典型凝胶及胶质类水产食品高效脱水过程与品质调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝胶与胶质类食品的脱水加工提高了其储藏稳定性,形成了具有独特结构与质构以及感官特征的产品。目前,脱水凝胶类食品主要以淀粉基产品为主,加工的主体技术是热风干燥和/或油炸膨化技术或挤压膨化-热风干燥技术,存在脱水时间长、产品含油量高、蛋白含量低等问题。鱼类蛋白含量高,以淡水鱼为主要构成的淡水产品的加工是我国水产品加工最为薄弱的环节,一方面淡水鱼固有的腥味限制了其消费和精深加工,另一方面淡水鱼自身不适的工艺特性以及在这些产品中有限的增值限制了脱水新技术的应用;鱿鱼与海带等海产脱水胶质类食品以盐干和自然干燥为主,加工技术落后,手段粗放,产品质量差,档次低。本论文以鲜有报道的典型凝胶(鱼肌肉和/或木薯淀粉凝胶)以及胶质类水产品(鱿鱼和海带)为研究对象,采用客观仪器分析与主观感官评估相结合的方法,研究了脱水加工对产品结构、脱水过程与品质的影响,分析和探讨了配方与脱水条件在产品结构与相关品质形成中的作用,以期寻找淡水鱼高效加工利用的新途径以及典型凝胶与胶质产品品质改良措施。
     为了研究脱水鱼肌肉凝胶片的质量,采用热风干燥(AD)、冷冻干燥(FD)、真空干燥(VD)和微波真空干燥(MVD)对白鲢鱼肌肉凝胶片进行脱水并比较了脱水产品的形状、质构、复水特性、复原特性、感官质量与挥发性成分。结果表明,AD、FD、VD引起了白鲢鱼肌肉凝胶片不同程度的干缩而MVD在4、6、8mm厚的凝胶片中引起了膨胀,MVD的产品具有可接受的脆性与愉悦的风味,复水速度快,但复原性差,其硬度、粘着性、咀嚼性与弹性也低;复水凝胶片的感官评分由高到低依次为:FD、VD、AD和MVD的样品;GC-MS分析表明,脱水引起凝胶片中正构醛(n-alkanals)与1-辛烯-3-醇(1-octen-3-ol)含量的显著降低,在MVD的产品中生成了2-甲基-丙醛(2-methyl-propanal)、2-甲基-丁醛(3-methyl-butanal)和糠醛(furfural)。
     为了理解凝胶类型以及胶凝条件在MVD的凝胶片结构与品质形成中的作用,研究了不同热处理条件下凝胶(鱼肌肉和/或木薯淀粉凝胶)的特性以及MVD的凝胶片的宏微观结构与质量特性。结果表明,高粘弹性的鱼肌肉凝胶和混合凝胶在MVD期间形成了类似淀粉凝胶在油炸过程中形成的膨大多孔结构与质构特性,且最大膨胀的混合凝胶片显示了良好的感官可接受性,在凝胶中蛋白质-蛋白质相互作用是MVD的产品均匀膨化结构形成的控制因素,高的热处理强度促成鱼肌肉凝胶持水力的降低与淀粉的糊化,有利于形成均一结构与高水分流动性的共凝胶体系,从而促进膨化结构与松脆质构的形成。
     为了理解重组配方在MVD的凝胶片结构与品质形成中的作用,研究了氯化钠、蔗糖、鱼肉与淀粉比例以及淀粉来源对MVD的凝胶片膨胀比、硬度、脆性与感官品质的影响。结果表明,盐溶性鱼肌纤维蛋白是MVD凝胶片膨化结构形成的关键组分,高的氯化钠添加量与鱼肉比例有利于膨化与松脆结构的形成,含有高比例支链淀粉的糯玉米、木薯、土豆淀粉的凝胶比含有小麦与玉米淀粉的显示了更好的膨化特性,所获产品硬度低,脆性高,感官质量好;蔗糖的添加以量效关系抑制凝胶片的膨化,导致凝胶片脆性的降低,但对凝胶片感官质量没有显著的负面影响。
     最后,基于物料的红外吸收特性,在一套新开发的红外加热对流干燥系统内,研究了风速与红外发射波长对鱿鱼和海带加热与干燥特性以及品质的影响,并与AD和MVD进行了比较。结果表明,在设定干燥介质温度为50℃时,两种物料表面所能达到的恒定温度均高于干燥介质温度,并随风速的增加由52℃增加到63℃,脱水时间随着风速的增大显著越少,而能耗显著增加;2.5-3.0um波长的红外辐射加热干燥比5-6umm的效率高。脱水鱿鱼和海带的品质受风速的影响不显著,而海带的品质呈现出强烈的波长依赖性。与热风干燥相比,红外干燥时间短,能耗低,所获产品与AD的具有可比的质量,好于MVD的产品。
Dehydration process for the gel/gelatine aquatic food produces the products with special structure and texture as well as sensory quality while improving their storage stability. Currently, the starch-based products are the most main dehydrated gel food products. The popular technology used is air drying and/or frying expansion or extrusion expansion followed by air drying. The problems related to these products and technologies include long drying time, high-fat and low protein products as well as tedious process. Fish is rich in protein and fresh fish constitutes the most main fresh products, but the processing is the pooreast step in the utilization for the aquatic resources. For one thing, the deodorization inherent in the fresh fish limites its consumption and intensive processing. For anonther thing, both inappropriate processing properties arising from the raw material itselves and limited value added in the fish products restrict the new dehydration technology. Commonly dehydrated gelatine foods such as squid and kelp are produced using salting and natural drying, which are the lagging and extensive method; moreover the resulted products are the low quality and level. With the aim of improving the product quality and enhancing the process efficiency, the thesis studied and discuused the effect of dehydration conditions including (dehydration method, operating parameters and material ingredient) on the dehydration process and the quality of the typical gel (fish muscule and/or starch gel) as well as gelatine product (squid and kelp) using both instrument and sensory evaluation.
     In order to study the quality of the dehydrated fish muscule gel, the fish muscule gel slices from silver carp were dried using air drying (AD), freeze drying (FD), and vacuum drying (VD) and microwave-vacuum drying (MVD) and quality attributes of the dried products were evaluated in terms of shape, texture, rehydration property, sensory quality and volatile components. The results showed that AD, FD and VD resulted in the different levels of shrinkage while MVD caused some expansion in the4-,5-, and8-mm-thickness samples. MVD products rehydrated faster and had poor restored capacity, low hardness, springiness, cohesiveness aw well as chewiness. MVD products alone exhibited acceptable crispness and favorable odor. The rehydrated dried products were preferred in the order:FD, VD, AD, MVD. GC-MS revealed that drying significantly decreased the n-alkanals and1-octen-3-ol content and produced2-methylpropanal,3-methyl-butanal, and furfural in MVD products.
     To understand the role of thermal conditions and types of gels in the structure and quality development of MVD products, the property of the gels (tapioca starch gel and/or fish gel) produced under thermal conditions and the quality of MVD gel slices were studied. The results showed that after MVD the fish muscule gel and the mixed gel with good viscoelasticity devolope an expanded and/or porous structure similar to that created by frying in starch gel for which the interaction among proteins was resposible, the mixed gel slices with the higheast expansion showed a good sensory acceptability. The higher severity of thermal treatment favored greater expansion in the mixed gel chips due to developing a homogenous co-gel with a uniform structure and high moisture mobility.
     To understand the role of formulation in the structure and quality development of MVD products, the effect of salt, sugar, ratio offish meat and starch as well as types of starch on the quality of MVD gel slices were studied. The results showed that salt-soluble myofibrillar protein was the key factor of developed expansion structure in MVD product. Both high content in salt and high ratio in fish favored the expanded and crispy structure. The gel containing a high proportion of amylopectin, such as waxy corn, cassava, potato starch, displayed a more excellent expansion capacity than wheat and corn; the resulting products had a low hardness, high crispness and good sensory quality. Use of sugar inhibited the expansion of the gel slices and reduced their crispness; there was observed no significantly negative effect on sensory quality.
     Finally, the effect of infrared wavelength and air velocity on drying behavior and product quality of the shredded squid and kelp were studied base on their infrared absorption characteristics in a novel infrared heating forced convection system and compared with AD and MVD. By setting the dry medium temperature of50℃, the constant surface temperature reached is always higher than that of the dry medium and increases from52to63℃with the increase of the air velocity from0to2m/s. The heating and drying at the wavelength of2.5-3.0um is more effective than that at the infrared wavelength of5.0-6.0um. The total drying time significantly decreased while specific energy consumption linearly increased with the air velocity. Air velocity had no significant effect on the quality of the products of both, but the quality of the kelp strongly depended on the wavelength. Compared with AD, the infrared heating and drying took less time and consumption which produced the products similar to AD, but better than MVD ones.
引文
1. 王璋,许时婴,江波等译.食品化学(第三版)[M].北京:中国轻工业出版社,2003.849-8502.
    2. Cheow C S, Yu S Y. Effect of fish protein, salt, sugar and monosodium glutamate on the gelatinization of starch in the fish-starch mixtures[J]. Journal of Food Processing and Preservation,1997,21:161-177
    3. Aguilera J M, Chiralt A, Fito P. Food dehydration and product structure[J]. Trends in Food Science and Technology,2003,14:432-437
    4. Moraru C L, Kokini J L. Nucleation and expansion during extrusion and microwave heating of cereal foods [J]. Comprehensive Reviews in Food Science and Food Safety, 2003,2:147-165
    5. Zhang F, Zhang M, Mujumdar A S. Drying characteristics and quality of restructured wild cabbage chips processed using different drying methods[J]. Drying Technology,2011, 29(6):682-688
    6. Hao J, Zhang M, Mujumdar A S, et al. Comparison of the effect of microwave freeze drying and microwave vacuum drying upon the process and quality characteristics of potato/banana re-structured chips[J]. International Journal of Food Science and Technology,2011,46,570-576
    7. Wang L Y, Zhang M, Mujumdar A S, et al. Restructured crispy fish cubes containing Salicornia bigelovii Torr. developed with microwave vacuum drying[J]. Journal of Aquatic Food Product Technology,2012, DIO:10.1080/10498850.2011.641672
    8. Qiao F, Huang L L, Xia W S. A study on microwave vacuum dried re-structured lychee (Litchi chinensis Sonn.) mixed with purple sweet potato (Ipomoea batatas) snacks[J]. Food and Bioproducts Processing,2012, dx.doi.org/10.1016/j.fbp.2012.05.002
    9. Sobukola O P, Dueik V, Bouchon P.Understanding the Effect of Vacuum Level in Structure Development and Oil Absorption in Vacuum-Fried Wheat Starch and Gluten-Based Snacks[J]. Food and Bioprocess Technology,2012 10.1007/s11947-012-0899-1
    10. Huang L, Zhang M, Mujumdar A S, et al. Comparison of four drying methods for re-structured mixed potato with apple chips [J]. Journal of Food Engineering, 2011,103:279-284
    11. Reifen R, Edris M, Nussinovitch A. A novel vitamin A fortified edible hydrocolloid sponge[J]. Food Hydrocolloid,1998,12:111-114
    12. Tan H Z, Li Z G, Tan B. Starchnoodles:history, classification, materials, processing, structure, nutrition, quality evaluating and improving[J].Food Research International, 2009,42(5):551-576
    13. Wand M, Chen C, Sun G, et al. Effects of curdlan on the color, syneresis, cooking qualities, and textural properties of potato starch noodles[J]. Starch/Starke,2010,62(8): 429-434
    14. Uprit S, Mishra H N. Microwave convective drying and storage of soy-fortified paneer[J]. Food and Bioproducts Processing,2003,81(2):89-96
    15. Swami S B, Das S K, Maiti B. Convective hot air drying and quality characteristics of bori:A traditional Indian nugget prepared from black gram pulse batter[J]. Journal of Food Engineering,2007,79:225-233
    16. Pasqualone A, Paradiso V M, Summo C, et al. Influence of Drying Conditions on Volatile Compounds of Pasta[J]. Food and Bioprocess Technology,2013(in press), DOI 10.1007/s11947-013-1080-1
    17. Bustos M C, Perez G T, Leon A E. Sensory and nutritional attributes of fibre-enriched pasta[J]. LWT-Food Science and Technology,2011,44:1429-1434
    18. Yadav B S, Ritika B Y, Kumar M. Suitability of pigeon pea and rice starches and their blends for noodle making[J]. LWT-Food Science and Technology,2011,44:1415-1421
    19. Evangelina L D, Leda G, Sergio A G.Apple Pectic Gel Produced by Dehydration[J]. Food and Bioprocess Technology,2009,2(2):194-207
    20. Jaturonglumlert S, Kiatsiriroat T. Heat and mass transfer in combined convective and far-infrared drying of fruit leather[J]. Journal of Food Engineering,2010,100:254-260
    21. Demarchi S M, Ruiz N A Q, Concell'on A, Giner S A. Effect of Temperature on Hot-Air Drying Rate and on Retention of Antioxidant Capacity Apple Leathers[J]. Food and Bioproducts Processing,2012, in press, doi:10.1016/j.fbp.2012.11.008
    22. Bajaj I, Singhal R. Gellan gum for reducing oil uptake in sev, a legume based product during deep-fat frying[J]. Food Chemistry,2007,104(4):1472-1477
    23. Tiwari U, Gunasekaran M, Jaganmohan R, et al. Quality characteristic and shelf life studies of deep-fried snack prepared from rice brokens and legumes by-product[J]. Food and Bioprocess Technology,2009, doi:10.1007/s11947-009-0219-6
    24. Ravi R, Susheelamma N S.The effect of the concentration of batter made from chickpea (Cicer arietinum L.) flour on the quality of a deep-fried snack[J].International Journal of Food Science & Technology,2004,39:755-762
    25. Arimi J M, Duggan E, O'Riordan M, et al. Crispiness of a microwave-expanded imitation cheese:Mechanical, acoustic and sensory evaluation[J]. Journal of Food Engineering, 2012,108:403-409
    26.芮汉明,贺丰霞,刘锋.重组型香蕉脆片关键技术研究[J].食品与发酵工业.2008,34(10):84-88
    27.钟倩霞,李远志.再造型马铃薯脆片微波膨化工艺研究[J].食品科技,2005(1):23-26
    28.陈凤杰,张憨.真空微波干燥重组鱼丸的研究[J].食品与生物技术学 报,2012,31(7):703-711
    29. Suknark K, Phillips R D, Huang Y W.Tapioca-fish and tapioca-peanut snacks by twin-screw extrusion and deep-fat frying[J]. Journal of Food Science,1999,64:303-308
    30. Rhee K S, Kim E S, Kim B K, et al. Extrusion of minced catfish with corn and defatted soy flours for snack foods[J]. Journal of Food Processing and Preservation,2004, 28:288-301
    31. Shaviklo GR, Thorkelsson G, Sigurgisladottir, S, et al. Quality and storage stability of extruded puffed corn-fish snacks during 5-month storage at ambient temperature[J]. Journal of the science of food and agriculture,2011,5:885-893
    32. Nussinovitch A, Corradini M G, Normand M D, et al. Effect of starch, sucrose and their combinations on the mechanical and acoustic properties of freeze-dried alginate gels[J]. Food Research International,2001,34:871-878
    33. Jaya S, Durance T D. Compressive characteristics of cellular solids produced using vacuum-microwave, freeze, vacuum and hot air dehydration methods[J]. Journal of Porous Material,2009,16:47-58
    34. Yu S Y, Mitchell J R, Abdullah A.Production and acceptability testing of fish crackers (keropok) prepared by extrusion method[J]. International Journal of Food Science and Technology,1981,16:51-58
    35. Tumuluru J S, Shahab S, Sukumar B, et al. Storage Properties of Low Fat Fish and Rice Flour Coextrudates[J]. Food and Bioprocess Technology,2010,3:481-490
    36. Tongdang T, Meenun M, Chainui J. Effect of sago starch addition and steaming time on making cassava cracker (Keropok) [J]. Starch-Starke,2008,60:568-576
    37. Maneerote J, Noomhorm A, Takhar P S. Optimization of processing conditions to reduce oil uptake and enhance physico-chemical properties of deep fried rice crackers[J]. LWT-Food Science and Technology,2009,42:805-812
    38. Pardeshi I L, Chattopadhyay P K. Hot air puffing kinetics for soy-fortified wheat-based ready-to-eat (RTE) snacks[J]. Food and Bioprocess Technology,2010,3:415-426
    39. Nath A, Chattopadhyay P K. Effect of process parameters and soy flour concentration on quality attributes and microstructural changes in ready-to-eat potato-soy snack using high-temperature short time air puffing[J]. LWT-Food Science and Technology,2008,41:707-715
    40.张喻,熊兴耀,谭兴和,等.马铃薯全粉虾片加工技术的研究[J].农业工程学报,2006,22(8):267-269
    41. Xu S, Kerr W L. Comparative study of physical and sensory properties of corn chips made by continuous vacuum drying and deep fat frying[J]. LWT- Food Science and Technology 2012,48:95-101
    42.雷鸣,卢晓黎,何自新.淀粉种类对甘薯膨化食品品质的影响[J].食品科学,2002,23(2):55-58
    43.雷鸣,卢晓黎,何自新.常用淀粉对甘薯食品膨化质量的协同作用研究[J].食品科学,2002,23(3)1:67-70
    44.惠丽娟.冬瓜膨化米饼的研制[J].粮油食品科技,2008,16(6):65-66
    45.汪正洁,赵思明,熊善柏,等.膨化米饼生产工艺研究[J].粮食与油脂,2003,4:5-7
    46. Liu P, Zhang M, Mujumdar A S. Comparison of three microwave-assisted drying methods on the physiochemical, nutritional and sensory qualities of re-structured purple-fleshed sweet potato granules [J]. International Journal of Food Science and Technology.2012,47 (1):141-147
    47.刘成海.黑加仑果片微波真空膨化工艺及品质研究[D]:[博士学位论文].哈尔滨:东北农业大学工程学院,2010
    48.贾署花.基于微波真空方法的蓝靛果脆片膨化工艺研究[D]:[硕士学位论文].哈尔滨:东北农业大学食品学院,2010
    49.唐联坤.淀粉糊化、老化特性与食品加工[J].陕西粮油科技,1996,21(3):25-29
    50. Kyaw Z Y, Yu S Y, Cheow C S, et al. Effect of steaming time on the linear expansion of fish crackers (keropok) [J]. Journal of the Science of Food and Agriculture,1999,79: 1340-1344
    51.尚永彪,唐浩国.膨化食品加工技术[M].北京:化学工业出版社,2007
    52. Ressing H, Ressing M, Durance T. Modelling the mechanisms of dough puffing during vacuum microwave drying using the finite element method[J]. Journal of Food Engineering,2007,82:498-508
    53.霍晓敏,郝苗.我国膨化食品行业质量安全问题分析及发展趋势[J].食品工业科技.2011,8:24-28
    54.谢焕雄,王海鸥.我国膨化食品加工技术概况与发展[J].农产品加工,2006,9:40-42
    55.殷肇君,郑艳平.膨化技术在农产品深加工中的应用[J].渔业现代化,2001,3:23-24
    56.张俊杰,曾庆孝.我国淡水鱼鱼糜的研究情况[J].食品与发酵工业,2002,28(9):57-63
    57.岳冬冬,王鲁民.我国水产品产量增长特征研究[J].江苏农业学,2012,40(6):370-372
    58.李兵兵.浅谈淡水水产品废弃物的加工利用[J].渔业致富指南,2009,6:12-14.
    59.农业部渔业局.中国渔业统计年鉴[M].北京:中国农业出版社,2000-2011
    60.汪之和主编.水产品加工与利用[M].北京:化学工业出版社,2003.125-139
    61. Knapp G. Economic feasibility of exporting dried seafood products from Alaska to selected Asian markets. In Asian Dried Seafood Market Analysis;NOAA Fisheries: Silver Spring MD,1998[J/OL]. http://www.nmfs.noaa.gov/mb/sk/saltonstallken/asian_final.htm,2011-02-22
    62.张国琛,毛志怀.水产品干燥技术的研究进展[J].农业工程学报,2004,20(4):297-300
    63.岑琦琼,张燕平,戴志远,等.水产品加工干燥技术的研究进展[J].食品研究与开发,2011,32(11):155-160
    64. Hu Y J, Xia W S, Ge C R. Characterization of fermented silver carp sausages inoculated with mixed starter culture[J]. LWT-Food Science and Technology,2008,41:730-738
    65. Uribe E, Miranda M, Vega-Galvez A. et al. Mass transfer modelling during osmotic dehydration of jumbo squid (Dosidicus gigas):Influence of temperature on diffusion coefficients and kinetic parameters[J]. Food and Bioprocess Technology,2011,4: 320-326
    66. Vega-Galvez A, Miranda M, Claveria R, et al. Effect of air temperature on drying kinetics and quality characteristics of osmo-treated jumbo squid (Dosidicus gigas) [J]. LWT-Food Science and Technology,2011,44:15-23
    67.王隽冬,张国琛,王麓璐,等.微波真空干燥技术及其在水产品加工中的应用[J].大连水产学院学报,2009,24(Supp1):202-205
    68. Andres-Bello A, Garcia-Segovia P, Marti nez-Monzo J. Vacuum frying process of gilthead sea bream (Sparus aurata) fillets[J]. Innovative Food Science and Emerging Technologies 2010,11(4),630-636
    69.段续.海参微波-冻干联合干燥工艺与机理研究[D]:[博士学位论文].无锡:江南大学食品学院,2009
    70.张国琛.扇贝柱微波真空干燥机理及品质研究[D]:[博士学位论文].北京:中国农业大学工学院,2004
    71.任爱清,张敏慜.鱿鱼热泵-热风联合干燥节能研究[J].干燥技术与设备,2009,7(4):164-170
    72. Deng Y, Liu B, Qian S, et al. Impact of far-infrared radiation-assisted heat pump drying on chemical compositions and physical properties of squid (Illex illecebrosus) fillets[J]. European Food Research and Technology,2011,23(2):761-768
    73. Kong J, Dougherty M P, Perkins L B,et al. Composition and consumer acceptability of a novel extrusion-cooked salmon snack[J]. Journal of Food Science 2008,73(3),118-123
    74. Rao P S. Development of Extruded Snacks from Low Value Fish Using Twin Screw Extruder[DB/OL]. http://elibrary.asabe.org/abstract.asp?aid=27187&t=2&redir=&redirType=,2011-03-21
    75.游丽君,赵谋明鱼.肉制品腥味物质形成及脱除的研究进展[J].食品与发酵工业,2008,34(2):117-120
    76. Ramirez J A, Del Angel A, Uresti R M, et al. Low-salt restructured products from striped mullet (Mugil cephalus) using microbial transglutaminase or whey protein concentrate as additives[J]. Food Chemistry,2007,102:243-249
    77. Nowsad A A, Khan A H, Kamal M, et al.The effects of heating and washing on the gelling properties of tropical major carp muscle[J]. Journal of Aquatic Food Product Technology,1999,8:5-23
    78. Vega-Mercado H, Gongora-Nieto M M, Barbosa-Canovas G V. Advances in dehydration of foods[J]. Journal of Food Engineering,2001,49:271-289
    79.徐小东,崔政伟.农产品和食品干燥技术及设备的现状和发展[J].农业机械学报,2005,36(12):171-174
    80. Mujumdar AS, Law C L. Drying technology:Trends and applications in postharvest processing[J]. Food and Bioprocess Technology 2010,3(6):843-852
    81. Therdthai N, Zhou W. Characterization of hot air drying and microwave vacuum drying of fingerroot (Boesenbergia pandurata) [J].International Journal of Food Science and Technology,2011,46:601-607
    82. Argyropoulos D, Heindl A, Miiller J. Assessment of convection, hot-air combined with microwave-vacuum and freeze-drying methods for mushrooms with regard to product quality[J]. International Journal of Food Science and Technology,2011,46:333-342
    83. Giri S K, Prasad S. Modelling shrinkage and density changes during microwave-vacuum drying of button mushroom[J]. Internternatinal Journal Food Properties,2006,9:409-419
    84. Giri S K, Prasad S. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms[J]. Journal Food Engeering,2007,78:512-521
    85. Bai-Ngew S, Therdthai N, Dhamvithee P. Characterization of microwave vacuum-dried durian chips[J]. Journal of Food Engineering,2011,104:114-122
    86. Cui Z, Sun L J, Chen W, et al. Preparation of dry honey by microwave-vacuum drying[J]. Journal of Food Engineering,2008,84:582-590
    87. Cui Z, Xu S Y, Sun D W. Dehydration of garlic slices by combined microwave-vacuum and air drying[J]. Drying Technology,2003,21:1173-1184
    88. Figiel A. Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices[J]. Journal of Food Engineering,2009,94,98-104
    89.韩清华.微波真空干燥膨化苹果片的机理及品质研究和设备设计[D]:[博士学位论文].北京:中国农业机械化科学研究院,2007
    90. Cui Z, Li C, Song C, et al. Combined microwave-vacuum and freeze drying of carrot and apple chips[J]. Drying Technology,2008,26:1517-1523
    91. Sham P W Y, Seaman C H, Durance T D. Texture of vacuum microwave dehydrated apple chips as affected by calcium pretreatment, vacuum level and apple variety[J]. Journal of Food Science,2001,66:1341-1347
    92. Erie U, Schubert H. Combined osmotic and microwave vacuum dehydration of apples and strawberries[J]. Journal of Food Engineering,2001,49:193-199
    93. Lin T M, Durance T D, Seaman C H. Characterization of vacuum microwave, air and freeze dried carrot slices[J]. Food Research International,1998,31:111-117
    94.崔政伟.微波真空干燥的数学模拟及其在食品加工中的应用[D]:[博士学位论文].无锡:江南大学食品学院,2004
    95. Durance T E, Wang J H. Energy consumption, density, and rehydration rate of vacuum microwave-and hot-air convection-dehydrated tomatoes[J]. Journal of Food Science, 2002,67:2212-2216
    96. Figiel A. Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods[J]. Journal of Food Engineering,2010,98: 461-470
    97. Hu Q G, Zhang M, Mujumdar A S, et al. Effects of different drying methods on the quality changes of granular edamame[J]. Drying Technology,2006,24:1025-1032
    98. Lin T M, Timothy D D, Scaman C H. Physical and sensory properties of vacuum microwave dehydrated shrimp[J]. Journal of Aquatic Food Product Technology,1999,8: 41-53
    99. Setiady D, Rasco B, Younce F, et al. Rehydration and sensory properties of dehydrated russet potatoes (Solanum tuberosum) using microwave vacuum, heated air, or freeze dehydration[J]. Drying Technology,2009,27:1115-1122
    100. Song X J, Zhang M, Mujumdar A S, et al. Drying characteristics and kinetics of vacuum microwave-dried potato slices[J]. Drying Technology,2009,27:969-914
    101.Bondaruk J, Markowski M, Blaszczak W. Effect of drying conditions on the quality of vacuum-microwave dried potato cubes[J]. Journal of Food Engineering,2007, 81:305-312
    102.Lefort, J. F., Durance, T. D.,& Upadhyaya, M. K. Effects of tuber storage and cultivar on the quality of vacuum microwave-dried potato chips[J]. Journal of Food Science,2003, 68,690-696
    103.Therdthai N, Zhou W. Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen) [J]. Journal of Food Engineering,2009, 91:482-489
    104.Yousif A N, Durance T D, Scaman C H, et al.. Headspace volatiles and physical characteristics of vacuum-microwave, air, and freeze-dried oregano (Lippia berlandieri Schauer) [J].Journal of Food Science,2000,65:925-930
    105.Yousif A N, Scaman C H, Durance T D, et al. Flavor volatiles and physical properties of vacuum-microwave and air-dried sweet basil (Ocimum basilicum L.) [J]. Journal of Agricultural and Food Chemistry,1999,47:4777-4781
    106.Mui W W, Durance T D, Scaman C H. Flavor and texture of banana chips dried by combinations of hot air, vacuum, and microwave processing[J]. Journal of Agricultural and Food Chemistry,2002,50:1883-1889
    107.Zhang J, Zhang M, Shan L, et al. Microwave-vacuum heating parameters for processing savory crisp bighead carp (Hypophthalmichthys nobilis) slices[J]. Journal of Food Engineering,2007,79:885-891
    108.Chauhan A K S, Srivastava A K. Optimizing drying conditions for vacuum-assisted microwave drying of green peas (Pisum sativum L.) [J]. Drying Technology,2009, 27(6):761-769
    109.Clary C D, Wang S J, Petrucci V E. Improved grape quality using microwave vacuum drying associated with temperature control[J]. Journal of Food Science.2007,72(1): E23-E28
    110.Kaensup W, Chutima S, Wongwises S. Experimental study on drying of chilli in a combined microwave-vacuum rotary drum dryer[J]. Drying Technology,2002,20(10): 2067-2079
    111.Zhang M, Tang J M, Mujumdar A S. Trends in microwave-related drying of fruits and vegetables[J]. Trends in Food Science & Technology,2006,17:524-534
    112.Ratti C, Mujumdar A S. Infrared Drying. In Handbook of Industrial Drying,3rd ed.; Mujumdar, A.S., Ed.; CRC Press:Boca Raton, FL,2006,445-460
    113.Hebbar U H, Vishwanathan K H, Ramesh M N. Development of combined infrared and hot air dryer[J]. Journal of Food Engineering,2004,65:557-563
    114.Vishwanathan K H, Hebbar U H, Raghavarao K S M S. Hot air assisted infrared drying of vegetables and its quality[J]. Food Science and Technollogy research,2010,15:381-388
    115.Nowak D, Lewicki P P. Infrared drying of apple slices[J]. Innovative Food Science and Emerging Technologies,2004,5:353-360
    116.张丽丽,王相友.红外辐射干燥胡萝卜的试验研[J].四川理工学院学报(自然科学版),食品科技,2012,37(6):119-122
    117.Kocabiyik H, Tezer D. Drying of carrot slices using infrared radiation[J]. International Journal of Food Science and Technology,2009,44:953-959
    118.曹新志,明红梅,陈永京.微波和红外干燥对胡萝卜品质的影响[J].四川理工学院学报(自然科学版),2009,22(1):59-61
    119.Motevali A, Minaei S, Khoshtaghaza M H, et al. Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices[J]. Energy, 2011,36(11):6433-6441
    120.Nathakaranakule A, Jaiboon P, Soponronnarit S. Far-infrared radiation assisted drying of longan fruit[J]. Journal of Food Engineering,2010,100:662-668
    121.Wanyo P, Siriamornpun S, Naret M N. Improvement of quality and antioxidant properties of dried mulberry leaves with combined far-infrared radiation and air convection in Thai tea process[J]. Food and Bioproducts Processing.2011,89:22-30
    122.张敏,许乃章.白蘑菇远红外干燥的研究[J].科技通报,1993,11(9):415-419
    123.王俊,许乃章.远红外线干燥香菇及苹果机理研究[J].农业机械学报,1992,23(23):43-48
    124.张丽丽,王相友.红外干燥蒜片的试验研究[J].农机化研究,2011,10:119-122
    125.Wang J, Sheng K. Far-infrared and microwave drying of peach[J]. LWT-Food Science and Technology,2006,39:247-255
    126.Afzal T M, Abe T, Hikida Y. Energy and quality aspects during combined FIR-convective drying of barley[J]. Journal of Food Engineering,1999,42:177-182
    127.Juckamas L, Seree W. Drying characteristics and milling quality aspects of paddy dried with gas fired infrared[J]. Journal of. Food Process Engerring,2009,32:442-461
    128.Fu W R, Lien W R. Optimization of far infrared heat dehydration of shrimp using RSM[J]. Journal of Food Science,1998,63 (1):80-83
    129.Ning X F, Han C S. Drying characteristics and quality of taegeuk ginseng (Panax ginseng C.A. Meyer) using far-infrared rays[J]. International Journal of Food Science and Technology,2013,48(3):477-483
    130.Bualuang O, Tirawanichakul Y, Tirawanichakul S. Comparative Study between Hot Air and Infrared Drying of Parboiled Rice:Kinetics and Qualities Aspects[J]. Journal of Food Processing and Preservation.2012, DOI:10.1111/J.1745-4549.2012.00813.X.
    131.Sharma G P, Verma R C, Pankaj P B. Mathematical modeling of infrared radiation thin layer drying of onion slices[J]. Journal of Food Engerring,2005,71:282-286
    132.Sharma G P, Verma R C, Pankaj P B. Thin layer infrared radiation drying of onion slices[J]. Journal of Food Engerring,2005,67:361-366
    133.Puente-Diaz L, Ah-Hen K, Vega-Galvez A, et al. Combined Infrared-Convective Drying of Murta (Ugni molinae Turcz) Berries:Kinetic Modeling and Quality Assessment[J]. Drying Technology,2013,31(3):329-338
    134.Doymaz I. Mathematical modeling of drying of tomato slices using Infrared radiation[J]. Journal of Food Processing and Preservation,2012, DOI:10.1111/j.1745-4549.2012.00786.x.
    1 35.王相友,林喜娜.果蔬红外辐射干燥动力学的影响因素综述[J].农业机械学报,2009,(10):114-120
    136.张丽丽,王相友.红外辐射加热技术在果蔬脱水干燥中的应用研究[J].农机化研究,2010,3:193-195
    137.Krokida M K, Philippopoulos C. Rehydration of dehydrated foods[J]. Drying Technology, 2005,23:799-830
    138.Bonazzi C, Dumoulin E. Quality changes in food materials as influenced by drying processes. In:Modern Drying Technology Volume 3:Product Quality and Formulation,1st edn, (edited by E. Tsotsas & A.S. Mujumdar).Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.2011:10-16
    139.马永强,韩春然,刘静波编.食品感官检验[M].北京:化学工业出版社,2005
    140.Luo Y K, Kuwahara M, Kaneniwa Y, et al. Comparison of gel properties of surimi from Alaska Pollock and three freshwater fish species:Effects of thermal processing and protein concentration[J]. Journal of Food Science,2001,66:548-554
    141.Mujaffar S, Sankat C K. The air drying behaviour of shark fillets[J]. Canadian Biosystems Engineering,2005,47,11-21
    142.Barrera A M, Ramirez J A, Gonzalez-Cabriales J J, et al. Effect of pectins on the gelling properties of surimi from silver carp[J]. Food Hydrocolloids,2002,16:441-447
    143.Wang X, Hirata T, Fukuda Y, et al. Acceptability comparison of kamaboko gels derived from silver carp surimi and from walleye Pollock surimi between the Chinese and Japanese[J]. Fish Science,2002,68:165-169
    144.Balange A K, Benjakul S. Effect of oxidised tannic acid on the gel properties of mackerel (Rastrelliger kanagurta) mince and surimi prepared by different washing processes[J]. Food Hydrocolloids,2009,23:1693-1701
    145.Couso I, Alvarez C, Teresa Solas M, et al. Morphology of starch in surimi gels[J]. Zeitschrift fur Lebensmitteluntersuchung und-Forschung A,1998,206:38-43
    146.Mujumdar AS. Handbook of industrial drying (3rd ed.). Boca Raton, Florida, USA:CRC Press,2006
    147.Markowski M, Bondaruk J, Blaszczak W. Rehydration behavior of vacuum-microwave-dried potato cubes[J]. Drying Technology,2009,27,295-305,
    148.AOAC. Official methods of analysis of the Association of Official Analytical Chemists (16th ed.) [S].USA, Washington, DC.,1995
    149.Goncalves B, Silva A P, Moutinho-Pereira J, et al. Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries (Prunus avium L.) [J]. Food Chemistry,2007,103:975-984
    150.Chong C H, Law C L, Cloke M, et al. Drying kinetics and product quality of dried Chempedak[J]. Journal of Food Engineering,2008,88:522-527
    151.全国水产标准化技术委员会水产品加工分技术委员会.SCT 3701-2003[S].冻结鱼糜制品
    152.Thuwapanichayanan R, Prachayawarakom S, Kunwisawa J, et al. Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying[J]. LWT-Food Science and Technology,2011,44:1502-1510
    153.Arimi J M, Duggan E, O'Riordan E D, et al. Effect of moisture content and water mobility on microwave expansion of imitation cheese[J]. Food Chemistry,2010, 121:509-516
    154.Mao L, Wu T. Gelling properties and lipid oxidation of kamaboko gels from grass carp (Ctenopharyngodon idellus) influenced by chitosan[J]. Journal of Food Engineering, 2007,82:128-134
    155.Lu L, Tang J, Ran X. Temperature and moisture changes during microwave drying of sliced food[J]. Drying Technology,1999,17:414-431
    156.Wu T, Mao L C. Influences of hot air drying and microwave drying on nutritional and odorous properties of grass carp (Ctenopharyngodon idellus) fillets[J]. Food Chemistry, 2008,110:647-653
    157.王锡昌,陈俊卿.顶空固相微萃取与气质联用法分析鲢肉中风味成分[J].上海水产大学学报,2005,14(2):175-180
    158.Varlet V, Prost C, Serot T. Volatile aldehydes in smoked fish:analysis methods, occurrence and mechanisms of formation[J]. Food Chemistry,2007,105:1535-1556
    159.Salvador A, Varela P, Sanz T, et al. Understanding potato chips crispy texture by simultaneous fracture and acoustic measurements, and sensory analysis[J]. LWT-Food Science and Technology,2009,42:763-767
    160.Saeleaw M, Schleining G. Effect of frying parameters on crispiness and sound emission of cassava crackers[J]. Journal of Food Engineering,2011,103:229-236
    161.Arimi J M, Duggan E, O'Sullivan M, et al. Effect of protein:starch ratio on microwave expansion of imitation cheese[J]. Food Hydrocolloids,2011,25(5),1069-1076
    162.Mate J I, Quartaert C, Meerdink G, et al. Effect of blanching on structural quality of dried potato slices[J]. Journal of Agricultural and Food Chemistry,1998,46(2):675-681
    163.Kyaw Z Y, Yu S Y, Cheow C S, et al. Effect of fish to starch ratio on viscoelastic properties and microstructure offish cracker (keropok) dough[J]. International Journal of Food Science & Technology,2001,36:741-747
    164.Kyaw Z Y, Cheow C S, Yu S Y. et al.. The effect of pressure cooking on the microstructure and expansion of fish cracker (keropok) [J]. Journal of Food Quality,2001, 24,181-194
    165.全国食品工业标准化技术委员会.GBT 22699-2008[S].膨化食品
    166.Folch J, Lees M, Stanley G H S. A simple method for the isolation and purification of total lipids from animal tissues[J]. Journal of Biological Chemistry.1957.226:497-509
    167.王锡昌,汪之和主编.鱼糜制品加工技术[M].北京:中国轻工业出版社,1997
    168.Yan Z Y, Sousa-Gallagher M J, Oliveira F A R. Shrinkage and porosity of banana, pineapple and mango slices during air-drying[J]. Journal of Food Engineering,2008, 84:430-440
    169.Barutcu I, Sahin S, Sumnu G. Effects of microwave frying and different flour types addition on the microstructure of batter coatings[J]. Journal of Food Engineering,2009, 95:684-692
    170.Cheow C S, Yu S Y, Howell N K, et al. Effect of fish, starch and salt contents on the microstructure and expansion of fish crackers('keropok') [J]. Journal of the science of food and agriculture,1999,79:879-885
    171.Cheow C S, Yu S Y, Howell N K, et al. Relationship between physicochemical properties of starches and expansion of fish cracker Keropok[J]. Journal of Food Quality,2004, 27:1-12
    172.Roussel H, Cheftel J C. Mechanism of gelation of sardine protiens:Influence of thermal processing and of various additives on the texture and protein solubility of kamaboko gels[J]. International Journal of Food Science & Technology,1990,25:260-280
    173.Hossain M I, Kamal M M, Shikha F H, et al. Effect of Washing and Salt Concentration on the Gel Forming Ability of Two Tropical Fish Species[J]. International Journal of Agroiculture and Biology,2004,6(5):762-766
    174.张立彦,芮汉明.淀粉的种类及性质对微波膨化的影响[J].食品与发酵工业,2000,27(3):21-25
    175.张立彦,芮汉明,李作为,等.蔗糖对淀粉物料微波膨化的影响研究[J].食品工业科技,2001,22(3):19-21
    176.张立彦,芮汉明李作为,等.食盐对淀粉物料微波膨化的影响研究[J].粮食与饲料工业,2001,12:42-44
    177.张立彦,芮汉明,李作为.油脂对淀粉物料微波膨化的影响[J].中国粮油学报,2002,17(1):34-37
    178.全国食品工业标准化技术委员会.GB\T 12457-2008[S].食品中氯化钠的测定
    179.中华人民共和国农业部.NYT1712-2009[S].干制水产品
    180.全国肉禽蛋制品标准化技术委员会.GBT 23969-2009[S].肉干
    181.李桂芬.鱿鱼的营养和科学利用[J].科学养鱼,2003,7:56
    182.刘树立,王春艳,王华.我国海带的加工利用和开发[J].食品与药品,2007,9(5A):34-36
    183.Sheridan P, Shilton N. Application of far-infrared radiation to cooking of meat products[J]. J Food Eng,1999,41:203-208
    184.Datta A K, Almeida M. Properties relevant to infrared heating of foods. In:Rao, M.A., Rizvi, S.S.H., Datta, A.K. (Eds.), Engineering Properties of Foods. CRC Press LLC, USA.2005,209-235
    185.Atungulu G G, Pan Z L. Infrared Radiative Properties of Food Materials. In Zhongli Pan, Griffiths Gregory Atungulu., Infrared Heating for Food and Agricultural Processing, CRC Press LLC,USA,2010,19-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700