鄂尔多斯盆地苏里格气田河道砂体识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对鄂尔多斯盆地苏里格气田上古生界盒8低渗河道砂岩储层有效厚度薄、横向变化大、地球物理特征复杂的特点,运用地震相分析、叠置河道识别和储层含气性预测相结合的方法,划分出储层有利地震相分布区,识别出叠置高能河道,预测出储层含气有利区,筛选出开发目标区块,为气田开发部署、方案编制提供了重要依据。研究成果及创新在于:
     通过地震地质层位的精细标定和储层波形特征分类,首次将苏里格气田盒8储层地震反射模式划分为两大类十亚类,其中的两个亚类属最有利模式。利用地震相自动分析技术将盒8地层地震相划分为三类,地震相与砂岩厚度有较好的对应关系,由地震相转换的砂岩厚度较来自波阴抗反演的结果可靠。首次提出弧长、有效带宽和能量半衰时为盒8地层较为敏感的叠后属性,其分别反映出砂体的平面分布、地层岩性的纵横向变化以及储层的平面宏观非均质特征。
     采用层拉平地震古地貌恢复和广义S变换高分辨率地震层序分析方法在苏里格气田识别出四条盒8期叠置主河道。河道在平面上呈近似南北向展布,表现出频繁分流、交会、复合的特征,并有七个交会区。叠置河道的分布区和交会区是储层含气的有利区。识别结果反映出河道沉积及其变化规律,刻画出辫状河道平面宏观展布特征,河道形态及其分布比较符合目前的地质认识。河道识别结果对气田开发方案布井具有指导作用。
     首次联合应用AVO技术、地震子波能量吸收分析以及叠前弹性参数反演方法对盒8储层的含气性进行了预测,划分出十二个Ⅰ+Ⅱ类含气有利区。平面上Ⅰ、Ⅱ、Ⅲ类含气区相间分布,呈现出高度零散分布特征,表现出强烈的非均质性。储层含气性的综合预测在一定程度上降低了预测结果的多解性。预测结果为开发目标区块筛选提供了重要依据。
     通过对苏里格气田盒8储层地震相分析结果、盒8期叠置河道识别结果以及储层含气性预测结果的综合分析,评价出五个最有利的含气区块和五个较有利的含气区块。确定苏10、苏25、苏5、苏13以及苏6井区五个最有利的含气区块为下一步开发建产的首选区块,为气田开发部署指明了方向。
     目前,苏6井区已成为开发建产区块,其它四个区块被选为重点开发评价区块。
Aiming at He-8 low-permeable sandstone reservoir characteristics of thinner effective thickness, faster lateral change and more complicated geophysical character of Sulige gas field in Permian system of Ordos Basin, this paper plotted out the favorable zones of seismic facies, recognized the high energy fold-channels, forecasted the favorable gas-bearing areas and selected the development object blocks by combining seismic facies analysis, channel identification and gas-bearing reservoir predicting methods. The research results have provided important proofs for exploitation arrangement and plan programming of the gas field. The main productions and innovations in the paper are as follows:According to the refined demarcation of seismic and geological layers, and waveform characteristics classification, it is the first time to divide the seismic reflection patterns of He-8 reservoir into two main categories and ten sub-categories, and two sub-categories of them are the most favorable reflection patterns. Using the seismic facies analysis technique divided He-8 reservoir seismic facies into three categories. The seismic facies have better corresponding relation with the sandstone thickness, and sandstone thickness from the seismic facies conversion is more reliable than that from the impedance inversion. It is the first time to bring forward that arc length, effective band width and energy half-time are the most hypersensitive post-stack attributes to He-8 stratum. Their planar results reflect the distributing characters of sand bodies, the lithology changes in horizontal and vertical direction, and macroscopic heterogeneity of the reservoir, respectively.Integrating the results of seismic ancient landform restoration from layer flattening and high resolution seismic sequence analysis from Generalized S Transform, four main folded channels have been identified. Their distribution on the plane is near north-south direction, putting up frequent distributing, intercrossing and complex characteristics, and including seven intercrossing districts. The distributing and intercrossing zones of the channels are gas-bearing favorable areas. The identifying results reflect sediment and transformation characters of the channels, and delineate the macroscopically distributing patterns of the braided rivers. And the channels' configuration and distribution accord with the current geological understanding. That has some guiding roles to optimize the development project and dispose the exploitation wells.
    It is the first time in Sulige gas field to predict He-8 gas-bearing reservoir by combining AVO technology, seismic wavelet energy absorption analysis and pre-stack elastic parameters inversion methods. From the forecasting results, dozen gas-bearing favorable zones have been marked off. On the plane, type I, II and III gas-bearing zones distribute alternately, showing a highly fragmented distributing characteristics, and presenting strong non-homogeneous characters. Integrated forecasting results could reduce the uncertainties some extent. The results provide important proofs for the selection of the development object blocks.From the comprehensive appraisal results of seismic facies analysis, channel identification and gas-bearing reservoir prediction, five most favorable gas-bearing blocks and five more favorable gas-bearing blocks have been offered. And the five most favorable gas-bearing blocks (SulO, Su25, Su5. Sul3 and Su6) have been confirmed as the first selected blocks of development production. That shows clearly the way for development arrangement of the gas field.At present, Su6 block has become a production block, and the other four blocks have been elected as the important evaluation blocks.
引文
[1] Bob A.Hardage,邬庆良,Randy L.Eemington,李言经.三维地震地层面概念用于解释沉积在高贮存环境下的河道体系.海洋石油,2000年02期.
    [2] 毕俊风,刘书会,陈学国,董立生.分频解释技术在桩106地区馆上段河道砂体描述中的应用.油气地质与采收率,2003年05期.
    [3] 毕研斌,麻成斗,石红萍,张于喆.变差函数在描述储集层平面非均质性中的应用.大庆石油地质与开发,2002年第1期.
    [4] 蔡希玲,吕英梅.地震数据时频分析与分频处理.PEG,2005,28(4):265-270.
    [5] 操应长,姜在兴,等.陆相断陷湖盆层序地层单元的划分及界面识别标志[J].石油大学学报(自然科学版),1996,(4):1-5.
    [6] 陈树民,于晶.松辽盆地北部储层预测技术发展历程及岩性油藏地震识别技术.大庆石油地质与开发,2002年第1期.
    [7] 陈习峰,陈佳良,张齐鸣,陈胜红.准噶尔SWD地区含油气砂体识别方法.勘探地球物理进,2004年04期.
    [8] 陈扬,石星,李林,张继武.地震储层预测在石南油田河道砂体识别中应用.新疆地质,2004年04期.
    [9] 邓传伟.利用波形建立地震相.石油地球物理勘探.2004,39(5):539-542.
    [10] 杜启振,侯加根,等.储层微相及砂体预测模型[J].石油学报,1999,20(2):46-50.
    [11] 段文燊.HXC气田蓬莱镇组气藏河道砂体快速识别研究.成都理工学院学报,2002年04期.
    [12] 段玉顺,李芳.地震相的自动识别方法及应用.石油地球物理勘探,2004,39(2):158-162.
    [13] 冯斌,田波,赵光宇,等.Jason测井约束反演在桩106地区河道含油气砂体预测中的应用[J].浙江大学学报(工学版),2003,(6):707-710.
    [14] 耿耀辉,袁子龙.松辽盆地北部黑鱼泡南部地区扶杨油层砂体预测.大庆石油学院学报,1995年第2期.
    [15] 关达,张秀容.利用地震属性预测河道砂体.石油物探,2004年S1期.
    [16] 郭勇,王元波.高分辨率地震资料处理技术.大庆石油地质与开发.2003年第5期.
    [17] 国洪伟,陈勃,刘和芝,等.地震属性分析中水平切片的应用[J].物探化探计算技术,2005.(1):10-15.
    [18] 侯伯刚.杨池银,武站国,吴伯福.地震属性及其在储层预测中的影响因素.石油地球物理勘探.2004.39(5):553-558,574.
    [19] 侯加根,徐守余,河道砂储集层随机模拟方法分析[J].石油勘探与开发,1998,25(4):62-64.
    [20] 侯中健,陈洪德.等.鄂尔多斯地区晚古生代陆相沉积层序地层学研究[J].矿物岩石,2001,(3):114-123.
    [21] 黄小平,杜洪凌,史晓川.地震相分析在石南21井区沉积相划分中的应用.新疆石油地质,2004年第6期.
    [22] 黄中玉,赵金州.纵波和转换波AVO联合反演技术.石油物探.2004,43(4):319-322.
    [23] 纪彤洲,丘津,王冰.应用地球物理信息预测河道砂体方法及应用效果分析.特种油气藏,2003年S1期.
    [24] 贾承造,赵文智.邹才能,李明,池英柳,姚逢昌,郑晓东,刘晓,殷积峰.岩性地层油气藏勘探研究的两项核心技术.石油勘探与开发.2004,31(3).
    [25] 雷利安,徐美茹,曹学良,芦淑萍,带趋势序贯指示模拟方法在东濮凹陷薄砂岩储层预测中的应用.石油地球物理勘探,2005,40(1):92-96.
    [26] 李朝印,刘保华.河道砂岩体地震反射特征分析.青岛海洋大学学报(自然科学版),1999年01期.
    [27] 李春华,张映红.等.地震技术存低孔低渗砂岩油藏描述中的作用[J].特种油气藏,1996,3(3).
    [28] 李浩,王子洪,等.神经网络油气检测技术[J].西安工程学院学报,1999,21(Supl).
    [29] 李龙滟,陈恭洋,钟宝荣,张振顺,韩木森.用随机模拟方法对井间砂体预测.石油与天然气地质.1999年02期.
    [30] 李庆忠.河道解释中的陷阱.石油地球物理勘探,1998年03期.
    [31] 李庆忠.论地震约束反演的策略[J].石油地球物理勘探,1998,33(4):423-438.
    [32] 李学义.利用地震资料作储层预测需注意的问题.天然气工业.2004,24(9):44-47.
    [33] 李阳.胜利油田油藏综合地球物理研究现状及展望.石油勘探与开发,2004,31(3).
    [34] 梁海龙,姜岩,齐春艳.分层解释性反演技术存薄互层砂体预测中的应用[J].石油物探,2004,(4):410-414.
    [35] 林雄,田景春.非构造油气藏国内外研究现状及发展方向[J].岩相古地理,1998,18(4).
    [36] 刘波,赵翰卿,李广月.储层砂质辫状河的识别—以大庆喇嘛甸.萨尔图油田西部P Ⅰ 23为例[J].石油学报.2002.23(2),
    [37] 刘豪,王英民,等.用高分辨率层序地层学进行非构造圈闭研究[J].西安石油学院学报(自然科学版),2001,(6):1-4.
    [38] 刘金平,刘云武,高君,谢春来.岩性圈闭储层描述技术及应用.石油地球物理勘探,2003,38(5):531-534.
    [39] 刘军,李少华.应用顺序指示随机模拟法研究沉积微相.大庆石油地质与开发,2003年第2期.
    [40] 刘丽.地震资料在油藏描述中的作用及问题剖析[J].石油地球物理勘探,1996,31(2).
    [41] 刘雯林.油气田开发地震技术[M] 北京:石油工业出版社,1996.
    [42] 吕正祥,杨宇.四川盆地川西新场气田蓬莱镇组气藏含气砂体识别.矿物岩石,2001年02期.
    [43] 罗平,裘怿楠,等.中国油气储层地质研究面临的挑战和发展方向[J].沉积学报,2003,21(1).
    [44] 穆立华,彭仕宓,尹志军.井间砂体定量预测的泛克里格法[J].石油勘探与开,2004,31(4):73-75.
    [45] 穆龙新.油藏描述的阶段性及特点[J].石油学报,2000,21(5).
    [46] 穆龙新.油藏描述技术的一些发展动向[J].石油勘探与开发,1999,26(6).
    [47] 宁松华,张厚福.古河道解释及存油气勘探中的意义.沉积学报,1997年03期.
    [48] 蒲仁海,蔡其新.油藏描述的几个前缘问题[J].新疆石油地质,2000,21(5).
    [49] 裘怿南,陈子琪.油藏描述[M].北京:石油工业出版社,1996.
    [50] 撒利明,曹止林.提高储层预测精度技术思路与对策.大庆石油地质与开发,2003年第6期.
    [51] 申本科,胡永乐,等.油藏描述技术发展与展望[J].石油勘探与开发,2003,30(4).
    [52] 慎国强,孟宪军,王玉梅,钮学民,孙振涛.随机地震反演方法及在埕北35井区的应用.石油地球物理勘探,2004,39(1):75-81.
    [53] 师永民.高分辨率砂泥岩薄互层储层综合预测技术[J].石油地球物理勘探,2000,35(5):661-668.
    [54] 石万忠,陈开远,李梦溪.地震属性参数在胜坨油田气藏预测中的应用[J].石油与天然气地质,2003,24(2):196-198.
    [55] 宋维琪,刘江华.利用灰关联分析技术预测油气.石油勘探与开发,2002年第5期.
    [56] 宋永林.河流相沉积砂体预测方法研究.测井技术,2000年第2期.
    [57] 宋永忠,于晶.随机顺序指示模拟技术与应用.大庆石油地质与开发,2003年第2期.
    [58] 孙鹏远,孙建国,卢秀丽.基于弹性参数的PP波AVO分析.石油勘探与开发,2004,31(3).
    [59] 唐光华,赵谦平,汪满福,徐世栋.地震属性主组分预测技术在青西油田的应用.新疆石油地质.2004年第3期.
    [60] 王大兴,辛可锋,王宝江等.广义S变换及其在鄂尔多斯盆地上古生界河道砂体预测中的应用.低渗透油气田,2005,10(2).
    [61] 王端平,柳强.复杂断块油田精细油藏描述[J].石油学报,2000,21(6).
    [62] 王家豪,姚光庆,袁彩萍,刘斌,黄郑.焉耆盆地宝浪油田宝北区块辫状分流河道砂体储层宏观特征.现代地质,2001年04期.
    [63] 王建青.田忠斌.河道砂体在三维地震资料解释中的识别.山西建筑,2004年13期.
    [64] 王金铎.济阳拗陷堡坝砂体的识别及其地球物理特征.石油地球物理勘探,2004,39(6):666-671.
    [65] 王康立.油藏描述中的多学科集成[J].石油地球物理勘探,1998,33(4).
    [66] 王萍,宋书君,王新征,王岩,倪善芹.岩性油藏配套解释技术.石油地球物理勘探,2003,38(5):557-560.
    [67] 王月华,皮学军,等.储层地质建模方法存克拉2气田气藏描述中的应用[J].天然气地球科学,2003,(1):65-68.
    [68] 王蕴,朱贵生,王芳.精细构造解释与储层预测技术在腰英台地区勘探中的应用.PEG,2005,28(4):285-289.
    [69] 王泽华,王兆峰,任涛,等.地震属性信息在五3区上乌尔禾组砂砾岩油藏开发中的应用[J].新疆石油学院学报,2001,13(3).
    [70] 王志章,石占中.等.现代油藏描述技术[M].北京:石油工业出版社,1999.
    [71] 文健,裘怿楠,等.埕岛油田馆陶组上段储集层随机模型[J].石油勘探与开发,1998,25(1):69-72.
    [72] 吴朝容,段文,石磊,等.川西坳陷蓬莱镇组河道砂体识别技术[J].物探与化探,2003,(04):299-301.
    [73] 吴朝容,段文燊,蒋晓红.河道砂体识别技术.石油物探,2003年02期.
    [74] 吴大奎,唐必锐,覃发兰.吴彦玮,黄花香,雷雪.地震资料储层预测反演方法应用研究.天然气工业,2004,24(10):38-40.
    [75] 吴国忱,印兴耀,杨风丽.油藏描述中多层次地震预测技术的应用[J].石油大学学报(自然科学版).1999,23(5).
    [76] 吴胜和,马晓芬.测井约束反演在高分辨率层序地层学中的应用[J].地层学杂志,2001,25(2):140-143.
    [77] 伍涛,杨勇,王德发.辫状河储层建模方法研究[J].沉积学报,1999,17(2).
    [78] 武加鹤,王红艳,陈秀兰.三维可视化技术在新沟油田勘探开发中的应用[J].江汉石油职工大学学报.2004,17(2):17-18.
    [79] 夏朝晖,余国清,等.现代油藏精细描述技术和方法[J].内蒙古石油化工,2000,26(2).
    [80] 夏竹,张振生,孙长虹,陈耿毅,程怡.利用频率属性识别和划分陆相盆地多期时频层序—以松辽盆地乾西北地区下白垩统青山口组—姚家组为例.石油地球物理勘,2004,39(6):730-738.
    [81] 肖长安.高阶统计量在河道解释上的应用实例.勘探地球物理进展,2004年05期.
    [82] 谢用良.模型正演技术在川西地区砂体预测中的应用研究.天然气工业,2004,24(10):35-37.
    [83] 徐明华,王绪本,李学华.自然伽玛反演在双家坝构造飞仙关组鲕滩储层预测中的应用[J].行油物探,2003,42(3):346-349.
    [84] 许效松.层序地层学在沉积学和油储勘查中研究德关键点[J].岩相古地理,1996,(6):55-61.
    [85] 薛叔浩,刘雯林,等.湖盆沉积地质与油气勘探[M].北京:石油工业出版社,2002.
    [86] 杨平,刘云武,金成志.岩性圈闭预测方法.大庆石油地质与开发.2003年第5期.
    [87] 姚逢昌.横向预测技术在储层研究中的应用[J].石油地球物理勘探,1996,14(2):1-5.
    [88] 易平,林桂康.随机地震反演技术及在文昌13-1油田的应用.石油地球物理勘探,2005,40(1):87-91.
    [89] 于建国,林春明,王金铎,郭亚,张明振.曲流河沉积亚相的地震识别方法.石油地球物理勘探,2003,38(5):547-551.
    [90] 于建国,林春明,杨云岭,等.分流河道特征及其识别方法:以东营凹陷东部地区为例[J].高校地质学报,2002,(2):152-159.
    [91] 苑书金,于常青.地震弹性属性的解释和应用.PEG,2005,28(4):234-238.
    [92] 曾雪梅,刘柏松,等.变异函数在井间砂体预测中的应用[J].大庆石油地质与开发,2002,21(2):32-34.
    [93] 张本琪,姜在兴,夏斌,董贵能,杨小兵,姜本勇,郝青峰.层序地层学在埕东—飞雁滩油田馆陶组上段岩性油气藏勘探中的应用.石油勘探与开发,2004年第5期.
    [94] 张尔华,宋永忠,陈树民,金国平,邱颖.松辽盆地扶杨油层河道砂体地震识别方法.大庆石油地质与开发,2004年05期.
    [95] 张虹.新场气田J_3p含气砂体预测研究.矿物岩石,1999年02期.
    [96] 张建林,吴胜和,武军昌,肖焕钦,黄奇志.应用随机模拟方法预测岩性圈闭.石油勘探与开发,2003年第3期.
    [97] 张荣忠,季玉新.等.油储地球物理综合描述技术[J].勘探地球物理进展,2002,25(1).
    [98] 张延章,廖前进.范军侠,等.震微相分析技术在大港滩海探区的应用[J].石油勘探与开发,2003,30(4):58-60.
    [99] 张永华,陈萍,赵雨晴,朱军,刘景颜.基于合成记录的综合层位标定技术.石油地球物理勘探,2004,39(1):92-96.
    [100] 赵春森,翟云芳,等.油藏非均质性的定量描述方法[J].石油学报,1999,20(5).
    [101] 赵翰卿,付志国.等.大型河流—三角洲沉积储层精细描述技术[J].石油学报,2000,21(4).
    [102] 赵俊兴,陈洪德等.高分辨率层序地层学方法在沉积前古地貌恢复中的应用[J].成都理工大学学报(自然科学版),2003,(1):76-81.
    [103] 赵力民,彭苏萍,等.利用Stratimagic波形研究冀中探区大王庄地区岩性油藏[J].石油学报,2002.23(4):33-36.
    [104] 赵力民,彭苏萍,康洪全,张超文.利用地震频谱比进行河道砂体预测.石油实验地质,2003年03期.
    [105] 赵庆国,赵华,朱应科.测井约束地震反演技术在河4井复杂断块区的应用研究.石油地球物理勘探,2004,39(6):706-710.
    [106] 周永炳,刘国志.变异函数在薄互层砂体研究中的应用.大庆石油地质与开发,2003年第1期.
    [107] 周宗良,肖建玲,张枫.地震属性的优化处理及储层厚度的定量解释[J].新疆地质,2002,20(3):262-266.
    [108] 朱成宏,秦瞳.从SEG2002年会看油藏描述技术的新进展[J].勘探地球物理进展,2003,26(3).
    [109] 朱庆忠,黄捍东,等.复杂油气藏储层横向预测[J].石油地球物理勘探,2003,38(4).
    [110] A. R. Badachhape, Abdurahman. 3D Post-Stack Acoustic Impedance Inversion Results for Kijing and Malong Fields, South Natuna Sea [A]. SPE 93825, 2005.
    [111] A. S. Bamola, R. E. White. Coherence methods in mapping AVO anomalies and predicting P-wave and S-wave impedances. Geophysical Prospecting, Vol.53,2005,No.3. p.423-433.
    [112] Ahmed, T, Link, C.A., Porter, K.W., et al. Application of Neural Network Parameter Prediction in Reservoir Characterization and Simulation - A Case History: The Rabbit Hills Field [A]. SPE 38985, 1997.
    [113] B. Russell, D. Hampson, T. Todorov. Combining geostatistics and multi-attribute transforms: a channel sand cases tudy, black foot oilfield (alberta). Journal of Petroleum Geology, Vol.25, No.1, 2002, p.97-118.
    [114] C. Azalgara, Perez Companc;M. Floricich. Estimation of Reservoir Net Thickness Using Seismic Facies and Well Data in Middle Miocene Incised Valley Deposits of the Oficina FM. Oritupano Area, Eastern Venezuela [A]. SPE 69480, 2001.
    [115] C.D. White, M.D. Barton. Translating Outcrop Data to Row Models, With Applications to the Ferron Sandstone [J]. SPE Reservoir Evaluation & Engineering, 1999, 2(4): 341-350.
    [116] Carlos Torres-Verdin, Raghu K. Chunduru, Alberto G. Mezzatesta. Integrated Interpretation of Wireline and 3D Seismic Data To Delineate Thin Oil-Producing Sands in San Jorge Basin, Argentina [J]. SPE Reservoir Evaluation & Engineering, 2003,6(6): 369-375.
    [117] Catherine Bogan, Daniel Johnson, Michael Litvak, et al. Building Reservoir Models Based on 4D Seismic & Well Data in Gulf of Mexico Oil Fields [A]. SPE 84370, 2003.
    [118] Chen, H;Brown, RL;Castagna, JR. AVO for one- and two-fracture set models. Geophysics, vol.70, No.2, 2005, p.Cl-C5.
    [119] Dengen Zhou, Michael Wei, Ron Seguin, et al. A Case Study of Uncertainty Management for Developing Fluvial Sedimentary Reservoirs [A]. SPE 90890, 2004.
    [120] F.D. Martin, M.B. Murphy, B.A. Stubbs, et al .Reservoir Characterization as a Risk-Reduction Tool at the Nash Draw Pool [J]. SPE Reservoir Evaluation & Engineering, 1999, 169-179.
    [121] Heidi Anderson Kuzma, James W. Rector. Non-linear avo inversion using support vector machines. SEG Technical Program Expanded Abstracts, 2004, pp.203-206.
    [122] Isha Sahni, Roland N. Home. Multi resolution Wavelet Analysis for Improved Reservoir Description [J]. SPE Reservoir Evaluation & Engineering, 2005, 8(1): 53-69.
    [123] J. L. Landa, R. N. Home, M. M. Kamal, et al .Reservoir Characterization Constrained to Well-Test Data: A Field Example [Jj. SPE Reservoir Evaluation & Engineering, 2000.3(4): 325-334.
    [124] J.K. Caers, S. Srinivasan, A.G. Journel. Geostatistical Quantification of Geological Information for a Fluvial-Type North Sea Reservoir [J] SPE Reservoir Evaluation & Engineering, 2000, 3(5): 457-467.
    [125] J.R. Scheevel, K. Payrazyan. Principal Component Analysis Applied to 3D Seismic Data for Reservoir Property Estimation [J]. SPE Reservoir Evaluation & Engineering. 2001,4(1): 64-72.
    [126] Jef Caers, Per Avseth, Tapan Mukerji. Geostatistical integration of rock physics, seismic amplitudes and geological models in North-Sea turbidite systems [A]. SPE 71321, 2001.
    [127] Jo Eidsvik;Henning Omre;Tapan Mukerji;Gary Mavko;Per Avseth. Seismic reservoir prediction using Bayesian integration of rock physics and Markov random fields: A North Sea example. The Leading Edge, Vol.21, No.3, 2002, p.290-294.
    [128] Kazuaki Watanabe, Nobuo Nishikiori. An Improved Reservoir Characterization of Sandstone Reservoirs in the Khafji Field, Arabian Gulf, by 3D Seismic-Aided Well Test Interpretation [A]. SPE 68642, 2001.
    [129] L. Pianelli, F. Scazziota, M. Galofre, et al. AVO Analysis in Cerro Piedra Field, Golfo de San Jorge Basin, Argentina [A]. SPE 69460, 2001.
    [130] L.J. Marquez, M. Gonzalez, S. Gamble, et al. Improved Reservoir Characterization of a Mature Field Through an Integrated Multi-Disciplinary Approach. LL-04 Reservoir, Tia Juana Field, Venezuela [A]. SPE 71355, 2001.
    [131] Lee. L. Williams, William. S. Fong, Mridul Kumar. Effects of Discontinuous Shales on Multizone Steamflood Performance in the Kern River Field [J]. SPE Reservoir Evaluation & Engineering, 2001, 4(5): 350-357.
    [ 132] Lu Xiaoguang, Sihman Marmosuwito, Bradford W. Sincock, et al. Integrated Reservoir Characterization and Approach for Improving Development Drilling of Narrow Fluvial Channel Reservoir Within a Thin Oil Rim [A]. SPE 88599, 2004.
    [133] M.A. Al-Khalifa. Advances in Generating and Ranking Integrated Geological Models for Fluvial Reservoir [A]. SPE 86999, 2004.
    [134] M.E. Kusiak, R. Cardona, J.L. Riverol. Seismostratigraphic model of the Tundy Field Carboniferous Reservoirs, Chaco Basin, Bolivia [A]. SPE 69630, 2001.
    [135] M.W. Waite, J.R. Weston, D.W. Davis, et al. Identification and Exploitation of a High-Producing Field Extension With Integrated Reservoir Analysis [J]. SPE Reservoir Evaluation & Engineering, 2000, 3(3): 272-279.
    [136] Malme, TN;Landro, M;Mittet, R. Overburden distortions - implications for seismic AVO analysis and time-lapse seismic. Journal of geophysics and engineering, vol.2, 2005, No.2, p.81-89.
    [137] Marcos Victoria, German Merletti. Lateral and Vertical Discrimination of Thin-Bed Fluvial ReservoirsiGeostatistical Inversion of a 3D Seismic Data Set [A] SPE 69485,2001.
    [138] Mrinal K. Sen;Indrajit G. Roy. Computation of differential seismograms and iteration adaptive regularization in prestack waveform inversion. Geophysics, Vol.68, 2003, No.6., p.2026-2039.
    [139] N.C.DUTTA. Deepwater geohazard prediction using prestack inversion of large offset P-wave data and rock model. The Leading Edge, 2002, Vol.21, No.2, p. 193-198.
    [140] Oil and Gas Journal Group. Cover. Oil and Gas Journal, Vol103, No. 11, 2005, p.1.
    [141] Oladapo, MI;Adetola, BA. Rock property trend analyses in the Niger Delta Slope. Journal of geophysics and engineering, vol.2, 2005, No.2, p. 103-110.
    [142] Per Avseth;Harald Flesche;Aart-Jan Van Wijngaarden. AVO classification of lithology and pore fluids constrained by rock physics depth trends. The Leading Edge, vol.22, No.10, 2003, p.1004-1011.
    [143] Philippe Lamy, PA. Swaby, P.S. Rowbotham, et al. From Seismic to Reservoir Properties With Geostatistical Inversion [J]. SPE Reservoir Evaluation & Engineering, 1999, 2(4): 334-340.
    [144] R. Carrizales, E. Sifonte, T. Aguilar. Maximization of a Field Characterization Using 3D Seismic: Case Study, C-2 Reservoir, Block VIII, Occidental Basin, Lake Maracaibo, Venezuela [A]. SPE 69629, 2001.
    [145] R. Raghavan, T.N. Dixon, V.Q. Phan, et al. Integration of Geology, Geophysics, and Numerical Simulation in the Interpretation of a Well Test in a Fluvial Reservoir [J]. SPE Reservoir Evaluation & Engineering, 2001, 4(3): 201-208.
    [146] R. Roberts;J. Bedingfield;D. Phelps;A. Lau;B. Godfrey;S. Volterrani;F Engelmark;K. Hughes. Hybrid inversion techniques used to derive key elastic parameters: A case study from the Nile Delta. The Leading Edge, vol.24, 2005, No.1, p. 86-92.
    [ 147] R.A. Behrens, T.T. Tran. Incorporating Seismic Data of Intermediate Vertical Resolution Into Three-Dimensional Reservoir Models: A New Method [JJ. SPE Reservoir Evaluation & Engineering, 1999, 325-333.
    [148] R.M. Jonkman, C.F.M. Bos, J.N. Breunese, et al. Best Practices and Methods in Hydrocarbon Resource Estimation, Production and Emissions Forecasting, Uncertainty Evaluation, and Decision Making [J].SPE Reservoir Evaluation & Engineering,2002,5(2):146-153.
    [149J Ran Bachrach;Marc Beller;Chu Ching Liu;Juan Perdomo;Dianna Shelander;Nader Dutta;Marcelo Benabentos. Combining roak physics analysis, full waveform prestack inversion and high-resolution seismic interpretation to map lithology units in deep water: A Quit of Mexico case study. The Leading Edge, vol.23, 2004, No.4, p. 378-383.
    [150] Rob L. Allen. Seismic Models Enhanced with Well Logs Have Located Sand Rich Areas from South Texas to the Rockies [A]. SPE 59719, 2000.
    [151] S.B. Reymond, E. Matthews, B. Sissons. Integrating well production data and 3D seismic AVO classification [AJ.SPE 68644, 2001.
    [152] S.V.C. Dronamraju, J. Finol, A.M. Koraini, et al. Constraining Geological Heterogeneity in Complex Reservoirs: Implications for Stochastic Modeling and Reservoir Management [A]. SPE 93853, 2005.
    [153] Subhashis Mallick. Some practical aspects of prestack waveform inversion using a genetic algorithm: An example from the east Texas Woodbine gas sand. Geophysics, Vol.64, No.2, 1999. p. 326-336.
    [154] Tjolsen, C.B., Jonhsen, G., Halvorsen, G. et al. Seismic Data Can Improve the Stochastic Fades Modelling Significantly [J]. SPE Formation Evaluation, 1996, 11(3): 141-146.
    [155] Vincent Kretz, Micka?le Le Ravalec-Dupin, Frederic Roggero. An Integrated Reservoir Characterization Study Matching Production Data and 4D Seismic [J]. SPE Reservoir Evaluation & Engineering, 2004, 7(2): 116-122.
    [156] Vinh Phan, Roland N. Home. Fluvial Channel Parameter Estimation Constrained to Static, Production, and 4D Seismic Data [A]. SPE 77518, 2002.
    [157] Wang Yanguang. Extraction of seismic attributes and their application to the reservoir prediction and characterization. Scientia geologica sinica, Vol.8, No.4, 1999, p.503-514.
    [158] Xin-Quan Ma. Simultaneous inversion of prestack seismic data for rock properties using simulated annealing. Geophysics, vol.67, 2002, No.6, p. 1877-1885.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700