地块变形与断层地震的耦合数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地壳内部大多数强震是构造地震,是构造活动的产物。地震的发生主要与断层的稳定性而不是介质的强度有关。作为地壳块体的边界,断层的失稳还与其周围的块体的运动与变形有关。因而除了要理解断层失稳机制,模拟断层的失稳与强震的发生外,还要理解构造活动的规律,特别是在板块运动作用下板内变形的规律,进而模拟它的构造运动与失稳。论文从地震活动性分析出发,通过统计与数值模拟的方法分析了全球主要地震带、我国大陆地震区、构造扭结点的地震时空演化规律,模拟了强震主体地区的形成与分布,考虑了脆韧性层的应力传递与动态相互作用,建立了模拟地块与断层运动体系的粘弹性有限元与弹簧滑块耦合模型的数值模拟方法,引入了模拟断层滑动非均匀的滑动速率分配耦合模型,并模拟了川滇菱形地块的运动与边界断裂的地震模式。实现了研究缓慢的大尺度的大陆地壳构造变形转化为急剧的小尺度断层失稳的模拟过程,并进行了理论模型的模拟和实际应用。
     比较了环太平洋带和地中海—喜马拉雅带强震活动的变化规律,在茂木清夫划分的1897-1916、1917-1933、1934-1951和1952-1970年四个时间段基础上,划分出1952-1971、1972-1979、1980-1998,1999-2002年四个时间段。地中海—喜马拉雅带的特大地震分布,明显呈现活跃和相对平静的时间分段性。北太平洋地震带与地中海-喜马拉雅带有较好的互补关系。在地中海-喜马拉雅带地震活跃的时间段内,与西南太平洋带、东南太平洋带共同构成了横跨南北半球与近纬向分布的强震带。在北太平洋地震活跃时,与西南、东南太平洋带共同构成了环太平洋地震带。
     我国大陆及邻近区域的四个构造扭结点阿萨姆、帕米尔、珲春深震区、台湾的地震活动占据了大陆地震的主要份额,表现了微动态的活动特征。珲春深震区与台湾同属于西太平洋构造带,欧亚板块东部,所以地震特征表现出一定的相似性。帕米尔区相对于阿萨姆地震活动频繁,能量积累和释放的时间较短。由于两个区域同属于相同的板块边缘,两端的涨落有着基本一致的形式。构造扭结点的地震活动一定程度上影响了大陆内部地震的活动性。
     采用了三维粘弹性耦合模型模拟印度与欧亚大陆碰撞条件下,我国大陆强震区的形成和地震空间分布的非均匀性,强调了深部韧性层屈服对脆性层应力积累的影响和欧亚板块对推挤的限制作用。模拟的粘弹性应力分布与实际地震统计的应变能释放分布情况比较得到了较好的符合情况,描述了我国强震分布区域,主要是在印度次大陆的长期推挤,高原巨厚地壳及其弱化的下地壳为弹性层的应力集中创造了条件,长距离的挤入是碰撞带两犄角的变形不断延伸,形成了两侧的变形梯度带。
     为了理解地壳的脆韧性分层耦合的应力传递关系,采用脆韧性耦合模型模拟了剪切边界条件的应力分布与Kusznir模型相比,可说明我国大陆地震区的形成主要成因于印欧板块的宽泛边界的推挤作用。结合常应力边界条件和常速度边界条件的非均匀脆韧耦合模型模拟的结果对比,在不同的应力环境下,脆韧耦合模型的应力传递过程不仅体现在垂向,而且由于脆韧性层界面的应变差异也会形成不同介质区域横向的应力非均匀,而这种深部的非均匀性也将体现在上覆脆性层中。脆韧耦合决定了应力向脆性层的快速集中,深部韧性层的介质非均匀决定了脆性层应力的空间分配与演化过程。
    
     走滑断层与逆冲断层震后的应力演化与再分配的模拟说明,地震并不是脆性
    上地壳层的孤立行为,整个地壳层甚至是岩石圈都参与了地震的孕育、发生和循
    环过程‘地震的终极动力来源于深部地慢的运动,板块边界成为直接作用于大陆
    的力源,但其中大陆中下地壳的结构和介质性质的特点决定了应力分配与调节机
    制。
     建立了粘弹性有限元方法和弹簧滑块的祸合模型,通过位移和应力的传递实
    现了两种方法的祸合计算。并且可以模拟多条断层与块体运动的复杂体系。模拟
    断层的弹簧滑块模型给出服从Gutenberg一形chter频度震级关系的地震序列;地震
    破裂过程由成核点开始向两端扩展,作为成核点的初始滑块的应力状态控制了发
    震时间和地点,但是事件的尺度并不是由成核点决定的,取决于破裂扩展中其它
    滑块的应力状态和强度分布,并与地震波反演的地震破裂过程进行了对比;匀阻
    段与摩擦随机分布模型的地震应力降标度关系符合幂指数关系叮ocM了的数
    学关系,应力降是随着地震的尺度增加而增加,中强震以上的应力降保持在零点
    JL巴到两个巴之间。
     断层应力与地震的对比说明断层的应力状态取决于地震的活动方式,地震的
    平静对应断层的应力积累,但地震的活跃并不一定是断层应力降低的表现。断层
    的破裂事件释放了地壳块体的部分应力,并使近断层的应力得到重新调整,而地
    块的应力状态受到断层整体地震活动的控制。单个地震的发生产生了同震应力的
    分布,它是断层与地块间应力传递的途径。地块应力受到断层应力控制的结果使
    得整个地壳处于高应力积累的状态,这为地块内部断层的地震发生准备了应力条
    件。
     多断层与地块祸合模型的模拟进一步认识了地壳复杂体系的动力演化过程。
    地块成为断层间相关的桥梁,虽然每一条断层的地震活动仍然受
Earthquakes in the continental lithosphere are the result of tectonic motion. Seismicity is related to stability of fault rather than its strength. Rupture of fault which occurs on the boundary of a crustal block is a consequence of motion and deformation of tectonic plates. For studying mechanism of rupture of fault, deformation of interior plate by tectonic motion should be considered. In this paper, energy statistics is used to analyze the spatial and temporal distribution of earthquakes around the world, China continental seismic regions and tectonic twist nodes. Distribution of seismic regions is simulated by a viscoelastic two-layer model. Transfer of stress and dynamic interaction in the viscoelastic crust are studied by numerical simulation under various kinds of boundary conditons. A numerical method of the finite element coupled with spring-block model is developed to simulate the system of faults and crustal blocks. Heterogeneous slip of a fault can be studied with distributed velocity un the spri
    ng-block model. The coupled model is applied to analyze the dynamics of movement of the Chuandian block and seismicity on boundary faults. The coupled model provides a way to link slow motion of a large-scale continental plate with sudden small-scale rupture of faults. It can be used for theoretical and practice application.
    The active and inactive periods of the world seismic zones are discussed further. The temporal change of great earthquakes in the circum-Pacific belt and Mediterranean-Himalayan belt is examined. There are eight periods which are more than that proposed by Mogi in last century. These periods are 1897-1916, 1917-1933, 1934-1951, 1952-1970, 1952-1971, 1972-1979, 1980-1998 and 1999-2002. In the Mediterranean-Himalayan seismic zone, the activity of great earthquakes is remarkably high during periods 1897-1917, 1934-1951, 1972-1979 and 1999-2002, appreciably low in the periods 1917-1933, 1952-1971 and1980-1998. The northern Pacific seismic belt is active in the inactive periods of Mediterranean-Himalayan seismic zone. The activities of southwest and southeast Pacific belts do not show such a regular pattern. So during different periods, there are two types of seismic distribution around the world. One is the circum-Pacific belt, and another is the latitudinal belt which joining the Mediterranean-Himalayan seismic
     zone with southwest and southeast Pacific belts. These results suggest that large earthquakes are strongly coupled on a global scale.
    There are four tectonic twist nodes, i.e. Asam, Pamir, Hunchun and Taiwan, around China continent. The seimic activity in these areas can be devided into micro-dynamic periods. The Hunchun deep earthquake zone and Taiwan are located in the west-Pacific tectonic belt of the eastern Eurasia plate. So they have similar temporal seismic characteristics. The periods of accumulation and release of stress in Pamir are shorter than those in Asam. The activity of tectonic twist nodes sometimes is related with space-time distribution of intracontinent earthquakes.
    For understanding the transfer of stress of the brittle-ductile model, a simplified model of two-layer viscoelastic lithosphere is built. Shear stress is applied on its boundary. The result comparison with Kusznir's model demonstrates that the
    
    
    India-Eurasia collision affects the wild deformation of China continental seismic zones. The heterogeneous brittle-ductile models with constant stress and constant velocity boundary conditions show that stress transfers from the ductile layer to the brittle layer, and the heterogeneous ductile layer also affects stress distribution of the brittle layer. The stress would be heterogeneous in the brittle layer along horizontal direction because strain difference of layer's interface controls transfer process of stress. As a conclusion, the brittle-ductile coupling produces the quick transfer of stress, and the deep heterogeneous ductile layer generates stress distribution and dynamic process in the brittle layer.
    Stress process and redistribution of a strike-slip
引文
白武明等,鲜水河断裂带多断层相互作用的流变断裂力学分析,地球物理学报,33,3,308-3 17,1990
    陈宇卫等,中国大陆西部及周边地区地震活动特征的研究,地震地质,23(3),464-470,2001
    邓起东等,中国大陆活动构造图的编制,课题报告9504070101,中国地震局地质研究所, 2001
    邓天岗,鲜水河断裂带的新老构造及发展演化关系,鲜水河断裂带地震学术讨论会文集,地震出版社,1985
    丁国瑜,李永善,我国地震活动与地壳现代破裂网络,地质学报,53,1,1979
    丁国瑜,卢演俦,对中国现代板内运动状况的初步探讨,科学通报,18,1412-1415,1986
    丁国瑜等,中国岩石圈动力学概要,地震出版社,1991.
    丁国瑜,田勤俭,孔凡臣,等,活断层分段—原则、方法及应用,地震出版社,北京,1993
    裴锡瑜等,鲜水河断裂带深部构造初探,鲜水河断裂带地震学术讨论会文集,地震出版社,1985
    傅征祥,全球地震活动的不均匀性,现今地球动力学问题讨论会论文集,地震出版社,26-36,1994
    傅征祥编著,中国大陆地震活动性力学研究,地震出版社,1997
    高祥林,马宗晋,环太平洋俯冲带的分段性与动力平衡,现今地球动力学问题讨论会论文集,地震出版社,81-90,1994
    国家地震局西南烈度队,西南地区地震地质及烈度区划探讨,地震出版社,1977
    国家地震局西南烈度队,川滇强震区地震地质汇编,地震出版社,1979
    国家地震地质研究所,云南地震局编,滇西北地区活动断裂,地震出版社,北京,1990
    虢顺民等著,红河活动断裂带,海洋出版社,北京,2001
    何昌荣,岩石摩擦弱化及失稳序列的数值模拟,地球物理学报,8,4,156-166,1993
    洪汉净,汪一鹏等,我国大陆地壳块体运动的平均图像及其动力学意义,活动断裂研究6,1997
    洪汉净,中国及邻区地块运动的数值模拟,地震地址,12,4,319-331,1990
    洪汉净,祁连山地区的地震活动及其与首藏高原隆起的关系,地震联合基金最终成果报告(88209)1991
    洪汉净,地震时空分布的计算机模拟,地震科学联合基金研究报告,1993
    洪汉净等,我国地震活动主导构造及其动力学特征,8504060102课题研究报告,中国地震局地质研究所,1994
    洪汉净,我国地震活动的主导构造,地震,增刊,102-109,1994
    洪汉净,从地震模拟看匀阻段与大震的关系,地震地质,16卷,109-114,1994
    洪汉净,刘培洵,陶玮,强震活动主体地区、网络及其随时间的变化,地震危险性预测研究(1998年度),地震出版社,1997
    洪汉净,刘培洵,陶玮,强震活动的主体地区、网络及其随时间的变化,地震危险性预测研究(1998年度),56-68,1997
    洪汉净,程国良,刘培洵,陶玮,中国板块运动演化历史的复原再造,“九五”石油天然气集团公司科研项目《板块构造演化与含油气盆地形成和评价》研究成果报告,1999
    洪汉净等,构造活动微动态和发震概率物理模型的应用研究,9504070103子专题研究报告,2000
    黄立人,马青,朱文耀,程宗颐,熊永清,高精度GPS测量得到的中国西南地区构造块体
    
    运动模型的初步结果,地震学报,19,1,22-28,1997
    黄圣睦,董瑞树,中国强震活动图像与地震预报,成都地图出版社,1996
    黄圣睦,朱航,川滇强震活动图像与趋势讨论,四川地震,1,16-19,2002
    黄祖智,等.1982.则木河断裂的地震地质特征及其地震关系的初步研究.中国活动断裂,北京:地震出版社
    李坪主编,鲜水河—小江断裂带,地震出版社,北京,1993
    李坪,汪良谋,云南川西地震地质基本特征的探讨,地质科学,4,1975
    李钦祖,于利民等,成组活动是中国大陆强震的一个特点,地震学报,16,1,1994
    李献智,侯建胜,20世纪中国大陆6级以上地震活动图像及其意义,地震研究,23(3),2000
    笠原庆一,地震力学,宋仲和译,北京,地震出版社,1984
    刘白篪,刘小凤,陈学刚,活动断块与大地震群聚区的迁移及循环,“新构造与环境”,地震出版社,234-244,2001
    刘白篪,等.1979.中国大陆地震的应力调整场动态模型.地震地质,1(3).
    刘瑞丰,陈培善,李强,云南及其邻近地区三维速度图像,地震学报,15(1),61-67,1993
    罗焕炎,徐煜坚,宋惠珍等,青藏高原近代隆起原因及其地震关系的有限单元分析,地震地质,4,1,31-37,1982
    马瑾,构造物理学概论,地震出版社,北京,1987
    马瑾等,鲜水河断裂带断层几何与地震活动性,第二界构造物理学术讨论会文集,地震出版社,1990
    马瑾,从断层中心论向块体中心论转变,论活动块体在地震活动中的作用,地学前缘,6(4),363-370,1999
    马胜利,(山乌)本利彦,蒙脱石的脱水作用对断层摩擦本构行为的影响,地震地质,17,4,289-303,1995
    马杏垣,宿俭,吴大宁,中国活动块体运动和构造变形,现代地壳运动研究,3,1987,地震出版社
    马宗晋,薛峰,中国大陆地震深度分布与“易震层”初探,地震科学研究,3,1983
    马宗晋、张德成,板块构造活动与地震,见:李春昱等著,板块构造基本问题,地震出版社,363-391,1986
    马宗晋,蒋铭,中国的强震区和强震幕,中国地震,3(1),1987
    马杏垣主编,中国岩石圈动力学地图集,国家地震局,中国地图出版社,1989
    马宗晋,中国大陆地震分区及其动力学讨论,第三届全国地质构造会议论文集,86-95,1990
    马宗晋,张德成,中国地震活动图像构造解释图,中国地图出版社,1991
    马宗晋,李献智,全球M_s≥7 3/4级地震的定向迁移,地震地质,16,2,1994
    马宗晋,陈鑫连,叶叔华等,中国大陆区现今地壳运动的GPS研究,科学通报,46,13,1118-1120,2001
    申重阳,王琪,吴云,游新兆,甘家思,杨少敏,川滇菱形块体主要边界运动模型的GPS数据反演分析,地球物理学报,45,3,352-361,2002
    申旭辉,等,小江西支断裂中段水平运动强度评价.活动断裂研究2,北京:地震出版社.1992
    申旭辉,三万年来川滇地区的构造变形和现今地壳运动,博士论文,1996
    宋方敏,曹忠权,申旭辉,汪一鹏,等.小江断裂带中段东、西支活动特征的对比.活动断裂研究3,北京:地震出版社,1994
    宋方敏,汪一鹏,俞维贤,等.小江活动断裂带.北京:地震出版社,1998
    
    
    宋方敏,汪一鹏,等.小江断裂带的分段研究.活动断裂研究2,北京:地震出版社,1998
    宋惠珍等,唐山地震震源应力场的数值模拟研究—三维有限元法在计算震源应力场中的应用,西北地震学报,4,3,49-55,1982
    唐荣昌,韩渭宾主编,四川活动断裂与地震,地震出版社,1993
    陶玮,洪汉净,刘培洵,于泳,中国大陆强震活动主体地区形成的动力学模型与强震危险性预测,地震危险性预测研究(2000年度),1999
    陶玮,洪汉净,刘培洵,于泳,中国大陆及邻区强震活动主体地区形成的数值模拟,地震学报,22(3)271-277,2000
    滕吉文,王绍舟,姚振兴等,青藏高原及其邻近地区的地球物理场特征与大陆板块构造,地球物理学报,23,3,255-268,1980
    滕吉文,岩石圈物理与动力学研究的进展,地球物理学进展,8,3,45-62,1993
    汪良谋,康滇活动构造带的形成力学机制及其强震活动,中国活动断裂,中国地震学会,地震地质专业委员会,地震出版社,北京,1982
    汪素云,陈培善,中国及邻区现代构造应力场的数值模拟,地球物理学报,23,1,1980
    王椿镛,W D.Mooney,王溪莉,吴建平,楼海,王飞,川滇地区地壳上帝满三维速度结构研究,地震学报,24(1),1-16,2002
    王嘉荫,中国地质史料,科学出版社,1963
    王琪,张培震,等,中国大陆现今地壳运动和构造变形,中国科学(D),31,7,529-536,2001
    王鸿桢,地球节律与大陆动力学的思考,地学前沿,4,3,1997
    王时标,白广忱,王光远,断层地震危险性分析的双限随机应力水平模型,地震学报,15(4),1993
    王仁,熊祝华,黄文彬著,塑性力学基础,科学出版社,1982
    王仁等,华北地区近700年地震序列的数值模拟,中国科学B,8,1982
    王仁等,华北地震构造应力场的模拟,中国科学B,4,337-344,1982,
    王绳祖,浅源地震的失稳过程是破裂扩展抑或摩擦错动,第二届构造物理物理学术讨论会文集,北京,地震出版社,113-119,1984
    万永革,吴忠良,周公威,黄静,秦立新,地震静态应力触发模型的全球检验,地震学报,24,3,302-316,2002
    闻学泽,四川西部鲜水河—安宁河—则木河断裂带的地震破裂分段特征.地震地质,22(3):239-249,2000
    闻学泽,小江断裂带的破裂分段与地震潜势概率估计,地震学报,15(3),322-330,1993
    吴忠良,陈运泰,P.Mozaffari,应力降的标度性质与震源谱高频衰减常数,地震学报,21,5,460-468,1999
    谢富仁,祝景忠,梁海庆,刘光勋,中国西南地区现代构造应力场基本特征,地震学报,15(4),407-417,1993
    许力生,陈运泰,1997年中国西藏玛尼Ms7.9地震的时空破裂过程,地震学报,21,5,449-459,1999
    许忠淮,汪素云,俞言祥,根据观测的应力方向利用有限单元方法反演板块边界作用力,地震学报,14.4,1992
    薛峰,中国大陆及其邻区地震对称活动现象,地震,3,10-13,1982
    易桂喜,闻学泽,活动断裂带的整体地震复发行为及其与分段地震复发的关系,地震学报,22,5,527-537,2000
    俞维贤,等.小江断裂带西支龙街子—阳宗丫口段断裂的多期活动研究.活动断裂研究2.
    
    北京:地震出版社,1992
    于泳,洪汉净,刘培洵,陶玮,四个扭节点强震活动分析及对我国地震大趋势的预测,地
    震危险性预测研究(2000年度),102-108,1999
    张德成,蒋铭,地震线,见:中国岩石圈动力学概论,《中国岩石圈动力学图集》编委会,1992
    张东宁,青藏高原此案带构造应力状态及构造运动的三维弹粘性数值模拟,博士论文,1993
    张国民,耿鲁明。石耀霖,中国大陆强震轮回活动的计算机模型研究,中国地震,9(4)20-32,1994
    张培震,中国大陆岩石圈最新构造变动与地震灾害,第四纪研究,5,404-413,1999
    张强,朱文耀,中国地壳构造块体运动模型的初建,科学通报,45,9,967-974,2000
    张肇诚,郑大林等,中国大陆与周边地区地震活动动态关系及地震趋势的分析,中国地震趋势预测(1990年度),地震出版社,1989
    张肇诚,郑大林,汪贵宣等,我国孕震环境的不均匀性与地震前兆的复杂性,地震,增刊,1994
    曾秋生,中国地壳应力状态,地震出版社,1990
    邹新民,中国大陆地磁学特征与百年地震相关关系分析,长春科技大学学报,29,3,1999
    中国科学院数学研究所数理统计组编,回归分析方法,科学出版社,1974
    朱良保,许庆,陈晓非,保角变换在区域面波群速度反演中的应用,地球物理学报,44(1),64-71,2001
    等,梁金仓译,全球地震活动性三要素的发现,世界地震译丛,160,10-18,1995
    H.H等,梁金仓译,关于太平洋和印澳板块俯冲带之间及中海岭交汇处地震活动的负相关性问题,世界地震译丛,199,27-37,2002
    Avouac, J.P., and E Tapponnier, Kinematic model of active deformation in central Asia, Geophys. Res. Lett., 20, 895-898,1993
    Bak, E, and Tang, C., Earthquakes as aseif-organized critical phenomenon, J. Geophys. Res., Voi. 94, 15635-15637, 1989
    Bak, P., C. Tang and K. Wiesenfeld, Self-organized criticality, Phys. Rev., A38, 364-74, 1988.
    Barriere, B., and D.L. Turcotte, Seismicity and self-organized criticality, Phy. Rev. E, Stat. Phys. Plasmas. Fluids. Relat. Interdisp. Top., 49, 1151-1160, 1994
    Beaumont, C., R. A. Jamiesont, M. H. Nguyen, and B. Lee, Himalayan tectonics explained by rxtrusion of a low-viscosity crustal channel coupled to focused surface denudation, Nature, 414, 738-742, 2001
    Becker, W., Reinhart, E., et al, Improving the velocity field in south and South-East Asia:The third round of GEODYSSEA, Earth Plantes Space, 52, 721-726, 2000
    Benes V., Davy P., Models of Continental Lithospheric Extension:Experimental, verification of Strain Localization Processes., Tectonophysics, 254, 69-87, 1996.
    Ben-Zion, Y., Dynamic ruptures in recent models of earthquake faults, Journal of Mechanics and Physics of Solids, 49, 2209-2244,2001
    Ben-Zion, Y., and J.R. Rice, Earthquake failure sequence along a cellular fault zone in a three-dimensional elastic solid containing asperity and nonasperity regions, J. Geophys. Res., 98, 14109-14131, 1998
    Bernard, M., B. Shen-Tu, W.E. Holt, and D.M. Davis, Kinematice of active deformation in the sulaiman lobe and range, Pakistan, J. Geophys, Res., 105, 13253-13279, 2000
    Bird. P., Lararnide crustal thickening event in the Rocky Mountain forland and Great Plains,
    
    Tectonics, 3,741-758, 1984
    Bird. P., Formation of the Rocky Mouatains, western United States: A continuum computer model, Science, 239, 1501-1507, 1988
    Bird. P., New finite element techniques for modeling deformation historiesof continents with stratified temperature-dependent rheology, J. Geophy. Res, 94, 3967-3990, 1989
    Bird, P., Lithosphere dynamic and continetial deformation, Rew. Geophys., Supplement, 379-383, July, 1995
    Bokkelmann G. H. R., and G. C. Beroza, Depth-dependent earthquake focal mechanism orientation: Evidence for a weak zone in the lower crust, J. Geophys. Res., 21683-21695, 2000
    Bourne, S.J., P.C. England, and B. Parsons, The motion of crustal blocks driven by flow of the lower lithosphere : Implication for slip rates of faults in the South Island of New Zealand and Southern California, Nature, 391,655-659, 1998
    Bourne, S.J., T. Arnadottir, J. Beavan, et al, Crustal deformation of the Marlborough fault zone in the south island of New Zealand: Geodetic constrains over the interval 1982-1994, J. Grophys. Res., vol. 103.B12, 30147-30165, 1998
    Brace, W.F. and J.D. Byerlee, Stick-slip as a mechanism for earthquake, Science, Vol. 15, 990-992, 1966
    Brown, C. D. and Phillips, R. J., Crust-mantle decoupling by flexure of continental lithosphere, J. Geophys. Res., 105, 13221-13237, 2000
    Brown, S.R., Scholz, C.H., Rundle, J.B. A simplified spring-block model of earthquakes, Geophy. Res. Lett., Vol. 18, 215-218, 1991
    Burridge, R. and L. Knopoff, Model and Theoretical Seismicity, Bulletin of Seismological Society of America, Vol. 57, No. 3,341-371, 1967
    Byerlee, J.D., Static and kinetic friction of granite at high normal stress: International Journal of Rock Mechanics and Milling Sciences, v. 7, no. 6, 577-582, 1970
    Byerlee, J. D., Friction of rocks, Pure Appl.Geophys., 116, 615-629. 1978
    Cao, T. and Aki, K., Seismicity Simulation with a Mass-Spring Model and a Displacement Hardening-Softening Friction Law, Pure Appl. Geophys, Vol. 122, 10-24,1984
    Cao, T. and Aki, K., Seismicity Simulation with a Rate-and State-Dependent Friction Law, Pure Appl. Geophys, Vol. 124, 487-513,1986
    Cao, T. and Aki, K., Effect of Slip on Stress Drop, Pure Appl. Geophys, Voi. 124, 515-529,1986
    Carlson, J.M.. Time intervals between characteritical earthquakes and correlations with smaller events: An analysis based on a mechanical model of a fault, J. Geophys. Res., Vol.96, 4255-4267, 1991a
    Carlson, J.M.. Two-dimensional model of a fault, Phys. Res. A, Vol.44, 6226-6232, 1991b
    Carlson, J.M.. Langer, J.S., Mechanical model of an earthquake fault, Phy. Rev. Vol. 40(A), 6470-6484, 1989
    Carter, N. L., and M. C. Tsenn, Flow properties of continental lithosphere, Tectonophysics, 136, 27-63, 1987
    Chen, W. P. and P. Molnar. Focal depths of intracontinental and intraplate earthquake and their implication for thermal and mechanical properties of the lithosphere, J. Geophys. Res., 88, 4183-4214, 1983
    Chery, J., J.P. Villote, and M. Daignieres, Thermomechanical evolution of a thinned continental lithosphere under compression: Implications for the Pyrenees, J. Geophy. Res., 96, 4385-4412,
    
    1991
    Cohen, S.C., Computer simulation of earthquake, J. Grophys. Res., Vol 82.3781-3796, 1977
    Clark, M.K. & Royden, L.H. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow.Geology 28, 703-706, 2000
    Curtis,A, B.Dost, J.Trampert & R.Snieder, Eurasian fundamental mode surface wave phase velocities and their relationship with tectonic structures, JGR, 102,26919-26947, 1998
    Dieterich, J.H., Time-Dependent Friction as a possible Mechanism for Afershocks, J. Grophys. Res., Vol. 77, 3771-3781, 1972
    Dieterich, J.H., Modeling of rock friction, 1: Experimental results and constitutive equations, J. Grophys. Res.,84, 2161-2168, 1979
    Dieterich, J.H., Modeling of rock friction, 2: Simulation and Preseismic Slip, J. Grophys. Res.,84, 2169-2175, 1979
    Dittmar, U., Meyer, W., Oncken, O., Schievenbusch, T., Walter, R. & Winterfeld, C.v.. Strain partitioning across a foreland fold and thrust belt - the western Rhenish Massif (Germany). -J. Struct. Geol., 16, 1335-1352, 1994
    Ellsworth, W. L., and Beroza, G. C., Seismic evidence for an earthquake nucleation phase, Science, 268, 851-855, 1995
    England, P.C., D. P. McKenzie, A thin viscous sheet model for continental deformation, J. R. Astron. Soc., 70, 295-321, 1982
    England, P.C., D. P. McKenzie, Correction for "A thin viscous sheet model for continental deformation", J. R. Astron. Soc., 73, 523-532, 1983
    England, P. and G. Houseman, Role of lithopheric strength heterogeneities in the tectonics of Tibet and neighbouring regions, Nature, 315, 297-301, 1985
    England, P., G. Houseman, Finite strain calculation of continental deformation 2. comparison with the India-asia collision zone, J. Geophy. Res., Vol.91, 3664-3776,1986
    England, P., G. Houseman, Extention during continental convergence, with application to the Tibetan Plateau, J. Geophy. Res., Vol. 94, 17561-17579,1989
    Fan, G., J.F., Ni, T.C. Wallace, Active tectonice of the pamirs and karakorum, J. Geophy. Res., 99, 7131-7160,1994
    Flesch, L. M., A. J. Haines, W. E. Holt, Dynamics of the India-Eurasia collision zone, J. Geophy, Res, 106, 16435-16460, 2001
    Freed, A. M., and J. Lin, Time-dependent changes in failure stress following thrust earthquake, J. Geophys. Res., 103, 24393-24409, 1998
    Freed, A., and J. Lin, Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer, Nature, 411, 180-183,2001
    Gans, P. B., An open-system, two layer crustal stretching model for the eastern Great Basin. Tectonics, 6, 1-12, 1987
    Griot, D., Montagner, J., and Tapponnier, P., Phase velocity structure from Rayleigh and Love waves in Tibet and its neighboring regions, J. Geophys. Res., 103, 21215-21231, 1998
    Grujic, D. et al. Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics 260, 21-43, 1996
    Gutenberg, B., and C.E Richer, Seismicity if the earth and associated phenomena, Princeton University Press, Princeton, New Jersey, 1954
    Heaton, J. L., and Hauksson, E., Static stress drop in the 1994 Northbridge, California sequence,
    
    Bull. Seism. Soc. Amer., 87, 1495-1501, 1997
    Heki, K, et al., The amurian plate motion and current plate kinematics in the eastern asia, J. Geophys, Res., 104, 29147-19155, 1999
    Holt. W.E., N. Chamot-Rooke, X. Le Pichon, A.J. Haines, B. Shen-tu, and J. Ren, Velocity field in aisa inferred from quaternary fault slip rates and global positioning system observations, J. Geophys. Res., 105, 19185-19209, 2000
    Houseman G., P. England, Finite strain calculation of continental deformation 1. Method and general results for convergent zones, J. Geophy. Res., Vol. 91, 3651-3663, 1986
    Houseman, G., and P. England, Crustal thickening versus lateral expulsion in the Indian-Asian continental collision, J. Geophys. Res., 98, 12233-12249, 1993
    Ito, K., and M. Matsuzaki, Earthquake as self-organized critical phenomena, J. Geophys. Res., 95, 6853-6860, 1990
    Jackson, J. A. W. E. Holt, and A. J. Haines, The horizontal velocity field in the deformating Aegean Sea region from the moment tentors of earthquakes, J. Geophys, Res., 97, 17657-17684, 1992
    Kirby, S. H., and A. K. Kronenberg, Rheology of the lithosphere: Selected topics, Rev. Geophys., 25, 1219-1244, 1987
    Knopoff, L. J. A. Landomi, and M. S. Abinante, Dynamical model of an earthquake fault with localization, Phys. Rev. A. 46, 7445-7449, 1992
    King, C.Y., Model seismicity and faulting parameters, Bull. Seismol. Soc. Am., 65, 245-259, 1975
    King, C.Y., Multicycle slip distribution along a laboratory fault, J. Geophys. Res., 96, 14377-14381, 1991
    King, C.Y., Predictability of slip events along a laboratory fault, Geophys. Res. Lett., 13, 1165-1168, 1986
    King, R. W., F. Shen, B. C. Burchfiel, L. H. Royden, Wang, E., Chen, Z., Liu, Y., Zhang, J., Li, Y., Geodetic measurement of crustal motion in southwest China, Geology, 25, 2, 179-182, 1997
    Kusznir, N. J. and M. H. P. Bott, Stress concentration in the upper lithosphere caused by underlying visco-elastic creep, Tectonophysics, 43,247-256, 1977
    Kusznir, N.J. & Park, R.G., "Continental lithosphere strength: the critical role of lower crustal deformation", In: The nature of the lower continental crust, Geol. Soc. Lond. Spec. Publ. No. 24, 79-93. 1986
    Lamb, S.H., Bahavior of the brittle crust in wide plate boundary zones, J. Geophys. Res., 99, 4457-4483, 1994
    Lesne, O., E. Calais, J. Deverchere, J. Chery, and R. Hassani, Dynamics of intracontinental extension in the Baikal rift from two-dimensional numerical deformation modeling, J. Geophy. Res., 105, 21727-21744, 2000
    Malservisi, R. K. P. Furlong, and T, H. Dixon, Influence of the earthquake cycle and lithospheric theology on the dynamics of the eastern California shear zone,Geophys. Res. Lett., 28, 2731-2734, 2001
    McKenzie D., Active tectonics of the Mediterranean regeion, Geophys. J. R. Astron. Soc., 30, 109-186, 1972
    McKenzie D., F., Nimmo, and J. A. Jackson et al, Characteristics and consequences of flow in the lower crust, J. Geophys, Res., Vol. 105, B5, 11029-11046, 2000
    Melosh, H. J. and A. Raefsky, The dynamical origin of subduction zone topography, Geophys. Res.
    
    J. R. Astron. Soc., 60, 333-354, 1980
    Melosh, H.J., and A. Raefsky, A simple and efficient method for introducing faults into finite element computations, Bull. Seismol. Soc. Am., 71, 1391-1400, 1981
    Melosh, H. J. and A. Raefsky, Anelastic response of the earth to a dip slip earthquake, Journal. Geophys, Res., 88, 515-526, 1983
    Melosh, H.J., and C.A. Williams, Mechanics ofgraben formation in crustal rocks: a finite element analysis, J. Grophys. Res., Vol. 94, 13961-13973,1989
    Michel, G. W., Becker, M., Angermann, D., et al, Crustal motion in E- and SE-Asia from GPS measurements, Earth Planets Space, 52, 713-720,2000
    Michel Gero W., Matthias Becket, Detlef Angermann, Christoph Reigber, and Ewald Reinhart, Crustal motion in E- and SE-Asia from GPS measurements, Earth Planets Space, 52, 713-720, 2000
    Mikumo, T., and T. Miyatake, Earquake sequences on a frictional fault model with non-uniform strength and relaxation times, Geophys. J. R. Astron. Soc., 59, 497-522, 1979
    Mogi, K., Active periods in the world's chief seismic belts, Tectonophysics, 22, 265-282, 1974
    Mogi, K., Global variation of seismic activity, Tectonophysics, 57, T43-T50, 1979
    Mogi, K., Earthquake Prediction, Academic Press, 1985
    Molnar, P., and P. Tapponnier, Cenozoic tectonics of Asia: Effects of a continental collision, Science, 189, 419-425, 1975
    Molnar, P., Continental tectonics in the aftermath of plate tectonics, Nature, 335, 131-137, 1988
    Nussbaum, J. and Ruina, A., A two degree-of-freedom earthquake model with static/dynamic friction, Pure and Appl. Geophys, Vol. 125,629-656,1987
    Ohnaka, M., A physical understanding of the earthquake source mechanism, J. Phys. Earth, 21,39-59, 1973
    Ohnaka, M., A physical understanding of the earthquake source mechanism. Part. The fault-slip velocity and acceleration, J. Phys. Earth, 22, 383-394, 1974
    Otsuka, M., Earthquake magnitude and surface fault formation, J. Phys. Earth, 12, 19-24, 1964
    Peltzer, G., F. Saucier, Present-day kinematice of Asia derived from geologic fault rates, J. Geophy. Res., 101, 12, 27943-27956, 1996
    Peltzer, G., and P. Tapponnier, Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: A exprimenttal apptcach, J. Geophys. Res., 93, 15085-15117,1988
    Reasenberg, P. A. and Simpson, R. W., Response of regional seismicity to the static stress change produced by the Loma Prieta earthquakes, Science, 255, 1687-1690, 1992
    Rice, J.R., and Ruina, A. L., Stability of steady frictional slipping. J. Appl. Mech., 50, 343-349, 1983
    Rice, J. R. and Tse, S. T., Dynamic motion of a single degree of freedom system following a rate and state dependent friction law, J. Geophys. Res., vol, 91,512-530, 1986
    Rice, J.R., Spatio-temporal complexity of slip on a fault, J. Geophys. Res., 98, 9885-9907, 1993
    Ritzwoller, M.H. & A.Levshin, Eurasian surface wave tomography:group velocities, J. Geophys. Res., 103(B3), 4839-4878, 1998
    Royden, L., Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust, J. Geophys. Res., 101, 17679-17705, 1996
    Royden, L.H. Coupling and decoupling of crust andmantle in convergent orogens: implications for
    
    strainpartitioning in the crust. J. Geophys. Res. 101, 17679-17705 (1996).
    Ruina, A.L., Slip instability and state variable friction laws, J. Geophys. Res., Vol.88, 10359-10370, 1983
    Rundle, J.B. and H. Kanamorim, Application of an inhomogeneous stress (patch) model to complex subduction zone earthquakes, A discrete interaction matrix approach, J. Geophys. Res., 97, 479-488, 1992
    Savage, J. C. and W. H. Prescott, Asthenosphere readjustment and the earthquake cycle, J. Geophys. Res., 83, 3369-3376, 1978
    Savage, J. C., Equivalent strike-slip earthquake cycles in half-space and lithosphere-astheosphere earth models, J. Geophys, Res., 95, 4873-4879, 1990
    Savage, J. C., Viscoelastic-coupling model for the earthquake cycle driven from below, J. Geophys. Res., 105, 25525-25532, 2000
    Scholz, C. H., The Mechanics of Earthquakes and Faulting, Cambridge University Press, 1990.
    Scholz, C. H., Earthquakes and friction laws, Nature, 391, 37-42, 1998
    Sibon R. H., Fault zone models, heat flow and the depth distribution of earthquakes in the continental crust of the United States, Bull. Seismol. Soc. Am., 72, 151-1, 1982
    Senatorski, P., Spatio-temporal evolution of faults: deterministic model, Physica D, 76,420-435, 1994
    Senatorski, P., Dynamics of a zone of four parallel faults: deterministic model, J. Grophys. Res., 100, 24111-24120, 1995
    Senatorski, P., Interactive dynamics of faults, Tectonophysics, 277, 199-207, 1997
    Shaw, B.E., Carlson, J.M. Langer, J.S., Patterns of seismic activity preceding large earthquake, J. Geophys. Res., Vol.97, 479-488, 1992
    Shen, F., L. H. Royden and B. C. Burchfiel, Large-scale deformation of the Tibetan Plateau, J.Geophys. Res., 106, 6793-6816, 2001
    Sornette, A., P. Davy, and D. Sornette, Fault growth in brittle-ductile experiments and the mechanics of continental collision, J. Geophys. Res., 98, 12111-12139, 1993
    Stein, R. S., King, G. C. P. and Lin, J., Stress triggering of the 1994 M=6.7 Northridge, California, earthquake by its precedessors, Science, 265, 1432-1435, 1994
    Stuart, W.D., Forcast model for large and great earthquakes in southern California, J. Geophys. Res., 91, 13771-13786, 1986
    Stuart, W.D., Forcast model for great earthquke at the Nankai trough, Southwest Japan, Pure Appl. Geophys., 126, 619-642, 1988
    Sykes, L.R. and M.L. Sbar, Intraplate earthquakes, lithospheric stresses and the driving mechanism of plate tectonics, Nature, 245, 198-302, 1973
    Tapponnier, P. and G. Peltzer, A. Y. Le Dain et al., Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine, Geology, 10, 611-616, 1982
    Tapponnier, P., and G. Peltzer, and R. Armijo, On the mechanics of the collision between India and Asia, In Collision Tectonics, edited by M.P Coward and A.C. Ries, Geol. Soc. Spec. Publ., 19. 115-157,1986
    Thatcher, W., Nonlinear strain buidup and the earthquake cycle on the San Andreas fault, J. Geophys., Res., 88, 5893-5902, 1983
    Thatcher, W., Microplate versus continuum descriptions of active tectonic deformation, J. Geophys. Res., 100. 3885-3895, 1995.
    
    
    Toda, S., Stein, R. S., and Reasonberg, P. A. et al., Stress transferred by the Mw=6.5 Kobe, Japan,shock: Effect on aftershocks and future earthquake probabilities,. J. Geophys. Res., 103,24543-24565, 1998
    Verdonck D., and K. P.Furlong, Stress accumulation and release at complex tansform plate boundary, Geophys. Res. Lett., 19, 1967-1970, 1992
    Villote, J. P., M. Daignieres, and R. Madariaga, Numerical modeling of intraplate deformation.Simple mechanical models of continental collision, J. Geophy. Res, 87, 10709-10728, 1982
    Villote, J. E, M. Daignieres, R. Madariaga and O.C. Zienkiewicz, Numerical study of continental collision: Influence of buoyancy forces and an initial stiff inclusion, Geophy. J. R. Astron. Soc.,84, 279-310,1986
    W.普拉格,P.G.霍奇著,陈森译,理想塑性固体理论,科学出版社,1964
    Wang, J.-H., A note on the correlation between b value and fractal dimension from synthetic seismicity, Terr. Atmos. Oceanic Sci., 2, 317-329, 1991
    Wang, Q, P Zhang, J.T. Freymueller, R. Bilham, K. M. Larson, X. Lai, X. You, Z. Niu, J. Wu, Y. Li, J. Liu, Z. Yang, Q. Chen, Present-Day Crustal Deformation in China .Constrained by Global Positioning System Measurements, Science, 294, 574-577, 2001
    Ward, S.N., A synthetic seismicity model for the Middle America Trech, J. Geophys. Res., 96, 21433-21442, 1991
    Ward, S.N., An application of synthetic calculations in earthquake statistics: The Middle America Trech, J. Geophys. Res., 97, 6675-6682, 1992
    Ward, S.N., and D.B. Goes, How regularly do earthquakes recur? A synthetic seismicity model for the San Andeas fault. Geophys. Res. Lett, 20, 2131-2134, 1993
    Wald, D. J. and Heaton, T. H., Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake, Bull. Seism. Soc. Amer., 84, 668-691,1996
    Wdowinski, S., Y. Bock, The evolution of deformation and topography of high elevated plateaus 1. Model, numerical analysis, and general result, J. Geophy, Res., 99, 7103-7119, 1994a
    Wdowinski, S., Y. Bock, The evolution of deformation and topography of high elevated plateaus 2. Application to the central Andes, J. Geophy, Res., 99, 7121-7130, 1994b
    Yamashida, T., On the dynamical process of fault motion in the presence of fricton and inhomogeneous initial stress. I : Rupture propagation. J. Phys. Earth, Vol. 24, 417-444,1976
    Yin, A, Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rites in Asia during the Indo-Asia collision, J. Geophy, Res., 105-21745-21759, 2000
    Yu Jin, M.K. McNutt, Y. Zhu, Mapping the descent of Indian and Eurasian plates beneath the Tibetan plateau from gravity anomalies, J. Geophy. Res., Vol. 101, 11275-11290, 1996
    Zhou Huilan et al., Source processes of large earthquakes along Xian shuihe fault in southweat China, B. S. S. A., 73, 2, 171-181, 1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700