秦岭山区地质灾害风险评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秦岭山区是我国崩滑流地质灾害高发区域,每逢雨季的强降雨会诱发大量地质灾害,造成人员伤亡及大量的财产损失。为了探索适应于秦岭山区的地质灾害风险评估技术方法,本文以陕西省凤县为例,依托陕西省宝鸡市地质灾害详细调查项目,在分析地质灾害风险评估技术方法的基础上,比较各评价方法的优缺点,按照“地质灾害易发性—危险性—风险”的研究层次关系,探索了适用于秦岭山区的地质灾害风险评估技术方法,并对凤县县内地质灾害的发育分布规律进行了研究,开展了降雨条件下区域崩滑及泥石流灾害风险评估与管理研究,并取得了下列主要进展和成果:
     1、初步揭示了凤县地质灾害发育特征与分布规律。区内地质灾害类型主要包括崩塌、滑坡和泥石流灾害,集中分布在人类工程活动强烈、河流沿岸及植被覆盖程度低的地区:其中滑坡灾害分布最为广泛且危害最为严重;金属矿山开采形成的尾矿堆弃体在降雨条件下形成的潜在泥石流灾害威胁最为严重;控制区域地质灾害发育的地质环境因素主要包括地形地貌、地层岩性、河流侵蚀、植被覆盖程度及断裂等;地质灾害诱发因素主要为降雨和工程切坡。
     2、根据秦岭山区地质灾害特点,提出了传统的基于统计的地质灾害易发性评价方法的改进方法。在研究区内利用基于统计和改进的统计评价方法进行了区域崩滑灾害易发性评价,并利用AUC曲线对两种评价结果的有效性进行了检验,结果显示:在相同评估区域内,利用改进的统计分析方法进行地质灾害易发性评价,其评价结果的准确性更高。
     3、结合秦岭山区地质灾害特点,提出了将地质灾害分灾种进行危险性评价的技术方法,并且提出了对区域崩滑灾害和对泥石流灾害危险性评估的技术方法。以陕西省凤县为例利用基于统计分析和基于物理力学的无限斜坡体模型的评价方法进行危险性区划研究,通过比较两种评价结果的AUC特征曲线表明:基于统计分析的区域崩滑危险性评价结果的准确性明显较高;而利用物理力学模型方法进行区域滑坡危险性评价的结果准确性,很大程度上取决于地层岩性及地下水条件的数据精度和质量,因此该模型方法更适用于地层岩性单一(如黄土地区)或滑体与滑床物理力学性质差异较小的地区。利用层次分析和模糊综合评判方法对泥石流灾害进行了危险性评估,并将其危险性划分为四个等级。
     4、结合山区地质灾害特点,提出了在区域上对地质灾害分灾种进行风险评估的技术方法,并且提出了可容许风险评判标准的确定方法。以陕西省凤县为例,在承灾体价值统计及其易损性评价的基础上,对研究区内崩滑和泥石流灾害分别进行了人员和财产社会风险的估算;制定研究区内可容许风险的评判标准,并对区内地质灾害综合风险等级进行了划分,针对不同风险等级提出了风险减缓措施。并且以胡家山单体大型滑坡为例,通过考虑天然状态、十年一遇降雨和五十年一遇降雨三种工况条件下斜坡的稳定性,并分别考虑三种工况条件下承灾体的易损性情况,对胡家山滑坡进行风险评价并提出风险减缓措施。
The Qinling Mountain is an area where geo-hazards are most developed. In the rainy season, a lot of geo-hazards will occur due to the heavy rain, with great casualties and losses. In order to get the methods on early warning and disaster reduction for geo-hazards in the towns of Qinling Mountain, Feng County in Shaanxi province is taken as an example. Based on the analysis of disaster regularity and supported by Geological Survey Project of Baoji City in Shaanxi Province, and in accordance with the sequence of "susceptibility-hazard-risk", the risk assessment and management on landslides, rock falls and debris flows suffering rainfall were discussed with the help of statistical analysis method and mechanical model. Some results are obtained:
     1. The developmental character and distribution regularity was revealed. The geo-hazards include rock falls, landslides and debris flows, mainly distributed in the areas with great human activities, rivers and little vegetation. The metal mining tailings was prone to form potential debris flow when suffering rainfall and was very serious. The geo-environmental factors include landform, formation lithology, river erosion, vegetation cover and fault, etc. The main reason for geo-hazards is rainfall and cutting slope.
     2. The geo-hazard susceptibility was analyzed based on the comprehensive statistics method on the amount of information in the regional area and local area. The AUC curve indicated that in the same assessment region, the results based on the local statistics analysis was more accurate; and as for the same method, the accuracy increased with the geological logging preciseness.
     3. The geo-hazard risk assessment was discussed using the statistics method and the stability analysis on mechanical model of slope. The AUC curve indicated that the results based on statistics method are more accurate; the accuracy of stability analysis mainly depended on the data of formation lithology and underground water, and it was fit for the slope with single stratum or strata with little difference. The risk assessment on debris flow was analyzed with analytic hierarchy process and fuzzy comprehensive evaluation. And the debris flow risk was classified into four grades.
     4. Combined with the geo-hazard characteristics in mountain area, the risk assessment method on geo-hazard in regional area and the evaluation standard of tolerable risk were put forward. Based on the disaster-bearing body value statistics and its vulnerability assessment, the estimation on social risk of personnel and property caused by geo-hazards in Feng County was performed. The risk grade was classified according to experience of tolerable risk, and the related control measures were proposed. As a
引文
[1]韩恒悦,李昭淑,黄亦斌,等.秦岭、巴山地区山地自然灾害综合研究[J].灾害学.1995,3:39-45.
    [2]惠振德.秦岭大巴山地区山地灾害及减灾对策[J].自然灾害学报.1994,7:30-36.
    [3]刘护军.秦岭的隆升及其环境灾害效应[J].西北地质.2005,1:89-93.
    [4]刘引鸽,葛永刚,周旗.秦岭以南地区降水量变化及其灾害效应研究[J].干旱区地理,2008,1:50-55.
    [5]石玲,张永双,石菊松.三峡引水工程秦巴段主要地质灾害及其工程影响[J].工程地质学报,2009,17(2):212-219.
    [6]中华人民共和国国土资源部.全国地质灾害通报.2010.
    [7]Fell R., H.K., Lacasse S, Leroi E. A framework for landslide risk assessment and management[J]. in The International Conference on Landslide Risk Management 2005. Vancouver, Canada:A. A. Balkema Publishers.
    [8]L. Cascini, C.B.. Landslide hazard and risk zoning for urban planning and development[J]. Landslide Risk Management, ed. R.F. Oldrich Hungr.2005:A.A.BALKEMA 199-235.
    [9]石菊松.基于遥感和地理信息系统的滑坡风险评估关键技术研究[D].中国地质科学院博士学位论文,2008.
    [10]殷跃平,张永双,马寅生,等.青海玉树Ms7.1级地震地质灾害主要特征[J].工程地质学报,2010,18(3):289-296.
    [11]刘传正.重庆武隆鸡尾山危岩体形成与崩塌成因分析[J].工程地质学报.2010,18(3):297-304.
    [12]殷跃平.汶川八级地震滑坡高速远程特征分析[J].工程地质学报.2009,17(2):153-166.
    [13]殷跃平,朱继良,杨胜元.贵州关岭大寨高速远程滑坡-碎屑流研究[J].工程地质学报.2010,18(4):445-454.
    [14]吴树仁,石菊松,姚鑫,等.四川汶川地震地质灾害活动强度分析评价[J].地质通报.2008,27(11):1900-1906.
    [15]许强,裴向军,黄润秋,等.汶川地震大型滑坡研究[M].北京:科学出版社.2009.
    [16]丛威青,潘懋,李铁锋,等.基于GIS的滑坡、泥石流灾害危险性区划关键问题研究[J].地学前缘.2006.13(1):185-190.
    [17]石菊松,石玲,吴树仁.滑坡风险评估的难点和进展[J].地学评论.2007,53(6):797-806.
    [18]曾忠平,付小林,刘雪梅,等.基于GIS支持下滑坡斜坡类型定量化及制图研究[J].地理与地理信息科学.2006,22(1):22-25.
    [19]张继贤.3S支持下的滑坡地质灾害监测、评估与建模[J].测绘工程.2005,14(2):1-5.
    [20]张茂省,唐亚明.地质灾害风险调查的方法与实践[J].地质通报.2008,27(8):1205-1216.
    [21]Cascini L. Risk assessment of fast landslide from theory to practice[C]//General Report:Proceedings of the International Conference on "Fast Slope Movements-Prediction and Prevention for Risk Mitigation".2005,2:33-52.
    [22]Australian Geomechanics Society. Landslide Risk management[M]. Australian Geomechanics.2007, 42(1):13-36.
    [23]Hungr O, Fell R, Couture R, et al. Landslide risk management[C]//International Conference on Landslide Risk Management. Vancouver, Canada Taylor & Francis,2005:776.
    [24]C. J. Van Westen, T. W. J. Van Asch, R. Soeters. Landslide hazard and risk zonation-why is it still so difficult?[J]. Bulletin of Engineering Geology and the Environment.2005,65(2):167-184.
    [25]王涛,吴树仁,石菊松.国际滑坡风险评估与管理指南研究综述[J].地质通报.2009,28(8):1006-1019.
    [26]吴树仁,陈庆宣,等.滑坡灾害预测模型对比分析[J].地质力学学报.1996,2(3):96-97.
    [27]吴树仁,董诚,石菊松,等.地质灾害信息系统研究——以重庆丰都县为例[J].第四纪研究.2003,23(6):683-691.
    [28]吴树仁,金逸民,石菊松,等.滑坡预警判据初步研究——以三峡库区为例[J].吉林大学学报(地球科学版).2004,34(4):596-600.
    [29]吴树仁.突发地质灾害研究某些新进展[J].地质力学学报.2006,12(2):265-273.
    [30]吴树仁,张永双,石菊松,等.三峡库区重庆市丰都县滑坡灾害危险性评估[J].地质通报.2007,26(5):574-582.
    [31]吴树仁,石菊松,王涛.突发地质灾害预测评价概论[J].地质通报.2008,27(11):1753-1763.
    [32]吴树仁,石菊松,张春山,等.地质灾害风险评估技术指南初论[J].地质通报.2009,28(8):995-1005.
    [33]吴树仁,石菊松,王涛,等.地质灾害活动强度评估的原理、方法和实例[J].地质通报.2009,28(8):1127-1137.
    [34]石菊松,张永双,董诚,吴树仁.基于GIS技术的巴东新城区滑坡灾害危险性区划[J].地球学报.2005,26(3):275—282.
    [35]石菊松,徐瑞春,石玲,等.基于RS和GIS技术的清江隔河岩库区滑坡易发性评价与制图[J].地学前缘(中国地质大学(北京);北京大学).2007,14(6):119-128.
    [36]石菊松,石玲,吴树仁.利用GIS技术开展滑坡制图的技术方法与流程[J].地质通报.2008,27(1):1810-1821.
    [37]石菊松,石玲,吴树仁,等.滑坡风险评估实践中的难点与对策[J].地质通报.2009,28(8):1020-1030.
    [38]张桂荣,殷坤龙.区域滑坡空间预测方法研究及结果分析[J].岩石力学与工程学报.2005,24(23):4297-4302.
    [39]朱阿兴,裴韬,乔建平,等.基于专家知识的滑坡危险性模糊评估方法[J].地理科学进展.2006,25(4):1-12.
    [40]高克昌,崔鹏,赵纯勇,等.基于地理信息系统和信息量模型的滑坡危险性评估——以重庆万州为例[J].岩石力学与工程学报.2006,25(5):991-996.
    [41]曾忠平,汪华斌,张志,等.地理信息系统/遥感技术支持下三峡库区青干河流域滑坡危险性评 估[J].岩石力学与工程学报.2006,25(suupl):2777-2784.
    [42]Guzzetti, F., P. Reichenbach, et al. Probabilistic landslide hazard assessment at the basin scale[J]. Geomorphology.2005,72(1-4):272-299.
    [43]Fall, M., R. Azzam, et al. A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping[J]. Engineering Geology.2006,82(4):241-263.
    [44]Kanungo, D. P., M. K. Arora, et al. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas[J]. Engineering Geology.2006,85(3-4):347-366.
    [45]Lee, S. and M.-J. Lee. Detecting landslide location using KOMPSAT 1 and its application to landslide-susceptibility mapping at the Gangneung area, Korea[J]. Advances in Space Research.2006, 38(10):2261-2271.
    [46]李军,周成虎.基于栅格GIS滑坡风险评价方法中格网大小选取分析[J].遥感学报.2003,7(2):86-92.
    [47]Chung, C.-J. Using likelihood ratio functions for modeling the conditional probability of occurrence of future landslides for risk assessment[J]. Computers & Geosciences.2006,32(8):1052-1068.
    [48]Guzzetti, F., P. Reichenbach, et al.. Estimating the quality of landslide susceptibility models[J]. Geomorphology.2006,81(1-2):166-184.
    [49]Dai, F. C., C. F. Lee, et al. Landslide risk assessment and management:an overview[J]. Engineering Geology.2002,64(1):65-87.
    [50]刘传正,李铁锋,温铭生,等.长江三峡库区地质灾害空间评价预警研究[J].水文地质工程地质.2004,31(4):9—19.
    [51]赵建华,陈汉林,杨树锋.滑坡灾害危险性评估模型比较[J].自然灾害学报.2006,15(128-134).
    [52]L.Picareli, F. O., S.G.Evans, G.Mostyn,R.Fell. Hazard characterization and quantification in The International Conference on Landslide Risk Management. Vancouver,Canada, A. A. Balkema Publishers. 2005.
    [53]Hungr, O. A model for the runout analysis of rapid flow slides, debris flows and avalanches[J]. Can Geotech.1995,32:610-623.
    [54]Guzzetti, F., B. D. Malamud, et al. Power-law correlations of landslide areas in central Italy[J]. Earth and Planetary Science Letters.2002,195(3-4):169-183.
    [55]Dai, F. C. and C. F. Lee. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong[J]. Geomorphology.2002,42(3-4):213-228.
    [56]Iverson R.M. Landslide triggering by rain infiltration[J]. Water resources research.2000, 36:1891-1907.
    [57]Dai, F. C. Frequency-volume relation and prediction of rainfall-induced landslides[J]. Engineering Geology.2001,59(3-4):253-266.
    [58]Chau, K. T., Sze, Y. L.,Fung, M. K.,Wong, W. Y.,Fong, E. L.,Chan, L. C. P. Landslide hazard analysis for Hong Kong using landslide inventory and GIS[J]. Computers & Geosciences.2004,30(4):429-443.
    [59]Douglas, J. Physical vulnerability modelling in natural hazard risk assessmen[J]. Natural Hazards and Earth System Sciences.2007,7:283-288.
    [60]Galli, M. Landslide Vulnerability Criteria:A Case Study from Umbria, Central Italy[J]. Environ Manage.2007,40:649-664.
    [61]Fell.R. Landslide risk assessment and acceptable risk[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts.1994,31(5):250-250.
    [62]Van Westen, C. J. and F. Lulie Getahun. Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models[J]. Geomorphology.2003,54(1-2):77-89.
    [63]Fell, R., J. Corominas, et al. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning[J]. Engineering Geology.2008,102(3-4):85-111.
    [64]Van Westen, C. J., E. Castellanos, et al. Spatial data for landslide susceptibility, hazard, and vulnerability assessment:An overview[J]. Engineering Geology.2008,102(3-4):112-131.
    [65]Chau, K. T. Landslide hazard analysis for HongKongusing landslide inventory and GIS[J]. Computers Geosciences.2004.
    [66]Neaupane, K. M. and M. Piantanakulchai. Analytic network process model for landslide hazard zonation[J]. Engineering Geology.2006,85(3-4):281-294.
    [67]Lee, S., J.-H. Ryu, et al. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network[J]. Engineering Geology.2004,71(3-4):289-302.
    [68]Ayalew, L. and H. Yamagishi. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan[J]. Geomorphology.2005,65(1-2): 15-31.
    [69]Gomez, H. and T. Kavzoglu. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela[J]. Engineering Geology.2005,78(1-2):11-27.
    [70]Wang, H. B., W. Y. Xu, et al. Slope stability evaluation using Back Propagation Neural Networks[J]. Engineering Geology.2005,80(3-4):302-315.
    [71]Van Westen, C. J. Landslide hazard and risk zonation—why is it still so difficult? [J]. Bull. Eng. Geol. Env.,2005,64:5-23.
    [72]Davis, J. C., C.-J. Chung, et al. Two models for evaluating landslide hazards[J]. Computers & Geosciences.2006,32(8):1120-1127.
    [73]谢谟文,蔡美峰.信息边坡工程学的理论与实践[M].北京:科学出版社.2005.
    [74]Yilmaz, I.. Landslide susceptibility mapping using frequency ratio, logistic regression artificial neural networks and their comparison:A case study from Kat landslides (Tokat-Turkey) [J]. Computers & Geosciences.2008, doi:10.1016/j.cageo.
    [75]许冲,戴福初,姚鑫,等.基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J].工程地质学报.2010,18(1):15-26.
    [76]Lee, S., J. Choi, K. Min. Landslide susceptibility analysis and verification using the Bayesian probability model[J]. Environmental Geology.2002,43(1-2):120-131.
    [77]Kamp U., Growley B. J., Khattak G. A., et al. GIS-based landslide susceptibility for the 2005 Kashmir earthquake region[J]. Geomorphology.2008,101(4):631-642.
    [78]Zezere J. L., Garcia R. A. C. Oliverira S. C. et al. Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal)[J]. Geomorphology.2008,94(3-4):467-495.
    [79]Guzzetti, F. The rainfall intensity-duration control of shallow landslides and debris flows:an update[J]. Landslides.2008,5:3-17.
    [80]Borga, M. Shallow landslide hazard assessment using a physically based model and digital elevation data[J]. Environmental Geology.1998,35(2-3).
    [81]Chacon, J. Engineering geology maps:landslides and geographical information systems[J]. Bull Eng Geol Environ.2006,65:341-411.
    [82]Hungr, O. and S. McDougal. Two numerical models for landslide dynamic analysis[J]. Computers & Geosciences In Press, Corrected Proof.2009,35(5):978-992.
    [83]O.Hungr, J. C., E.Eherhardt. Estimating landslide motion mechanism,travel distance and velocity[J]. The International Conference on Landslide Risk Management Vancouver,Canada, A. A. Balkema Publishers.2005.
    [84]Hungr, O., S. McDougall, et al. Magnitude-frequency relationships of debris flows and debris avalanches in relation to slope relief[J]. Geomorphology.2008,96(3-4):355-365.
    [85]Edvin L. Harp, Mark E. Reid, Jonathan P. Mckenna, et al. Mapping of hazard from rainfall-triggered landslides in developing countries:Examples from Honduras and Micronesia[J]. Engineering Geology. 2009,104:295-311.
    [86]Harp, E. L., Michael J. A. Laprade W. T., Shallow-landslide hazard map of Seattle Washington[R]. U.S. Geological Survey Open-File Report.2006-1139.20 pp.
    [87]Harp, E. L., Held M. D., Castaneda M. R. et al. Landslide hazard map of Tegucigalpa, Honduras[R]. U. S. Geological Survey Open-File Report.2002-219.9 pp.
    [88]Skempton, A.W., Delory, F.A. Stability of natural slopes in London clay[J]. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering.4, London 11,378-381.
    [89]中华人民共和国建设部.工程岩体分级标准(GB 50218-94)[S].1994.
    [90]中华人民共和国建设部.水利水电工程地质勘查规范(GB 50287-99)[S].1999.
    [91]刘佑荣,唐辉明.岩体力学[M].武汉:中国地质大学出版社.1999.
    [92]林宗元.岩土工程勘查设计手册[M].辽宁:辽宁科学技术出版社.1996.
    [93]贺汇文.秦岭变质岩区岩体结构特征及公路边坡稳定性研究[D].长安大学博士学位论文,2009.
    [94]苏生瑞,朱合华,王士天,等.岩石物理力学性质对断裂附近地应力场的影响[J].岩石力学与工程学报.2003,22(3):370-377.
    [95]杨光宇.鲜水河断裂带水平形变模拟及力学机制探讨[J].地球物理学报.1985,28(6):651-658.
    [96]路新景,孙文怀,李金都.南水北调西线工程几个特殊的工程地质和岩石力学问题[J].岩石力学与工程学报.2003,22(5):829-833.
    [97]唐东旗,吴基文,李运成,等.断裂带岩体工程地质力学特征及其对断层防水煤柱留设的影响[J].煤炭学报.2006,31(4):455-460.
    [98]闫汝华,樊卫花.马家岩水库坝基软弱夹层剪切特征及强度[J].岩石力学与工程学报.2004, 23(22):3761-3764.
    [99]夏军强,吴保生,王艳平,等.黄河下游游荡段滩岸土体组成及力学特性分析[J].科学通报.2007,52(23):2806-2812.
    [100]夏军强,王光谦,吴保生.黄河下游的岸滩侵蚀[J].泥砂研究.2002,6(3):14-21.
    [101]沈军辉,王兰生,王青海,等.卸荷岩体的变形破裂特征[J].岩石力学与工程学报.2003,22(12):2028-2031.
    [102]赵晓彦,胡厚田,庞烈鑫,等.类土质边坡开挖的卸荷作用及卸荷宽度的确定[J].2005,24(4):708-712.
    [103]李建林,熊俊华,杨学堂.岩体卸荷力学特性的试验研究[J].水利水电技术.2001,32(5):48-51
    [104]周火明,盛谦,李维树,等.三峡船闸边坡卸荷扰动区范围及岩体力学性质弱化程度研究[J].岩石力学与工程学报.2004,23(7):1078-1081.
    [105]郑达,黄润秋.高边坡岩体卸荷带划分的量化研究[J].水文地质工程地质.2006,5:9-12.
    [106]Chung C. F., Fabbri A. G. Validation of spatial prediction models for landslide hazard mapping[J]. Natural Hazards.2003,30:451-472.
    [107]刘希林,唐川.泥石流危险性评估[M].北京:科学出版社.1995:1-5,62-78.
    [108]孙绍骋.灾害评估研究内容与方法探讨[J].地理科学进展.2001,20(2):122-130.
    [109]Jones DKC. Landslide hazard assessment in the context of development [C]//McCall GJH, Lam ing DJC & ScottSC. Geohazards natural and Manmade. London:Chapman& Hall 1992:117-141.
    [110]李阔,唐川.泥石流危险性评估研究进展[J].灾害学.2007,22(1):106-111.
    [111]刘希林,赵源,倪化勇,等.四川泸定县“2005.6.30”群发性泥石流灾害调查与评价[J].灾害学.2006,21(4):58-65.
    [112]刘希林,唐川.中国山区沟谷泥石流危险度的定量判定法[J].灾害学.1993,8(2):1-7.
    [113]李媛媛,李晋,刘新华,等.基于3S技术的地质灾害监测信息系统构建[J].灾害学.2006,21(4):28-30.
    [114]李剑萍.3S技术在灾害监测预测中的应用及展望[J].灾害学.2004,19:83-87.
    [115]Saaty T. L. The analytic hierarchy process [M]. New York:Me Graw-Hill,1980.
    [116]郭凤鸣,成金华.层次分析法判断矩阵一致性检验及偏差修正方法研究[J].中国地质矿产经济.1997,7:19~24.
    [117]杜栋,庞庆华.现代综合评价方法与案例精选[M].北京:清华大学出版社.2005.
    [118]刘兴昌.陕西秦岭西部泥石流区域规律研究[J].水土保持通报.2000,20(1):17-21.
    [119]刘希林,莫多闻.泥石流风险及沟谷泥石流风险度评价[J].工程地质学报.2002,10:266-273.
    [120]毛新虎,周永昌,张国文.矿山泥石流地质环境的模糊综合评价[J].西南民族大学学报(自然科学版).2008,34(5):929-934.
    [121]刘丽,王士革.滑坡、泥石流区域危险度二级模糊综合评判初探[J].自然灾害学报.1996,5(3):51-59.
    [122]刘希林,张松林,唐川.沟谷泥石流危险度评价研究[J].水土保持学报.1993,7(2):20-25.
    [123]钱永波,唐川.层次分析法在单沟泥石流危险度评价中的应用[J].中国地质灾害与防治学报.2006,17(4):79-84.
    [124]游勇,柳金峰.汶川8级地震对岷江上游泥石流灾害防治的影响[J].四川大学学报(工程科学版)2009,41 Supp:16-22.
    [125]杨芳,王克勤,延红卫.尖山河流域不同植被类型坡面产流产沙量研究[J].林业调查规划.2009,34(1):10-14.
    [126]刘希林,莫多闻,王小丹.区域泥石流易损性评价[J].中国地质灾害与防治学报.2001,12(2):7-12.
    [127]刘希林,唐川,张松林.中国山区沟谷泥石流危险度的定量判定法[J].灾害学.1993,8(2):1-7.
    [128]朱静.泥石流沟判别与危险度评价研究[J].干旱区地理.1995,18(3):64-67.
    [129]王学武,石豫川,黄润秋,等.多级模糊综合评判方法在泥石流评价中的应用[J].灾害学.2004,19(2):1-5.
    [130]张梁,张业成,罗元华.地质灾害灾情评估理论与实践[M].北京:地质出版社.1998.
    [131]李闽.地质灾害人口安全易损性区划研究[J].中国地质矿产经济.2002,8:24-27.
    [132]AGS. Guideline for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Management[J]. Australian Geomechanics.2007,42 (1):13-36.
    [133]Duizgun, S. F-N Curves, Social Aspects and Risk Acceptability, Middle East Technical University Ankara Turkey:23.
    [134]王银成.中国财产保险重大灾因分析报告(2008)[M].北京:中国财政经济出版社.2009.
    [135]米建华,龙艳.发达国家巨灾保险研究-基于英、美、日三国的经验[J].安徽农业科学.2007,36(21):6609-6610.
    [136]曹海菁.法国与新西兰巨灾保险制度及其借鉴意义[J].保险研究.2007,6.
    [137]沙克兴.台湾自然灾害风险管理与保险机制之研究[D].中南大学博士学位论文.2007.
    [138]曾立新.巨灾风险融资机制与政府干预研究[D].对外经济贸易大学博士学位论文.2006.
    [139]曾倩祺.我国洪水保险制度设计与费率厘定研究[D].浙江工商大学硕士学位论文.2008.
    [140]隋祎宁.日本地震保险法律制度研究[D].吉林大学博士学位论文.2010.
    [141]王念秦,张倬元.黄土滑坡灾害研究[M].甘肃:兰州大学出版社.2005.
    [142]徐邦栋,王恭先.几类滑坡的发生机理及有效防治措施.铁路崩坍滑坡论文报告集[R].1982:93-99.
    [143]Adrian E. Scheidegger. On the Prediction of the Reach and Velocity of Catastrophic Landslides[J]. Rock Mechanics.1973(5):231-236.
    [144]森·协宽.滑坡滑距的地貌预测(王念秦译)[J].铁路地质与路基.1989,3(3):42-47
    [145]王思敬,王效宁.大型高速滑坡的能量分析及其灾害预测[A].1987年全国滑坡学术讨论会滑坡论文选集[C].成都:四川科学技术出版社.1989:117-124.
    [146]王靖泰,李永进等.中国西部厚层黄土滑坡形成机理与减轻灾害[R].兰州:甘肃省科学院地质自然灾害防治研究所.1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700