new vector for hign-level expression. Gene,1989,79:199-206
    Wood BE, Ingram LO,Yomano LP,et al. Recombinant host cells and media for ethanol production. United States Patent Application 20100196978
    Huang Xiaomei, Yang Qian, Liu Zhi Hua,et al. Cloning and heterologous expression of a novel endoglucanase gene egⅧ from Trichoderma viride in Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology,2011,162,(1):103-115
    Fujita Y, Takahashi S, Ueda M, et al. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Applied and Environmental Microbiology,2002,68(10):5136-5141
    Ma YJ, Lin Long liu, Hungchien,et al. Efficient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Biotechnology and Applied Biochemistry,2000,31(1):55-59
    Shida Y, Furukawa T, Ogasawara W,et al. Functional analysis of the eg13 upstream region in filamentous fungus Trichoderma reesei. Applied Microbiology and Biotechnology,2008,78(3):515-524
    Chen Youshuang, Huang Shirong, Tang Zhongfeng,et al. Structural changes of cassava starch granules hydrolyzed by a mixture of a-amylase and glucoamylase. Carbohydrate Polymers, Available online 1 February 2011(Article in Press)
    Sasaki Y, Sone T and Yahata K. Multi-gene gateway clone design for expression of multiple heterologous genes in living cells:eukaryotic clones containing two and three ORF multi-gene cassettes expressed from a single promoter. Journal of Biotechnology,2008,136(3-4):103-112
    Liu Zengran, Zhang Guangyi, Li Jing,et al. expression of glucoamylase gene in S. pastorianus. Food Technol. Biotechnol.,2008,46 (1):32-37
    奥斯伯FM,布伦特R,金斯顿RE,等.分子生物学实验指南.科学出版社,2005
    别晓敏,佘茂云,杜丽璞,等.植物多基因化研究进展.中国农业科技导报,2010.12(6):18-23
    陈明育.提高木薯酒精经济效益.中国热带农业,2006(5):13
    董清华,沈元月.酵母表达系统研究进展与展望.北京农学院学报,2008,23(2):72-75
    高锦合,梁于朝,宋付平,等.不同品种木薯酒精发酵的出酒率比较.热带作物学报,2009,30(2):215-218
    郭志义,郝小惠,延晋雷,等.改进重叠延伸法引入DNA定点突变的新方法.生物技术,2009,19(6):34-36
    和东芹,肖冬光,吕烨pSH-CUP重组质粒的构建及面包酵母酸性海藻糖酶基因的敲除.微生物学报,2008,48(2):147-151
    姜勇,张学成,孙平楠等.以rDNA为同源重组位点酵母表达鲑鱼降钙素基因多拷贝整合载体的构建.中国海洋大学学报,2009,39(3):443-447
    李永建,严明,丁莉.在酿酒酵母中共表达XYLA和XKS1基因后利用木糖的初步研究.生物加工过程,2006,4(4):65-69
    刘北东,杨谦,周麒.绿色木霉AS3.3711的葡聚糖内切酶Ⅲ基因的克隆与表达.环境科学,2004,25(5):127-132)
    刘玉方,朱邦民,蔡金科.酿酒酵母3-磷酸甘油酸激酶(PGK1)启动子片段的亚克隆.1995,31(1):21-28
    刘振,周兴国,曾爱武.稻谷生料发酵生产乙醇研究.化学工程,2006,34(3):49-52
    刘振,王金鹏,张立峰,等.木薯干原料同步糖化发酵生产乙醇.过程工程学报,2005,5(3):353-357
    罗颖.新型福寿螺纤维素酶在甲醇毕赤氏酵母中的表达。学位论文.南京工业大学,2006
    马丽娜,陈喜文,甘睿.葡萄糖淀粉酶的结构和功能研究进展.生物技术通报,2005,16(6):677-670
    牟建楼,王颉,张伟,等.乙醇的测定方法综述.酿酒,33(2):46-48
    史文慧,林会兰,张广,等.用分子生物学法提高酵母菌产乙醇的研究.工业微生物,2002,32(3):31-35
    宋浩雷,郭晓贤,王艳尊,等.敲除sfal基因提高酿酒酵母乙醇合成能力的研究.微生物学通报,2007,34(3):421-425
    宋磊,娄玉霞,李新国.酿酒酵母细胞四种化方法的比较.上海师范大学学报(自然科学版),2000,29(4):97-99
    孙全喜.多基因植物表达载体构建方法的研究.硕士学位论文,山东农业大学,2008
    孙长平,段钢.酒精工业中的新型酶制剂及其应用技术.酿酒,2007,34(1):73-80
    唐嘉,陈朝银,赵声兰,等.一种初筛产胞外淀粉酶菌株的简化方法.生物加工过程,2008(1):37-40
    唐艳艳,易弋,伍时华,等.木薯粉浓醪酒精同步糖化发酵工艺研究.安徽农业科学,2010,38(23):12690-12692
    王颖,鲍晓明,杨国梁,等.工业酵母菌株化体系的建立.工业微生物,2004,34(1):6-11)
    武志强,贾耐兵,李娜,等.酵母整合型载体的构建及其功能分析.生物学通报,2008,43(5):47-50
    肖志壮,王婷,汪天虹,等.瑞氏木霉内切葡聚糖酶Ⅲ基因的克隆及在酿酒酵母中的表达.微生物学报,2001,41(4):391-396
    谢玉锋,伍时华,易弋,等.应用纤维素酶提高木薯酒精发酵出酒率的试验研究.酿酒科 技,2009,175(1):30-32)
    徐民俊,田小群,付京花,,等.酿酒酵母无标记化子两种筛选方法比较.酿酒科技,2008,167(5):17-20
    薛万伟,党选举,李鑫.木薯酒精发酵工艺的研究.酿酒,2005,32(4):39-40
    徐伟,汪东风.食品化学实验与习题.化学工业出版社,2008,5
    徐芳,姚泉洪,熊爱生,等.重叠延伸PCR技术及其在基因工程上的应用.分子植物育种,2006,4(5):747-751
    虞精明,谢勤美,杨凤华.酒中乙醇含量检测方法.中国卫生检验杂志,2008,18(9):1930-1932
    张梁.基质利用和酒精发酵性能改善的重组酿酒酵母.博士学位论文,江南大学.2005
    张平武,李育阳.新型酵母表达系统的研究.生物技术通讯,1999,10(4):306-309
    朱华晨,许新萍,肖国樱,等.利用四价抗病基因提高超级杂交稻的抗性.中国科学C辑生命科学2006,36(4):320-327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700