灵芝三萜和金银花绿原酸生物合成途径关键酶基因的挖掘及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阐明中药生物活性成分的次生代谢途径及其调控机制是现代中药研究的重要内容之一。次生代谢工程在提高药用植物目标产物含量上有着极大的应用潜能,但受传统研究方法和技术所限,目前我们对其次生代谢途径及调控机制的认知还较为粗略,因而期望通过次生代谢工程获取大量的目标次生代谢物仍面临着较大困难。功能基因组学(Functional Genomics)是在结构基因组学(Structural Genomics)的基础上,利用后者提供的信息,应用高通量测序产生的大量数据,在基因组或转录组水平上全面研究基因的表达、调控与功能,并探索基因之间、基因与蛋白质之间、基因及其产物与生长发育之间的相互联系和规律。通过全基因组学或转录组学系统分析次生代谢物的生物合成途径并发掘与之相关的基因,能够使我们更充分地了解中药的遗传信息与背景,也将使利用次生代谢工程生产重要药效成分成为可能。灵芝和金银花是具有极高药用价值和经济价值的传统中药,灵芝三萜和绿原酸分别是灵芝和金银花的主要药效成分之一,但目前对这些重要化合物的生物合成途径仍缺少系统的研究。本课题采用功能基因组学研究方法从全基因组水平上对药用真菌赤芝全基因组测序数据进行深入分析,以探索可能参与到灵芝三萜生物合成途径的关键酶基因;运用高通量测序技术对药用植物金银花的转录组进行研究,以阐明其重要成分绿原酸的生物合成途径,并对相关的关键基因进行克隆。本研究为灵芝三萜和绿原酸的生物合成研究奠定了基础。
     灵芝GANODERMA,又称"Lingzhi",为赤芝Ganoderma lucidum或紫芝Ganoderma sinense的干燥子实体(中国药典2010版),是我国著名的药用真菌之一。现代药理研究表明灵芝有抗肿瘤,抗高血压,抗病毒和增强免疫能力的功效,灵芝三萜类和灵芝多糖为该功效的主要活性物质。赤芝全基因组已由本课题组完成测序,该物种基因组大小为43.3MB,共有16,113个预测蛋白的编码基因。本研究在赤芝全基因组数据库中,鉴定了参与灵芝三萜合成上游途径的11个关键酶,其中乙酰辅酶A乙酰基转移酶(AACT)和法尼基焦磷酸合成酶(FPS)各有两个编码基因,其余都为单编码基因;发现了214个可能参与到灵芝三萜下游合成途径的候选细胞色素氧化酶基因(CYP450),其中195个可能具有真正的P450功能包括6个兼性P450(bifunctional P450, BiP450),这195个P450s分属于24个基因簇。通过实时荧光定量PCR (QRT-PCR)检测,78个P450基因与羊毛甾醇合酶(LAS)共表达,说明此78个P450很有可能参与到灵芝三萜骨架的结构修饰中。78个P450中,有28个为赤芝所独有的新家族,另38个基因在其他物种中之前已被报道过。此外,24个基因簇中有5个与LAS共表达,它们极有可能是以基因簇的方式参与到灵芝三萜的合成途径中。
     金银花LONICERA JAPONICA FLOS为忍冬Lonicera japonica Thunb.的干燥花蕾或待初开的花。为我国传统临床用药之一,具有抗炎,抗氧化和抗病毒的药理学特性,主要活性成分为绿原酸(Chlorogenic acid, CGA)和木犀草苷(Luteoloside)。绿原酸和木犀草苷的生物合成途径在其他物种中已有一定的研究,但在金银花中还未见报道与证实。本实验应用454GSFLxTitanium高通量测序平台,对金银花的转录组进行测序,完成了金银花叶和花2个cDNA文库测序,分别构建了花和叶的表达序列标签(Expressed sequence tag, EST)文库。从花的EST文库中拼接得到21849个叠连群(contig),38187个单一序列(singleton);从叶的EST文库中获得14242个叠连群,40557个单一序列。应用生物信息学方法对所得EST序列从功能基因组水平上研究了绿原酸的次生代谢途径。在金银花中发现了几乎所有的参与绿原酸生物合成的酶,其中包括羟基肉桂酰基辅酶A:奎尼酸羟基肉桂转移酶(HQT)和羟基肉桂酰基辅酶A:莽草酸/奎尼酸的羟基肉桂转移酶(HCT),同时也发现了所有参与木犀草苷生物合成的酶。本实验通过RACE技术克隆了8个HQT和HCT基因,得到全长cDNA序列。与其它物种中已知的HQT和HCT氨基酸序列进行比对,发现其中2个HQT和1个HCT具有真正的保守结构域。此外,分析了其它参与次生代谢过程的重要基因包括P450和转录因子等。最后,通过花与叶的EST数据库的比较,挖掘到分别在花和叶中表达的组织特异性基因。金银花转录组的测序工作为关键酶基因的挖掘提供了基础,并为进一步克隆其全长、研究其功能提供了依据,同时也作为金银花遗传标记、基因表达、基因组学和功能基因组学的重要数据来源。
     全基因组及转录组分析在中药次生代谢途径的研究中有着至关重要的作用,为相关酶基因的克隆、鉴定,以及揭示完整的次生代谢途径提供了丰富的基因信息。本研究获得了灵芝三萜和绿原酸生物合成途径的信息,并挖掘了与金银花生长发育相关的基因,为中药次生代谢工程合成灵芝三萜及绿原酸奠定了理论基础。
The active ingredients in the medicinal plant usually belong to secondary metabolites, such as flavonoids, alkaloids, terpenoids. Since the majority of secondary metabolite biosynthesis pathways are complex, and involved a lot of enzymes. In Arabidopsis, some have been described. While, there is a lack of adequate genetic information in the medicinal plants, its secondary metabolic pathways and regulatory mechanisms of secondary metabolites are extreme lack of and thus the development of secondary metabolic engineering is still facing great difficulties. Based on the information provided by structural genomics and the application of high throughput, large-scale analysis, functional genomics is a comprehensive way of study in gene expression, regulation and function, as well as to explore relationship and laws between genes, genes and proteins, and both with the growth and development at the level of genome. Biological research is increased from a single gene or protein to the genome based on functional genomics, while a lot of genes and proteins are systematically studied at the same time. Clarifying the pathways and regulation of secondary metabolie pathway is one of the main contents of functional genomics in medicinal plants. Studies have focused on the transcriptome analysis, medicinal natural product biosynthesis, the key enzyme gene cloning and identification. Ganoderma lucidum and Lonicera japonica are important traditional medicine with high medicinal and economic value, one of the effective compositions of Ganoderma is Ganoderma triterpenoids, one of effective compositions of Lonicera japonica is chlorogenic acid. For these compositions, their biosynthetic pathway is still lack of systematic research. In this study, we make effort to explore the Ganoderma acid and chlorogenic acid biosynthetic pathway in the functional genomics level.
     Ganoderma, also known as "Lingzhi" is a famous medicinal fungus in China. It is the dry fruiting bodies of G. lucidum and G. japonicrn. It had been proved to possess the pharmacological activities of antitumour, antihypertensive and antiviral. G. lucidum produces a large reservoir of bioactive which mainly included triterpenoids and polysaccharides. It had been reported with the genome size of43.3-Mb and16,113predicted genes. The pathway upstream of the cyclization step includes11enzymes encoded by13genes in G. lucidum. Acetyl-CoA C-acetyltransferases and farnesyl diphosphate synthase are each encoded by two genes in the G. lucidum genome, whereas the remaining nine enzymes are encoded by single-copy genes. A total of219CYP sequences (195functional genes and24pseudogenes) were identified in the G. lucidum genome, and they were classified into42families according to standardized CYP nomenclature. The expression of197CYP genes was investigated using real-time PCR. A total of78genes were found to be upregulated in the transition from mycelia to primordia and then downregulated in the transition from primordia to fruiting bodies. The expression profiles of these genes were highly correlated with that of LAS (correlation coefficient (r)>0.9). Furthermore, their expression profiles are positively correlated with triterpenoid content profiles during development, suggesting that some of these78CYP genes be involved in triterpenoid biosynthesis properly. In addition, there are5P450clusters were co-expressed with LSS.
     LONICERA JAPONICA FLOS is the dry buds and flowers of Lonicera japonica. Ljaponica is a plant used in traditional Chinese medicine known for its anti-inflammatory, anti-oxidative, anti-carcinogenic, and antiviral pharmacological properties. The major active secondary metabolites of this plant are chlorogenic acid (CGA) and luteoloside. While the biosynthetic pathways of these metabolites are relatively well known, the genetic information available for this species, especially the biosynthetic pathways of its active ingredients, is limited. We obtained one million reads (average length of400bp) in a whole sequence run using a Roche/454GS FLX titanium platform. A total of60036unique sequences were obtained, including21849contigs and38187singletons from flowers of Jizhuahua. A total of54799unique sequences were obtained, inducing14242contigs and40557singletons from leaves of Jizhuahua. And a total of60031unique sequences were obtained, inducing20178contigs and39853singletons from flowers of Damaohua. A total of67954unique sequences were obtained, inducing13201contigs and54753singletons from leaves of Damaohua. All the genes involved in the pathway to biosynthesis of CGA have been found, including putative hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase partial genes. We got8putative HCT/HQT genes full length sequence by RACE.Nearly all of the possible enzymes involved in the biosynthesis of CGA and luteoloside were discovered in L. japonica. Three hydroxycinnamoyl transferase genes, including two hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase genes and one hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) gene featuring high similarity to known genes from other species, were cloned. The HCT gene was discovered for the first time in L. japonica. In addition,188candidate cytochrome P450unigenes and245glycosyltransferase unigenes were found in the expressed sequence tag (EST) dataset. This study provides a high quality EST database for L. japonica by454pyrosequencing. Based on the EST annotation, a set of putative genes involved in CGA and luteoloside biosynthetic pathways were discovered. The database serves as an important source of public information on genetic markers, gene expression, genomics, and functional genomics in L. japonica.
     Whole genome sequence and EST analysis have a crucial role in the study of medicinal plant secondary metabolic pathways, and provide a wealth of genetic information for the enzyme cloning, identification and speculated the secondary metabolic pathways. In the present study, we analyzed the information about biosynthesis pathway of Ganoderma acid and chlorogenic acid to provide theoretical support for the research of secondary metabolite biosynthesis pathways, and make better development of natural medicinal resources in the future for the purpose of metabolic engineering.
引文
[1]Dixon RA, Paiva NL. Stress-Induced Phenylpropanoid Metabolism [J]. The Plant Cell,1995,7(7): 1085.
    [2]Dixon RA. Natural Products And Plant Disease Resistance [J]. Nature,2001,411:843.
    [3]Chen MS. Inducible Direct Plant Defense Against Insect Herbivores [J]. Insect Science,2008, 15:101-114
    [4]Sanodiya BS, Thakur GS, Baghel RK, et al. Ganoderma Lucidum:A Potent Pharmacological Macrofungus[J]. Curr Pharm Biotechnol,2009,10:717-742.
    [5]Boh B, Berovic M, Zhang J, et al. Ganoderma Lucidum And Its Pharmaceutically Active Compounds [J]. Biotechnol Annu Rev,2007,13:265-301.
    [6]Shiao MS. Natural Products Of The Medicinal Fungus Ganoderma Lucidum:Occurrence, Biological Activities, And Pharmacological Functions [J]. Chem Rec,2003,3:172-180.
    [7]Kwak WJ, Han CK, Chang HW, et al. Loniceroside C, an Antiinflammatory Saponin From Lonicera Japonica [J]. Chem Pharm Bull,2003,51:333-335.
    [8]Choi C W, Jung H, Kang S, et al. Antioxidant Constituents And A New Triterpenoid Glycoside From Flos Lonicerae. Arch Pharm Res,2007,30:1-7.
    [9]赵寿.人类基因组计划研究现状[J].中国生物工程杂志,1991,11(4):42-51.
    [10]Chen S, Xu J, Liu C, et al. Genome Sequence Of The Model Medicinal Mushroom Ganoderma Lucidum [J]. Nature Communications,2012,3:913.
    [11]陈士林,孙永珍,徐江,等.本草基因组计划研究策略[J].药学学报,2010,45(7):807-812.
    [12]战晴晴,隋春,张杰,等.药用植物次生代谢相关酶基因克隆方法综述[J].中国现代应用药学,2009(10):805-809.
    [13]杜勤,王金发.我国药用植物次生代谢产物功能基因研究概况[J].时珍国医国药,2009,20(8):2019-2021.
    [14]Sun C, Li Y, Wu Q, et al. De Novo Sequencing And Analysis Of The American Ginseng Root Transcriptome Using A Gs Flx Titanium Platform To Discover Putative Genes Involved In Ginsenoside Biosynthesis [J]. Bmc Genomics,2010,11:262.
    [15]Luo H, Sun C, Li Y, et al. Analysis Of Expressed Sequence Tags From The Huperzia Serrata Leaf For Gene Discovery In The Areas Of Secondary Metabolite Biosynthesis And Development Regulation [J]. Physiologia Plantarum,2010,139(1):1-12.
    [16]陈士林,孙永巧,宋经元,等.西洋参cdna文库构建及表达序列标签(Est)分析[J].药学学报,2008,43(6):657-663.
    [17]Li Y, Luo HM, Sun C, et al. Est Analysis Reveals Putative Genes Involved In Glycyrrhizin Biosynthesis [J]. Bmc Genomics,2010,11(1):268.
    [18]Luo H, Sun C, Li Y, et Al. Analysis Of Expressed Sequence Tags From The Huperzia Serrata Leaf For Gene Discovery In The Areas Of Secondary Metabolite Biosynthesis And Development Regulation [J]. Physiologia Plantarum,2010,139(1):1-12.
    [19]李滢,孙超,罗红梅,等.基于高通量测序454 Gs Flx的丹参转录组学研究[J].药学学报,2010,45(4):524-529.
    [20]陈士林,何柳,刘明珠,等.本草基因组方法学研究[J].世界科学技术(中医药现代化),2010,3:005.
    [21]陈若之,于德泉.灵芝二萜化学成分研究进展[J].药学学报,1990,25(12):940-953.
    [22]罗俊,林志彬.灵芝三萜化合物药理研究进展[J].药学学报,2002,37(7):574-578.
    [23]曾祥丽,包海鹰.灵芝三萜类成分与药理学研究进展[J].菌物研究,2004,2(1):68-77.
    [24]Kubota T, Asaka Y, Miura I, et al. Structures Of Ganoderic Acid A And B, Two New Lanostane Type Bitter Triterpenes From Ganoderma Lucidum (Fr.) Karst [J]. Helvetica Chimica Acta,1982, 65(2):611-619.
    [25]Wang FS, Cai H, Yang JS, et al. Trierpenoids From The Frulting Body Of Ganoderma Lucidum[J]. J Chin Pharm Sci,1997,6 (4):192-197.
    [26]Weng CJ, Chau CF, Chen KD, et al. The Ant-Invasive Effect Of Lucidenic Acids Isolated From A New Ganoderma Lucidum Strain [J]. Mol Nutr Food Res,2007,51(12):1472.
    [27]Fatmawati S.Shimizu K, Kondo R. Ganoderic Acid D F, A New Triterpenoid With Aldose Reductase Inhibitory Activity From The Fruiting Body Of Ganoderma Lucidum. Fitoterapia [J], 2010,81 (8):1033-1036.
    [28]Nishitoba T, Sato H, Kasai T, et al. New Bitter C27 And C30 Terpenoids From The Fungus Ganoderma Lucidum (Reishi)[J]. Agricultural And Biological Chemistry,1985,49(6):1793-1798.
    [29]Hirotani M, Furuya T, Shiro M. A Ganoderic Acid Derivative, A Highly Oxygenated Lanostane-Type Triterpenoid From Ganoderma Lucidum[J]. Phytochemistry,1985,24(9): 2055-2061.
    [30]Gao JJ, Min BS, Ahn EM, et al. New Triterpene Aldehydes, Lucialdehydes A-C, From Ganoderma Lucidum And Their Cytotoxicity Against Murine And Human Tumor Cells [J]. Chem. Pharm. Bull.2002,50(6):837-840.
    [31]Liu RM, Zhong JJ. Ganoderic Acid Mf And S Induce Mitochondria Mediated Apoptosis In Human Cervical Carcinoma Hela Cells [J]. Process Biochemistry,2011,18 (5):349-355.
    [32]Hiroshi K, WakakoT, K, et al. The Biologically Active Constituents Of Ganoderma Lucidum (Fr.) Karst. Histamine Release-Inhibitory Triterpenes. Chemical & Pharmaceutical Bulletin [J],1985, 33(4):1367-1374.
    [33]Li P, Deng YP, Wei XX, et al. Triterpenoids From Ganoderma Lucidum And Their Cytotoxic Activities [J]. Natural Product Research,2013,27(1):12-22.
    [34]Ding N, Yang Q, Huang SS, et al. Separation And Determination Of Four Ganoderic Acids From Dried Fermentation Mycelia Powder Of Ganoderma Lucidum By Capillary Zone Electrophoresis [J]. J.Pharm.Biomed.Anal.2010,53(5):1224-1230.
    [35]Nishitoba T, Sato Hs Shirasu S, Sakamura S. Novel Triterpenoids From The Mycelial Mat At The Previous Stage Of Fruiting Of Ganoderma Lucidum[J]. Agr Biol Chem,1987,51 (2):619-622.
    [36]Shim SH, Ryu J, Kim JS, et al. New Lanostane-Type Triterpenoids from Ganoderma Applanatum [J]. Journal of Natural Products,2004,67(7):1110-1113.
    [37]Tang W, Liu HW, Zhao WM, et al. Ganoderic Acid T From Ganoderma Lucidum Mycelia Induces Mitochondria Mediated Apoptosis In Lung Cancer Cells [J]. Life Sciences,2006,80(3): 205-211.
    [38]Nishitoba T, Sato H, Shirasu S, et al. Evidence On The Strain-Specific Terpenoid Pattern Of Ganoderma Lucidum [J]. Agricultural And Biological Chemistry,1986,50(8):2151-2154.
    [39]Nishitoba T, Sato HJ, Sakamura S, et al. New Terpenoids,Ganolucidic Acid D,Ganoderic Acid L,Lucidone C And Lucidenic Acid G,From The Fungus Ganoderma Lucidum[J]. Agr Biol Chem,1986,50 (3):809-811.
    [40]Li CH, Chen PY, Chang UM, et al. Ganoderic Acid X, A Lanostanoid Triterpene, Inhibits Topoisomerases and Induces Apoptosis of Cancer Cells [J]. Life Sciences,2005,77(3):252-265.
    [41]Iwatsuki K, Akihisa T, Tokuda H, et al. Lucidenic Acids P And Q, Methyl Lucidenate P, And Other Triterpenoids From The Fungus Ganoderma Lucidum And Their Inhibitory Effects On Epstein-Barr virus Activation [J]. Journal of Natural Products,2003,66(12):1582-1585.
    [42]Shiao MS, Lin LJ, Yeh SF, et al. Two New Triterpenes of the Fungus Ganoderma Lucidum [J]. Journal of Natural Products,1987,50(5):886-890.
    [43]Tohru K, Satoko K, Yoshihiro M, et al. Constituents of the Fungus Ganoderma Lucidum (Fr.) Karst. Ii. Structures Of Ganoderic Acids F, G, And H, Lucidenic Acids D2 And E2, And Related Compounds[J]. Chemical & Pharmaceutical Bulletin,1986,34(10):4018-4029.
    [44]Nishitoba T, Sato H, Oda K, et al. Novel Triterpenoids and A Steroid From The Fungus Ganoderma Lucidum (Organic Chemistry) [J]. Agricultural and Biological Chemistry,1988, 52(1):211-216.
    [45]Kubota T, Asaka Y, Miura I, et al. Structures Of Ganoderic Acid A And B, Two New Lanostane Type Bitter Triterpenes From Ganoderma Lucidum (Fr.) Karst [J]. Helvetica Chimica Acta,1982, 65(2):611-619.
    [46]Morigiwa A, Kitabatake K, Fujimoto Y, et al. Angiotensin Converting Enzyme-Inhibitory Triterpenes From Ganoderma Lucidum [J]. Chemical & Pharmaceutical Bulletin,1986,34(7): 3025-3028.
    [47]Arisawa M, Fujita A, Saga M, et al. Three New Lanostanoids From Ganoderma Lucidum [J]. Journal Of Natural Products,1986,49(4):621-625.
    [48]Yasuo K, Hideo N, Shigemasa I, et al. Structures Of New Terpenoid Constituents Of Ganoderma Lucidum (Fr.) Karst (Polyporaceae) [J]. Chemical & Pharmaceutical Bulletin,1985,33(11): 4829-4835.
    [49]Lin LJ, Shiao MS, Yeh SF. Seven New Triterpenes From Ganoderma Lucidum. Journal of Natural Products [J],1988,51(5):918-924.
    [50]Kikuchi T, Kanomi S, Kadota S, et al. Constituents Of The Fungus Ganoderma Lucidum (Fr.) Karst I. Structures Of Ganoderic Acids C2, E, I, And K,Lucidenic Acid And Related Compounds [J].Chem Pharm Bull,1986,34 (9):3695-3712.
    [51]Masao H, Chieko I, Tsutomu F, et al. Ganoderic Acids T, S and R, New Triterpenoids From The Cultured Mycelia Of Ganoderma Lucidum [J]. Chemical & Pharmaceutical Bulletin,1986,34(5): 2282-2285.
    [52]Hirotani M, Asaka I, Ino C, et al. Ganoderic Acid Derivatives And Ergosta-4,7,22-Triene-3, 6-Dione From Ganoderma Lucidum [J]. Phytochemistry,1987,26(10):2797-2803.
    [53]Fujita A, Arisawa M, Saga M, et al. Two New Lanostanoids from Ganoderma Lucidum [J]. Journal of Natural Products,1986,49(6):1122-1125.
    [54]Nishitoba T, Sato H, Sakamura S. Novel Mycelial Components, Ganoderic Acid Mg, M H, Mi, M J And M k, From The Fungus Ganoderma Lucidum (Organic Chemistry) [J]. Agricultural And Biological Chemistry,1987,51(4):1149-1153.
    [55]黄艳娟,肖桂林.灵芝三萜药理学作用研究进展[J].中医药导报,2008,14(9):87-88.
    [56]唐庆九,季哲,郝瑞霞,等.灵芝中性三萜类成分的抗肿瘤作用[J].食用菌学报,2010,17(1):60-64.
    [57]刘高强,王晓玲.灵芝免疫调节和抗肿瘤作用的研究进展[J].菌物学报,2010,29(1):152-158.
    [58]Gao Y, Zhang R, Zhang J, et Al. Study Of The Extraction Process And In Vivo Inhibitory Effect Of Ganoderma Triterpenes In Oral Mucosa Cancer [J], Molecules,2011,16(7):5315-5332.
    [59]O Toth J, Luu B, Ourisson G. Les Acides Ganoderiques Taz:Triterpenes Cytotoxiques De Ganoderma Lucidum (Polyporacee) [J]. Tetrahedron Letters,1983,24(10):1081-1084.
    [60]唐庆九,季哲,郝瑞霞,等.灵芝中性三萜类成分的抗肿瘤作用[J].食用菌学报,2010,17(1):60-64.
    [61]王明宇,刘强,车庆明,等.灵芝三萜类化合物对3种小鼠肝损伤模型的影响[J].药学学报,2000,35(5):326-329.
    [62]陈洁,史杨娟,罗琳,等.灵芝三萜对大鼠肝纤维化的保护作用及其机制研究[J].中国医院药学杂志,2008,28(9):694.
    [63]El-Mekkawy S, Meselhy MR,Nakamura N, et al. Anti-Hiv-1 And Anti-Hiv-1-Protease Substances From Ganoderma Lucidum [J]. Phytochemistry,1998,49:1651-1657
    [64]Min BS, Gao JJ, Nakamura N, et al. Triterpenes From The Spores Of Ganoderma Lucidum And Their Cytotoxicity Against Meth-A And Llc Tumor Cells [J]. Chemical & Pharmaceutical Bulletin,2000,48(7):1026.
    [65]Montamat F, Guilloton M, Karst F, et al. Isolation And Characterization Of A Cdna Encoding Arabidopsis Thaliana 3-Hydroxy-3-Methylglutaryl-Coenzyme A Synthase [J]. Gene,1995, 167(1):197-201.
    [66]Chye ML, Kush A, Tan CT, et al. Characterization Of Cdna And Genomic Clones Encoding 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase From Hevea Brasiliensis[J]. Plant Molecular Biology,1991,16(4):567-577.
    [67]Maldonado-Mendoza IE, Burnett RJ, Nessler CL. Nucleotide Sequence Of A Cdna Encoding 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase From Catharanthus Roseus[J]. Plant Physiology,1992,100(3):1613.
    [68]Vollack KU, Bach TJ. Cloning Of A Cdna Encoding Cytosolic Acetoacetyl-Coenzyme A Thiolase From Radish By Functional Expression In Saccharomyces Cerevisiae[J]. Plant Physiology,1996,111(4):1097-1107.
    [69]Ren A, Ouyang X, Shi L, et al. Molecular Characterization And Expression Analysis Of Glhmgs, A Gene Encoding Hydroxymethylglutaryl-Coa Synthase From Ganoderma Lucidum (Ling-Zhi) In Ganoderic Acid Biosynthesis Pathway [J]. World Journal Of Microbiology And Biotechnology,2013,29(3):523-531.
    [70]Ren A, Qin L, Shi L, et al. Methyl Jasmonate Induces Ganoderic Acid Biosynthesis In The Basidiomycetous Fungus Ganoderma Lucidum [J]. Bioresource Technology,2010,101(17): 6785-6790.
    [71]于湘莉.紫杉醇生物合成上游途径中重要酶基因克隆[D].天津大学,2004.
    [72]Wegener A, Gimbel W, Werner T, et al. Molecular Cloning Of Ozone-Inducible Protein from Pinus Sylvestris L. With High Sequence Similarity To Vertebrate 3-Hydroxy-3-Methylglutaryl-Coa-Synthase[J].Biochimica Et Biophysica Acta (Bba)-Gene Structure And Expression,1997,1350(3):247-252.
    [73]Sirinupong N, Suwanmanee P, Doolittle RF, et al. Molecular Cloning Of A New Cdna And Expression Of 3-Hydroxy-3-Methylglutaryl-Coa Synthase Gene From Hevea Brasiliensis [J]. Planta,2005,221(4):502-512.
    [74]Wang H, Nagegowda DA, Rawat R, et al. Overexpression Of Brassica Juncea Wild-Type And Mutant Hmg-Coa Synthase 1 In Arabidopsis Up-Regulates Genes In Sterol Biosynthesis And Enhances Sterol Production And Stress Tolerance [J]. Plant Biotechnol J.2012,10:31-42.
    [75]周宪林.甲基茉莉酸对喜树中Hmgs基因表达的影响初探[J].井冈山医专学报,2009,16:13-15.
    [76]Shang C, Zhu F, Li N, et al. Cloning And Characterization Of A Gene Encoding Hmg-Coa Reductase From Ganoderma Lucidum And Its Functional Identification In Yeast [J]. Biosci Biotechnol Biochem,2008,72:1333-1339.
    [77]Park H, Denbow CJ, Cramer CL. Structure And Nucleotide Sequence Of Tomato Hmg2 Encoding 3-Hydroxy-3-Methyl-Glutaryl Coenzyme A Reductase [J]. Plant Molecular Biology, 1992,20(2):327-331.
    [78]Casey WM, Keesler GA, Parks LW. Regulation of Partitioned Sterol Biosynthesis In Saccharomyces Cerevisiae [J]. Journal of Bacteriology,1992,174(22):7283-7288.
    [79]Choi D, Ward BL, Bostock RM. Differential Induction and Suppression Of Potato 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Genes In Response To Phytophthora Infestans And To Its Elicitor Arachidonic Acid [J]. The Plant Cell Online,1992,4(10): 1333-1344.
    [80]Suzuki M, Kamide Y, Nagata N, et al. Loss of Function Of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase 1 (Hmgl) In Arabidopsis Leads To Dwarfing, Early Senescence And Male Sterility, And Reduced Sterol Levels [J]. The Plant Journal,2004,37(5):750-761.
    [81]Shi L, Qin L, Xu Y, et al. Molecular Cloning, Characterization, And Function Analysis Of A Mevalonate Pyrophosphate Decarboxylase Gene From Ganoderma Lucidum [J]. Molecular Biology Reports,2012,39(5):6149-6159.
    [82]Lees ND, Skaggs B, Kirsh DR, et al. Cloning Of The Lategenes In The Ergosterol Biosynthetic Pathway Of Saccharomyces Cerevisiae[J]. Lipids,1995,30:221-226.
    [83]Cordier H, Karst F, Berges T. Heterologous Expression In Saccharomyces Cerevisiae Of An Arabidopsis Thaliana Cdna Encoding Mevalonate Diphosphate Decarboxylase [J]. Plant Mol Biol,1999,39:953-967.
    [84]Bailey AM, Mahapatra S,Brennan PJ.et al. Identification,Cloning, Purification, And Enzymatic Characterization Of Mycobacterium Tuberculosis 1-Deoxy-D-Xylulose 5-Phosphate Synthase[J]. Glycobiol,2002,12:813-820.
    [85]Ding YX, Ou-Yang X, Shang CH, et al. Molecular Cloning, Characterization, And Differential Expression Of A Farnesyl-Diphosphate Synthase Gene From The Basidiomycetous Fungus Ganoderma Lucidum [J]. Bioscience, Biotechnology, And Biochemistry,2008,72(6): 1571-1579.
    [86]Ren A, Qin L, Shi L. et al. Methyl Jasmonate Induces Ganoderic Acid Biosynthesis In The Basidiomycetous Fungus Ganoderma Lucidum [J]. Bioresource Technology,2010,101(17): 6785-6790.
    [87]Cunillera N, Boronat A, Ferrer A. The Arabidopsis Thaliana Fpsl Gene Generates A Novel Mrna That Encodes A Mitochondrial Farnesyl-Diphosphate Synthase Isoform [J]. Journal Of Biological Chemistry,1997,272(24):15381-15388.
    [88]Keim V, Manzano D, Fernandez FJ, et al. Characterization of Arabidopsis Fps Isozymes And Fps Gene Expression Analysis Provide Insight Into The Biosynthesis Of Isoprenoid Precursors In Seeds [J]. Plos One,2012,7(11):E49109.
    [89]Manzano D, Busquets A, Closa M, et al. Overexpression Of Farnesyl Diphosphate Synthase In Arabidopsis Mitochondria Triggers Light-Dependent Lesion Formation And Alters Cytokinin Homeostasis [J]. Plant Molecular Biology,2006,61(1-2):195-213.
    [90]Li CP, Larkins BA. Identification Of A Maize Endosperm-Specific Cdna Encoding Farnesyl Pyrophosphate Synthetase [J]. Gene,1996,171(2):193-196.
    [91]陈新,李玲玲,吕慧贞,刘庆忠,张元湖.法呢基焦磷酸(Fpp)的生物合成及其分子调控[J]. 生物技术通报,2007(2):67-71.
    [92]姚健.灵芝异戊二烯焦磷酸异构酶基因的克隆及其表达特性的研究[D].南京农业大学,2011.
    [93]Phillips MA, D'auria JC, Gershenzon J, et al. The Arabidopsis Thaliana Type I Isopentenyl Diphosphate Isomerases Are Targeted To Multiple Subcellular Compartments and Have Overlapping Functions In Isoprenoid Biosynthesis [J]. The Plant Cell Online,2008,20(3): 677-696.
    [94]Kittleman W, Thibodeaux CJ, Liu Y, et al. Characterization And Mechanistic Studies Of Type Ii Isopentenyl Diphosphate:Dimethylallyl Diphosphate Isomerase From Staphylococcus Aureus[J]. Biochemistry,2007,46(28):8401-8413.
    [95]Siddiqui MA, Yamanaka A, Hirooka K, et al. Enzymatic And Structural Characterization Of Type Ii Isopentenyl Diphosphate Isomerase From Hyperthermophilic Archaeon Thermococcus Kodakaraensis [J]. Biochemical and Biophysical Research Communications,2005,331(4): 1127-1136.
    [96]Sun J, Sun XX, Tang PW, et al. Molecular Cloning And Functional Expression Of Two Key Carotene Synthetic Genes Derived From Blakeslea Trispora Into E. Coli For Increased B-Carotene Production [J]. Biotechnology Letters,2012,34(11):2077-2082.
    [97]Lv X, Xu H, Yu H. Significantly Enhanced Production Of Isoprene By Ordered Coexpression Of Genes Dxs, Dxr, And Idi In Escherichia Coli [J]. Applied Microbiology and Biotechnology,2012: 1-9.
    [98]Chen R, Harada Y, Bamba T, et al. Overexpression Of An Isopentenyl Diphosphate Isomerase Gene To Enhance Trans-Polyisoprene Production In Eucommia Ulmoides Oliver [J]. Bmc Biotechnology,2012,12(1):78.
    [99]李娜,王世明,陈军,等.Sefa-Pcr法克隆灵芝鲨烯合酶基因启动子及其序列分析[J].菌物学报,2006,25(4):592-598.
    [100]Robinson GW, Tsay YH, Kienzle BK, et al. Conservation Between Human And Fungal Squalene Synthetases:Similarities In Structure, Function, And Regulation [J]. Molecular and Cellular Biology,1993,13(5):2706-2717.
    [101]Ortiz D, Montellano PR, Wei JS, Vinson WA, et al. Substrate Selectivity Of Squalene Synthetase [J]. Biochemistry,1977,16(12):2680-2685.
    [102]赵明文,钟家禹,王南,等.鲨烯合酶的研究进展[J].微生物学报,2003,43(5):676-680.
    [103]Choi DW, Jung JD, Im HY, et al. Analysis of Transcripts In Methyl Jasmonate-Treated Ginseng Hairy Roots To Identify Genes Involved In The Biosynthesis Of Ginsenosides And Other Secondary Metabolites [J]. Plant Cell Reports,2005,23(8):557-566.
    [104]Suzuki H, Achnine L, Xu R, et al. A Genomics Approach To The Early Stages Of Triterpene Saponin Biosynthesis In Medicago Truncatula [J]. The Plant Journal,2002,32(6):1033-1048.
    [105]Shang CH, Shi L, Ren A, et al. Molecular Cloning, Characterization, And Differential Expression Of A Lanosterol Synthase Gene From Ganoderma Lucidum [J]. Bioscience, Biotechnology, And Biochemistry,2010,74(5):974-978.
    [106]吴耀生.药用植物三七三萜合成途径功能酶特征与植物三萜合成通路分子进化[D].广西医科大学,2008年.
    [107]赵明文,钟家禹,王南,等.鲨烯合酶的研究进展[J].微生物学报,2003,43(5):676-680.
    [108]冷欣夫,邱星辉.细胞色素p450酶系的结构、功能与应用前景.北京:科学出版社,2001.
    [109]王海燕,图力古尔,陈强,等.真菌细胞色素p450研究进展[J].食用菌学报,2010,17(2).
    [110]Nelson DR. The Cytochrome P450 Homepage [J]. Hum Genomics,2009,4(1):59-65.
    [111]Nelson DR. Progress In Tracing The Evolutionary Paths Of Cytochrome P450 [J]. Biochimica Et Biophysica Acta (Bba)-Proteins & Proteomics,2011,1814(1):14-18.
    [112]于永学,王英姿.灰霉病菌抗药性发生概况及机理研究进展[J].现代农业科技,2009,11:117-118.
    [113]甘淋玲,卢一卉,周成合.哌嗪化合物作为酶抑制剂的研究进展[J].中国生化药物杂志,2009,30(2):127-131.
    [114]Chigu NL, Hirosue S, Nakamura C, et al. Cytochrome P450 Monooxygenases Involved In Anthracene Metabolism By The White-Rot Basidiomycete Phanerochaete Chrysosporium[J]. Applied Microbiology and Biotechnology,2010,87(5):1907-1916.
    [115]Mori T, Kitano S, Kondo R. Biodegradation Of Chloronaphthalenes And Polycyclic Aromatic Hydrocarbons By The White Rot Fungusphlebia Lindtneri [J]. Appl Microbiol Biotechnol,2003, 61:380-383.
    [116]Cresnar B, Petric S. Cytochrome P450 Enzymes in The Fungal Kingdom [J]. Biochimica Et Biophysica Acta (Bba)-Proteins & Proteomics,2011,1814(1):29-35.
    [117]Seghezzi W, Sanglard D, Fiechter A. Characterization Of A Second Alkaneinducible Cytochrome P450-Encoding Gene, Cyp52a2, From Candida Tropicalis[J],Gene,1991,106:51-60.
    [118]Seghezzi W, Meili C, Ruffiner R, et al. Identification And Characterization Of Additional Members Of The Cytochrome P450 Multigene Family Cyp52 Of Candida Tropicalis [J], Dna Cell Biol.1992,11:767-780.
    [119]Ehrlich KC, Chang PK, Yu J, Cotty PJ. Aflatoxin Biosynthesis Cluster Gene Cypa Is Required For Gaflatoxin Formation [J], Appl. Environ. Microbiol.2004,70:6518-6524.
    [120]Hotze M, Schroder G, Schroder J. Cinnamate 4-Hydroxylase From Catharanthus Roseus And A Strategy For The Functional Expression Of Plant Cytochrome P450 Proteins As Translational Fusions With P450 Reductase In Escherichia Coli [J]. Febs Letters,1995,374(3):345-350.
    [121]Schroder G, Unterbusch E, Kaltenbach M, et al. Light-Induced Cytochrome P450-Dependent Enzyme In Indole Alkaloid Biosynthesis:Tabersonine 16-Hydroxylase [J]. Febs Letters,1999, 458(2):97-102.
    [122]Irmler S, Schroder G, St-Pierre B, et al. Indole Alkaloid Biosynthesis in Catharanthus Roseus: New Enzyme Activities And Identification Of Cytochrome P450 Cyp72al As Secologanin Synthase [J]. The Plant Journal,2000,24(6):797-804.
    [123]Collu G, Unver N, Peltenburg-Looman AMG, et al. Geraniol 10-Hydroxylase, A Cytochrome P450 Enzyme Involved In Terpenoid Indole Alkaloid Biosynthesis [J]. Febs Letters,2001, 508(2):215-220.
    [124]Shibuya M, Hoshino M, Katsube Y, et al. Identification of Beta-Amyrin And Sophoradiol 24-Hydroxylase By Expressed Sequence Tag Mining And Functional Expression Assay [J]. Febs J.,2006,273:948-59.
    [125]Carelli M, Biazzi E, Panara F, et al. Medicago Truncatula Cyp716a12 Is A Multifunctional Oxidase Involved In The Biosynthesis Of Hemolytic Saponins [J]. The Plant Cell Online,2011, 23(8):3070-3081.
    [126]Naoumkina MA, Modolo LV, Huhman DV, et al. Genomic And Coexpression Analyses Predict Multiple Genes Involved In Triterpene Saponin Biosynthesis In Medicago Tnmcatula [J]. The Plant Cell Online,2010,22(3):850-866.
    [127]Seki H, Ohyama K, Sawai S, et al. Licorice B-Amyrin 11-Oxidase, A Cytochrome P450 With A Key Role In The Biosynthesis Of The Triterpene Sweetener Glycyrrhizin [J]. Proceedings Of The National Academy Of Sciences,2008,105(37):14204-14209.
    [128]Han JY, Hwang HS, Choi SW, et al. Cytochrome P450 Cyp716a53v2 Catalyzes the Formation Of Protopanaxatriol From Protopanaxadiol During Ginsenoside Biosynthesis In Panax Ginseng [J]. Plant and Cell Physiology,2012,53(9):1535-1545.
    [129]Han JY, Kim HJ, Kwon YS, et al. The Cyt P450 Enzyme Cyp716a47 Catalyzes The Formation Of Protopanaxadiol From Dammarenediol-Ii During Ginsenoside Biosynthesis In Panax Ginseng [J]. Plant And Cell Physiology,2011,52(12):2062-2073.
    [130]Pradhan D, Panda PK, Tripathy G, et al. Anticancer Activity Of Biflavonoids From Lonicera Japonica And Benincasa Hispida On Human Cancer Cell Lines [J]. Journal of Pharmacy Research.2009,2:983-985.
    [131]Xing J, Li P. Research on Chemical Constituents Of Lonicera:A Review And Prospects [J]. Zhong Yao Cai,2007,22:366-370.
    [132]Kumar N, Singh B, Bhandari P, et al. Biflavonoids from Lonicera Japonica [J]. Phytochem, 2005,66:2740-2744.
    [133]Chai XY, Li SL, Li P. Quality Evaluation of Flos Lonicerae through A Simultaneous Determination Of Seven Saponins By Hplc With Elsd [J]. J Chromatogr A,2005,1070:43-48.
    [134]高玉敏.金银花化学成分的研究[J].中草药,1995,26(11):568-569.
    [135]黄丽瑛.中药金银花化学成分的研究[J].中草药,1996,27(11):645-647.
    [136]Schlotzhauer WS, Pair SD, Horvat RJ. Volatile Constituents from The Flowers Of Japanese Honeysuckle(Lonicera Japonica) [J]. J Agric Food Chem,1996,44:206-209.
    [137]Li H, Zhang Z, Li P. Comparative Study On Volatile Oils In Flower And Stem Of Lonicera Japonica [J]. Zhong Yao Cai,2002,25:476-477.
    [138]Daniels DGH, King HGC, Martin H F. Antioxidants In Oats:Esters Of Phenolicacids [J]. J. Sci. Food Agric.1963,14:385-390.
    [139]Daniels DGH, Martin HF. Antioxidants in Oats:Mono-Esters Of Caffeic And Ferulic Acids [J]. J. Sci. Food Agric.1967,18:589-595.
    [140]Leatham GF, King V, Stahmann MA. In Vitro Protein Polymerization By Quinines Or Free-Radicals Generated By Plant Or Fungal Oxidative-Enzymes [J]. Phytopath.1980, 70:1134-1140.
    [141]Tamagnone L, Merida A, Stacey N, et Al. Inhibition Of Phenolic Acid Metabolism Results In Precocious Cell Death And Altered Cell Morphology-In Leaves Of Transgenic Tobacco Plants [J]. Plant Cell 1998,10:1801-1816.
    [142]Plumb GW, Garcia-Conesa MT, Kroon PA, et Al. Metabolism Of Chlorogenic Acid By Human Plasma, Liver, Intestine And Gut Microflora [J]. J. Sci. Food Agric.1999,79:390-392.
    [143]Williamson G, Day AJ, Plumb GW, et al. Human Metabolic Pathways Of Dietary Flavonoids And Hydroxycinnamates [J]. Biochem. Soc. Trans.2000,28:16-22.
    [144]Nardini M, Cirillo E, Natella F, et al. Absorption Of Phenolic Acids In Humans After Coffee Consumption [J]. J. Agric. Food Chem.2002,50:5735-5741.
    [145]Laranjinha J, Almeida L, Madeira V. Reactivity of Dietary Phenolic Acids With Peroxyl Radicals:Antioxidant Activity Upon Low Density Lipoprotein Peroxidation [J]. Biochem. Pharmacol.1994,48:487-494.
    [146]Sawa T, Nakao M, Akaike T, et al. Alkylperoxyl Radical-Scavenging Activity Of Various Flavonoids And Other Phenolic Compounds:Implications For The Anti-Tumor-Promoter Effect Of Vegetables [J]. J. Agric. Food Chem.1999,47:397-402.
    [147]Wu L, Zhang ZJ, Zhang ZS. Characterization Of Antioxidant Activity Of Extracts From Flos Lonicerae[J]. Drug Dev Ind Pharm,2007,33:841-847.
    [148]Mori H, Tanaka T, Shima H. Inhibitory Effect Of Chlorogenic Acid On Methylazoxymethanol Acetate-Induced Carcinogenesis In Large Intestine And Liver Of Hamsters [J]. Cancer Lett,1986, 30:49-54.
    [149]Tanaka T, Nishikawa A, Shima H, et al. Inhibitory Effects Of Chlorogenic Acid, Reserpine, Polyprenoic Acid (E-5166), Or Coffee On Hepatocarcinogenesis In Rats And Hamsters [J]. Basic Life Sci,1990,52:429-440.
    [150]Tanaka T, Kojima T, Kawamori T, et al. Inhibition Of 4-Nitroquinoline-1-Oxide-Induced Rat Tongue Carcinogenesis By The Naturally Occurring Plant Phenolics Caffeic, Ellagic, Chlorogenic And Ferulic Acids [J]. Carcinogenesis,1993,14:321-1325.
    [151]Kurata R, Adachi M, Yamakawa O, Yoshimoto M. Growth Suppression Of Human Cancer Cells By Polyphenolics From Sweetpotato (Ipomoea Batatas L.) Leaves [J]. J Agric Food Chem,2006, 55:185-190.
    [152]Stockigt J, Zenk MH. Enzymatic Synthesis of Chlorogenic Acid From Caffeoyl Coenzyme A And Quinic Acid [J]. Febs Lett.1974,42:131-134.
    [153]Ulbrich B, Zenk MH. Partial Purification and Properties Of Hydroxycinnamoyl-Coa:Quinate Hydroxycinnamoyl Transferase From Higher Plants [J]. Phytochem.1979,18:929-933
    [154]Rhodes M, Wooltorton L. The Enzymatic Conversion Of Hydroxycinn Amicacids To P-Coumaroyl Quinic And Chlorogenic Acids In Tomato [J]. Phytochem.1976,15:947-951.
    [155]Villegas R. Kojima M. Purification And Characterisation Of Hydroxycinnamoyl D-Glucose Quinate Hydroxycinnamoyl Transferase In The Root Of Sweet Potato, Ipomoea Batatas Lam [J]. J. Biol. Chem.1986,261:8729-8733.
    [156]Schoch G, Goepfert S, Morant M, et al. Cyp98a3 From Arabidopsis Thaliana Is A 3'Hydroxylase Of Phenolic Esters, A Missing Link In The Phenylpropanoid Pathway [J]. J. Biol. Chem.2001,276:36566-36574.
    [157]Franke R, Humphreys JM, Hemm MR, et al. The Arabidopsis Ref8 Gene Encodes The 3-Hydroxylase Of Phenylpropanoid Metabolism [J]. Plant J.2002,30:33-45.
    [158]Hoffmann L, Maury S, Martz F, et al. Purification, Cloning, And Properties Of An Acyltransferase Controlling Shikimate And Quinate Ester Intermediates In Phenylpropanoid Metabolism [J]. J. Biol. Chem.2003,278:95-103.
    [159]Niggeweg R, Michael AJ, Martin C. Engineering Plants with Increased Levels Of The Antioxidant Chlorogenic Acid [J].2004,22:746-754.
    [160]Sonnante G, Damore R, Blanco E, et al. Novel Hydroxycinnamoyl-Coenzyme A Quinate Transferase Genes From Artichoke Are Involved In The Synthesis Of Chlorogenic Acid [J]. Plant Physiology,2010,153:1224-1238.
    [161]Peng XX, Li WD, Wang WQ, et al. Cloning And Characterization Of A Cdna Coding A Hydroxycinnamoyl-Coa Quinate Hydroxycinnamoyl Transferase Involved In Chlorogenic Acid Biosynthesis In Lonicera Japonica [J]. Planta Med 2010(76):1921-1926.
    [162]Halliwell B, Gutteridge J. Oxygen Toxicity, Oxygeradicals, Transition Metals and Disease [J]. Biochem.1984,219:1-5.
    [163]Husain SR, Cillard J, Cillard P. Hydroxyl Radical Scavenging Activity of Flavonoids [J]. Phytochemistry 1987,2:2487-2491.
    [164]Kimata M, Inagaki N, Nagai K. Effect of Luteolin and Other Flavonoids On Ige-Mediated Allergic Reaction [J]. Planta Med.2000,66:25-29.
    [165]Doddapaneni H, Chakraborty R, Yadav J. Genome-Wide Structural And Evolutionary Analysis Of The P450 Monooxygenase Genes (P450ome) In The White Rot Fungus Phanerochaete Chrysosporium:Evidence For Gene Duplications And Extensive Gene Clustering [J]. Bmc Genomics,2005,6(1):92.
    [166]Yadav JS, Doddapaneni H, Subramanian V. P450ome of The White Rot Fungus Phanerochaete Chrysosporium:Structure, Evolution And Regulation Of Expression Of Genomic P450 Clusters. Biochemical Society Transactions [J],2006,34(Pt 6):1165.
    [167]Nelson DR. Cytochrome P450 Nomenclature,2004[M]. Cytochrome P450 Protocols. Humana Press,2006:1-10.
    [168]Kelly DE, Krasevec N, Mullins J, et Al. The Cypome (Cytochrome P450 Complement) Of Aspergillus Nidulans[J]. Fungal Genetics and Biology,2009,46(1):S53-S61.
    [169]Skaggs BA, Alexander JF, Pierson CA, et al. Cloning And Characterization Of The Saccharomyces Cerevisiae C-22 Sterol Desaturase Gene, Encoding A Second Cytochrome P450 Involved In Ergosterol Biosynthesis [J]. Gene,1996,169(1):105-109.
    [170]Brodhun F, Gobel C, Hornung E, et al. Identification Of Ppoa From Aspergillus Nidulans As A Fusion Protein Of A Fatty Acid Heme Dioxygenase/Peroxidase And A Cytochrome P450 [J]. Journal Of Biological Chemistry,2009,284(18):11792-11805.
    [171]Deng J, Carbone I, Dean RA. The Evolutionary History Of Cytochrome P450 Genes In Four Filamentous Ascomycetes[J]. Bmc Evolutionary Biology,2007,7:30
    [172]Perrin R, Federova N, Bok JW, et al. Transcriptional Regulation Of Chemical Diversity In Aspergillus Fumigates By Laea[J]. Plos Pathogen,2007,3:50.
    [173]Goossens A, Hakkinen ST, Laakso I, et al. A Functional Genomics Approach toward The Understanding Of Secondary Metabolism In Plant Cells [J]. Proceedings of The National Academy Of Sciences [J],2003,100(14):8595-8600.
    [174]Yonekura-Sakakibara K, Tohge T, Niida R, et al. Identification of A Flavonol 7-O-Rhamnosyltransferase Gene Determining Flavonoid Pattern In Arabidopsis By Transcriptome Coexpression Analysis And Reverse Genetics [J]. J. Biol. Chem,2007,282: 14932-14941.
    [175]Naoumkina MA, Modolo LV, Huhman DV, et al. Genomic And Coexpression Analyses Predict Multiple Genes Involved In Triterpene Saponin Biosynthesis In Medicago Truncatula[J]. The Plant Cell Online,2010,22(3):850-866.
    [176]Field B, Osbourn AE. Metabolic Diversification-Independent Assembly Of Operon-Like Gene Clusters In Different Plants [J]. Science,2008,320(5875):543-547.
    [177]Frey M, Chomet P, Glawischnig E, et al. Analysis Of A Chemical Plant Defense Mechanism In Grasses [J]. Science,1997,277(5326):696-699.
    [178]Keller NP, Segner S, Bhatnagar D, et al. Stcs, A Putative P-450 Monooxygenase, Is Required For The Conversion Of Versicolorin A To Sterigmatocystin In Aspergillus Nidulans[J]. Applied and Environmental Microbiology,1995,61(10):3628-3632.
    [179]Brown DW, Yu JH, Kelkar HS, et al. Twenty-Five Coregulated Transcripts Define A Sterigmatocystin Gene Cluster In Aspergillus Nidulans[J]. Proceedings Of The National Academy Of Sciences,1996,93(4):1418-1422.
    [180]Yuan Y, Song L, Li M, et al. Genetic Variation And Metabolic Pathway Intricacy Govern The Active Compound Content and Quality Of The Chinese Medicinal Plant Lonicera Japonica Thunb[J]. Bmc Genomics,2012,13(1):195.
    [181]Winkel-Shirley B. Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology [J]. Plant Physiology,2001,126:485-493.
    [182]Mahesh V, Million-Rousseau R, Ullmann P, et al. Functional Characterization Of Two P-Coumaroyl Ester 3'-Hydroxylase Genes From Coffee Tree:Evidence Of A Candidate For Chlorogenic Acid Biosynthesis [J]. Plant Molecular Biology,2007,64(1-2):145-159.
    [183]Achnine L, Blancaflor EB, Rasmussen S, et al. Colocalization of L-Phenylalanine Ammonia-Lyase and Cinnamate 4-Hydroxylase For Metabolic Channeling In Phenylpropanoid Biosynthesis [J]. The Plant Cell Online,2004,16(11):3098-3109.
    [184]De Vetten N, Ter Horst J, Van Schaik HP, et al. A Cytochrome B5 Is Required For Full Activity Of Flavonoid 3',5'-Hydroxylase, A Cytochrome P450 Involved In The Formation Of Blue Flower Colors[J]. Proceedings of the National Academy Of Sciences,1999,96(2):778-783.
    [185]孙丽芳,邢少辰,张君,等.转录因子在植物进化和抗逆中的作用[J].基因组学与应用生物学,2009,28(3):569-577.
    [186]Borevitz JO, Xia Y, Blount J, et al. Activation Tagging Identifies A Conserved Myb Regulator of Phenylpropanoid Biosynthesis [J]. The Plant Cell Online,2000,12(12):2383-2393.
    [187]Aharoni A, De Vos CH, Wein M, et al. The Strawberry Famybl Transcription Factor Suppresses Anthocyanin And Flavonol Accumulation In Transgenic Tobacco [J]. The Plant Journal,2001,28(3):319-332.
    [188]Hoffmann L, Maury S, Martz F, et al. Purification, Cloning, And Properties Of An Acyltransferase Controlling Shikimate And Quinate Ester Intermediates In Phenylpropanoid Metabolism [J]. Journal of Biological Chemistry,2003,278(1):95-103.
    [189]Hoffmann L, Besseau S, Geoffroy P, et al. Silencing Of Hydroxycinnamoyl-Coenzyme A Shikimate/Quinate Hydroxycinnamoyltransferase Affects Phenylpropanoid Biosynthesis [J]. The Plant Cell Online,2004,16(6):1446-1465.
    [190]工雪霞,薛永常,赵文超.木质素生物合成中C3H/HCT的研究进展[J].生命的化学,2008,28(5):650-653.
    [191]Peng X, Li W, Wang W, et Al. Cloning And Characterization Of A Cdna Coding A Hydroxycinnamoyl-Coa Quinate Hydroxycinnamoyl Transferase Involved In Chlorogenic Acid Biosynthesis In Lonicera Japonica [J]. Planta Medica,2010,76(16):1921-1926.
    [192]Niggeweg R, Michael AJ, Martin C. Engineering Plants with Increased Levels Of The Antioxidant Chlorogenic Acid [J]. Nature Biotechnology,2004,22(6):746-754.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700