青蒿毛状根中活性化合物的分离分析及其生物合成调控探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青蒿(Artemisia annua)作为一种传统中药,被用来抗疟、抗血吸虫、镇咳和祛痰平喘等。青蒿毛状根培养物被认为具有与天然青蒿植物相似的遗传稳定性和生化性质,可用来有效生产活性次级代谢产物,如倍半萜类、黄酮类以及香豆素类等。
     本学位论文从青蒿毛状根培养物中分离纯化并鉴定了三种化合物,多炔类的(E)-反式-本都山蒿环氧化物((E)-trans-Ponticaepoxide, PO),倍半萜香豆素醚类的锥满醇A(Drimartol A, DA)和一种新的倍半萜类的(Z)-7-乙酰-甲基-11-甲基-3-亚甲基-十二碳-1,6,10-三烯((Z)-7-Acetoxy-methyl-11-methyl-3-methylene-dodeca-1,6,10-triene, AMDT)。多炔PO据报道是一种天然的除虫剂,而DA和AMDT的活性未见报道。在本研究中,我们研究了DA和AMDT对多种肿瘤细胞株的生长抑制作用,它们的IC50范围为17.9-73.3μM。着眼于致死率最高的肺癌,我们使用人高转移肺癌细胞株95-D作为研究对象,研究了AMDT和DA诱导95-D细胞凋亡的能力。DA能抑制95-D细胞生长并剂量依赖性地阻滞95-D细胞于G2期,AMDT能抑制95-D细胞生长并剂量依赖性地阻滞95-D细胞于G1期;它们均能引起95-D细胞凋亡,并且诱导的细胞凋亡伴随着线粒体膜电位的下降。半胱氨酸天冬氨酸蛋白酶-3(Caspase-3)和半胱氨酸天冬氨酸蛋白酶-9(Caspase-9)均参与了DA和AMDT诱导的95-D细胞凋亡过程。这些结果表明AMDT和DA可以通过线粒体依赖的途径有效诱导了95-D的细胞凋亡,它们有望成为化疗药剂的候选物。
     由于以上三种活性化合物的定量分析方法尚未见报道,在本研究中,我们建立了一种可以同时检测它们的反相高效液相光二极管阵列检测法(RP-HPLC-PAD)。该方法使用C18反相色谱柱,以乙腈和水为流动相进行梯度洗脱。DA, PO和AMDT的检测波长分别为220 nm、254 nm和220 nm。该方法线性好,相关系数R>0.99。研究了该方法的精密度、准确度和回收率,并证明它可以作为分析青蒿毛状根细胞培养物中三种活性化合物积累的方法。
     为了提高毛状根细胞中这些生物活性成分的含量,我们研究了改变毛状根培养细胞营养环境并添加诱导子的方法。实验结果表明,添加甲基茉莉酸酯(MJ, 100μM)可使毛状根细胞中PO、DA和AMDT的含量从0.7 mg/gDW,1.7 mg/gDW和0.2 mg/gDW分别提高到2.07mg/gDW,4.77 mg/gDW和0.48 mg/gDWo当细胞在缺氮培养又用MJ处理后,PO, DA和AMDT的含量可进一步提高至3.43 mg/gDW,28.9 mg/gDW和0.9mg/gDW。这表明缺氮培养和MJ添加的组合策略可有效提高青蒿毛状根细胞培养中三种活性化合物的积累。
     为了探讨上述策略的调控机制,以缺氮和MJ添加作为典型条件,以两种抗肿瘤倍半萜化合物DA和AMDT为目标产物,我们检测了胞外H202、胞内信号分子茉莉酸(JA)和苯丙氨酸氨裂解酶酶活的变化,以及倍半萜合成途径相关基因的转录。尽管胞外过氧化氢未见迸发,但苯丙氨酸氨裂解酶酶活及内源茉莉酸的合成被诱导增强;当使用JA生物合成途径的抑制剂或苯丙氨酸氨裂解酶的抑制剂后,青蒿毛状根细胞的DA和AMDT的合成也受到抑制。在MJ处理以及在缺氮培养和MJ处理组合的时候,法呢基焦磷酸合酶(fps),1-脱氧-D-木酮糖-5-磷酸合酶(dxr),和紫穗槐-4,11-双烯C-12加氧酶(cyp71av)的转录均得到上调,而倍半萜合成的支路酶鲨烯合酶(sqs)的基因转录下调,且这种趋势被苯丙氨酸氨裂解酶抑制剂氨氧基乙酸(AOA)所抑制。以上结果说明苯丙氨酸氨裂解酶和茉莉酸介导了外源MJ添加和缺氮条件下诱导的DA和AMDT的生物合成。
     总之,本文从青蒿毛状根中分离纯化了三种化合物,建立了它们的分析方法。并对它们的抗肿瘤活性进行了鉴定,结果表明,AMDT和DA可通过线粒体依赖的途径有效诱导了95-D的细胞凋亡。为了提高毛状根细胞中这些生物活性成分的含量,我们采用了改变毛状根细胞的营养微环境并添加诱导子的策略,结果表明青蒿毛状根在缺氮并添加MJ诱导的条件下,可使细胞的DA和AMDT的含量大幅提高,同时从信号分子和基因转录的水平探讨了这些细胞培养策略的调控机制。这些工作为今后从青蒿毛状根中开发新的活性药物奠定了良好基础,也为这些培养策略应用到植物组织细胞培养的生产实践提供了一定的理论基础。
Artemisia annua is traditionally used as folk medicine for antimalaria, anti-schistosomiasis, antitussis, expectoration and antiasthma in China. Hairy root cultures of A. annua, which present genetic and biochemical stabilities similar to those of the mother plant, are established for more stable and efficient production of their active constituents such as sesquiterpenes, flavornoids and courmains.
     In this thesis, (E)-trans-ponticaepoxide (polyacetylene, PO), drimartol A (sesquiterpene coumarin ether, DA) and a new sesquiterpene, (Z)-7-acetoxy-methyl-11-methyl-3-methylene-dodeca-1,6,10-triene (AMDT), were isolated, purified and identified from the cultured hairy roots of A. annua. PO had been reported as a natural insecticide, while the bioactivity of DA and AMDT were unknown and was investigated in this work. Both AMDT and DA showed moderate cytotoxic activities against several human tumor cell lines by MTT assay, whose IC50 values were ranged within 17.9-73.3μM. As treatment of lung cancer, the No.1 killer of global cancer patients, is our interest, the ability of AMDT and DA to induce apoptosis of the human lung tumor cell line 95-D was focused. It was found that the 95-D cell growth was inhibited and its cell cycle was arrested in the G2 phase by DA and in the G1 phase by AMDT. The apoptotic rate of the cells increased in a dose-dependent manner. AMDT and DA lowered the mitochondrial membrane potential and increased the expression of caspase-9 and-3. The results revealed that AMDT and DA could efficiently induce 95-D cell apoptosis through mitochondrial dependent pathway, and they may be potential chemotherapeutic agents.
     Quantitative determination methods for any of those bioactive metabolites are not yet available, not to mention their simultaneous analysis. In this work, simultaneous determination of those useful compounds was achieved by using reversed-phase high-performance liquid chromatography-photo diode array detector (RP-HPLC-PAD). The HPLC operating conditions were optimized and the chromatographic separation was performed on a C18 column with a gradient acetonitrile-water as mobile phase. DA, PO and AMDT was detected at 220 nm,254 nm and 220 nm, respectively, and a good linear relationship within the range of investigated concentrations was observed with their correlation coefficient R higher than 0.99. The method was validated for precision, accuracy and recovery, and it was further successfully applied to the time-course detection of the accumulation of those three bioactive compounds in the genetically transformed root cultures of A. annua.
     To improve the accumulation of these bioactive compounds, different nutrition state and elicitor treatment were applied in the hairy root culture of A. annua. Production of PO, DA and AMDT was increased from 0.7 mg/gDW,1.7 mg/gDW and 0.2 mg/gDW to 2.07mg/g DW, 4.77 mg/gDW and 0.48 mg/gDW, respectively, by adding 100μM methyl jasmonic acid (MJ). When the cultures were treated with MJ in nitrogen deficient medium, the content of PO, DA and AMDT was improved in a higher level to 3.43 mg/gDW,28.9 mg/gDW and 0.9 mg/gDW.
     To provide an insight into the molecular mechanism of the inducing effect of MJ treatment and nitrogen deficiency, in this work sesquiterpene biosynthetic pathway and signal molecules jasmonic acid (JA), H2O2 and phenylalanine ammonia lyase (PAL) were examined in the hairy root culture of A. annua. Although the oxidative burst (induced H2O2 production) was not detected, the induction of PAL activity and intracellular JA synthesis were observed. When the cultures were treated with the inhibitor of JA biosynthsis or the inhibitor of PAL, the contents of DA and AMDT were decreased. The gene transcription of fps (farnesyl diphosphate synthase gene), dxr (1-deoxy-D-xylulose-5-phosphate synthase gene), and cyp71av (amorpha-4,11-diene C-12 oxidase gene) were up-regulated and the sqs (squalene synthase gene) was down-regulated by the combination treatment of MJ elicitation and nitrogen deficiency. Meanwhile, these regulation trends of gene transcription could be inhibited by the PAL inhibitor (BOC-aminooxy) acetic acid (AOA). The results implied that the sesquiterpene biosynthesis induction by MJ treatment and nitrogen deficiency may be mediated by the JA synthesis, PAL activation and the sesquiterpene biosynthetic gene regulation.
     Collectively, in this work three bioactive compounds were separated and identified from A. annua hairy root culture. AMDT was a new sesquiterpene. Their simultaneous quantitative analysis method was developed. Their antitumor activities were found. The results revealed that DA and AMDT induced the 95-D apoptosis through mitochondrial dependent pathway. To improve the content of these bioactive compounds, the strategies of using nutrition deficiency medium, adding elicitor and their combination were applied. Results showed the content of DA and AMDT could be increased respectively to 21.1 folds and 9 folds when the hairy root cultures were treated with the combination of nitrogen starvation and MJ addition. Meanwhile, the mechanism involved in the stratege was studied and revealed from the levels of signal transduction and gene transcription. This work provided a good basis for further investigation on the discovery of new drugs from the A. annua hairy root culture. This study is also helpful for application of the strategy to efficient production of other useful secondary metabolites in plant cells.
引文
[1]谢从华,柳俊.植物细胞工程.高等教育出版社.2004.
    [2]Buchanan B B, Gruissem W, Jones R L. Biochemistry & molecular biology of plants. ASPP,2000. Maryland.
    [3]陈维伦,陶国清.植物生物技术.科学出版社.1987.
    [4]吕春茂,范海延,姜河等.植物细胞培养技术合成次生代谢物质研究进展.云南农业大学学报.2007,22(1):1-7.
    [5]韩玉英,丰平,文朝阳.抗癌中草药研究进展.北京中医.2003,22(2):45-48.
    [6]朱华,周春山,白燕远等.抗癌中草药有效成分的研究进展.时珍国医国药.2001,13(11):682-684.
    [7]崔堂兵,郭勇,林炜铁.提高植物细胞培养法生产次级代谢物产量的方法.植物生理学通讯.2001,37(5):479-482.
    [8]李品,岳彩鹏,王新建等.植物细胞培养生产次生代谢物的影响因素.河南林业科技.2007,1(27):21-23.
    [9]Coruzzi G M, Zhou L. Carbon and nitrogen sensing and signaling in plants:emerging 'matrix effects'. Curr Opin in Plant Biol.2001,4:247-253.
    [10]Loreti E, Alpi A, Perata P. Glucose and disaccharide-sensing mechanisms modulate the expression of α-amylase in barley embryos. Plant Physiol.2000,123:938-948.
    [11]郑穗平,郭勇.主要营养成分对悬浮培养玫瑰茄细胞生长和花青素合成的影响.广西植物.1998,18(1):70-74.
    [12]赵德修,汪沂.不同理化因子对雪莲培养细胞中黄酮类形成的影响.生物工程学报.1998,14(3):259-264.
    [13]陈永勤,朱蔚华.组培条件对云南红豆杉愈伤组织生长和形成紫杉醇的影响.中国中药杂志.2000,25(5):269-272.
    [14]Schmelz E A, Alborn H T, Engelberth J, et al. Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiol.2003,133:295-306.
    [15]汤飞宇,翟志席,郭玉海.西洋参体细胞胚胎发生及植株再生.中国农业科技导报.2004,6(5):23-26.
    [16]张檀,白明生,刘丽等.几种矿质元素对杜仲叶次生代谢物的影响初探西北农林科技大学学报(自然科学版).2002,30(1):119-122.
    [17]Zhao J, Fujita K, Sakai K. Oxidative stress in plant cell culture:A role in production of β-thujaplicin by Cupresssus lusitanica suspension culture. Biotechnol Bioeng.2005,90:
    621-631.
    [18]Zhong J J. Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. Adv Biochen Eng Biotechnol.2001,72:1-26.
    [19]Zhao J, Davis L, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv.2005,23:283-333.
    [20]张长平.悬浮培养南方红豆杉细胞真菌诱导生物学效应的研究.硕士学位论文.天津大学,20001201.
    [21]胡向阳.激发子诱导植物防卫反应过程中的信号分子.博士学位论文.中国科学院上海生命科学研究院植物生理生态研究所,20030701.
    [22]Baldi A, Singh D, Dixit V K. Dual elicitation for improved production of withaferin a by cell suspension cultures of Withania somnifera. Appl Biochem Biotech.2008,151(2-3): 556-564.
    [23]Baldi A and Dixit V K. Enhanced artemisinin production by cell cultures of Artemisia annua. Curr Trends Biotech Pharm.2008,2 (2):341-348.
    [24]Xu M J, Dong J F, Wang H Z, et al. Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells. Plant Cell Environ.2009,32:960-967.
    [25]Wang W, Zhao Z J, Zhong J J, et al. Efficient induction of ginsenoside biosynthesis and alteration of ginsenoside heterogeneity in cell cultures of Panax notoginseng by using chemically synthesized 2-hydroxyethyl jasmonate. Appl Microbiol Biotechnol.2006,70: 298-307.
    [26]Kang S M, Min J Y, Kim Y D, et al.Effect of biotic elicitors on the accumulation of bilobalide and ginkgolides in Ginkgo biloba cell cultures. J Biotech.2009,139(1):84-88.
    [27]Cheng D M, Yousef G G, Grace M H, et al. In vitro production of metabolism-enhancing phytoecdysteroids from Ajuga turkestanica Plant Cell Tissue Organ Cult.2008,93(1):73-83.
    [28]Chakraborty A, Chattopadhyay S. Stimulation of menthol production in Mentha piperita cell culture. In Vitro Cell Dev Biol Plant 2008,44:518-524.
    [29]Georgiev M I, Weber J, Maciuk A. Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol.2009,83(5):809-823.
    [30]Zhao J, Hu Q, Guo Y Q, et al. Elicitor-induced indole alkaloid biosynthesis in Catharanthus roseus cell cultures is related to Ca2+influx and the oxidative burst. Plant Sci.2001,161:423-431.
    [31]钱志刚.新型化学合成物质刺激中国红豆杉培养细胞生物合成紫杉烷.硕士学位论文.华东理工大学,2004.
    [32]王威.茉莉酮酸类物质对三七悬浮细胞皂甙合成的诱导及其多样性的调节作用的
    研究.博士学位论文.华东理工大学,2004.
    [33]胡凤仙.人工合成化合物诱导植物细胞次级代谢产物合成的信号转导机理的探索博士学位论文.华东理工大学,2006.
    [34]赵生芳,张瑞琴.青蒿研究的现状.中国药师.2003,6(11):733-735.
    [35]王红.真菌诱导子对青蒿发根生长和青蒿素生物合成的影响及开花与青蒿素生物合成的相关性研究.博士学位论文.中国科学院植物研究所,20010801.
    [36]青蒿素研究协作组.一种新型的倍半萜内酯-青蒿素.科学通报.1977,3:142.
    [37]刘静明,倪慕云,樊菊芬等.青蒿素的结构与反应.化学学报.1979,37:129-141.
    [38]李伟,石崇荣.青蒿素研究进展.中国药房.2003,14(2):118-119.
    [39]王海清,田光群,刘琼珍等.青蒿液杀菌效果及影响因素的研究.中国消毒学杂志.2004,21(2):112-113.
    [40]翟自立,肖树华.青蒿素类抗疟药的作用机制.中国寄生虫学与寄生虫病杂志.2001,19(3):182-185.
    [41]张晓艳,王新华.青蒿的传统应用与青蒿素的现代研究.中华医药杂志.2005,5(1):23-24.
    [42]陈先国,宋兴福,崔向军等.青蒿素及其衍生物诱导细胞凋亡研究进展.中国医院药学杂志.2006,26(10):1278-1280.
    [43]Jung M, Lee K, Kim H, et al. Recent advances in artemisinin and its derivatives as antimalarial and antitumor agents. Curr Med Chem.2004,11(10):1265-1284.
    [44]Li Y, Shan F, Wu J M, et al. Novel antitumor artemisinin derivatives targeting G1 phase of the cell cycle. Bioorg Med Chem Lett.2001,11(1):5-8.
    [45]Manns D, Hartmann R. Annuadiepoxide, a new polyacetylene from the aerial parts of Artemisia annua. J Nat Prod.1992,55 (1):29-32.
    [46]Duke J A. Handbook of biologically active phytochemicals and their activities.1992, CRC Press:Boca Raton:208.
    [47]李玥,陈志龙.光活化杀虫剂研究进展.化学进展.2004,16(1):110-115.
    [48]廖祥儒.生物化学与生物物理进展.1995,22(5):420-422.
    [49]Mehta A C, Seshadi T R:Flavonoids as antioxidants. J Sci Industr Res.1959,18B: 24-28.
    [50]刘春朝,王玉春,康学真.利用新型雾化生物反应器培养青蒿不定芽生产青蒿素.植物学报.1999,41(5):524-527.
    [51]Liu C Z, Guo C, Wang Y C, et al. Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua L. Process Biochem.2002,38:581-585.
    [52]Liu C Z, Wang Y C, Ouyang F, et al. Production of artemisinin by hairy root cultures of Artemisia annua L. Biotechnol Lett.1997,19(9):927-929.
    [53]Woerdenbag H J, Luer J F J, van Uden W, et al. Production of the new antimalarial drug
    in shoot cultures of Artemisia annua with minute artemisinin contents. Nat Prod Lett. 1993,1:121-128.
    [54]Wang J W, Tan R X. Artemisinin production in Artemisia annua hairy root cultures with improved growth by altering the nitrogen source in the medium. Biotechnol Lett.2002, 24(14):1153-1156.
    [55]Vishweshwar R K, Lakshmi N M. Factors affecting artemisinin production.In:Emering trends in biotechnology, Kavi Kishor P B(ed),249-260. Universities Press, Orient Longman Ltd., Hyderabad,1998.
    [56]Wang Y, Weathers P J. Sugars proportionately affect artemisinin production. Plant Cell Rep.2007,6(7):1073-1081.
    [57]Ayanoglu F, Mert A, Kinci S. The effects of different nitrogen doses on Artemisia annua L. J Herbs Species Med Plant.2002,9:399-404.
    [58]Magalhaes P, Raharinaivo J, Delabays N. Effects of the amount and of the type of nitrogen fertilization on the artemisinin production of Artemisia annua L. Int J Plant Sci. 1996,28(6):349-353.
    [59]Srivastava N K, Sharma S. Influence of micronutrient imbalance on growth and artemisinin content in artemisia annua. Indian J Pharm Sci.1990,52(5):225-227.
    [60]Ferreira J F. Nutrient deficiency in the production of artemisinin, dihydroartemisinic acid, and artemisinic acid in Artemisia annua L. J Agric Food Chem.2007,55(5): 1686-1694.
    [61]Weathers P J, Cheetham R D, Follansbee E, et al. Artemisinin production by transformationed roots of Artemisia annua. Biotechnol Lett.1994,16:1281-1286.
    [62]李弘剑,张毅,郭勇等.黄花蒿培养细胞中青蒿素合成代谢的体外调节.中国生物化学与分子生物学报.1999,15(3):479-483.
    [63]Kudakasseril C J, Lam L, Staba E J. Effect of sterol inhibitors on the incorporation of 14C-isopentenyl pyrophosphate into artemisinin by a cell-free system from Artemisia annua tissue cultures and plants. Planta Med.1987,53:180-184.
    [64]Putalun W, Luealon W, De-Eknamkul W, et al. Improvement of artemisinin production by chitosan in hairy root cultures of Artemisia annua L. Biotech lett.2007,29(7): 1143-1146.
    [65]Smith T C, Weathers P J, Cheetham R D. Effects of gibberellic acid on hairy root cultures of Artemisia annua:growth and artemisinin production. In Vitro Cell Dev Biol Plant.1997,33(1):75-79.
    [66]Wang J W, Kong F X, Tan R X. Improved artemisinin accumulation in hairy root cultures of Artemisia annua by (22S,23S)-homobrassinolide. Biotech Lett.2002,24(19): 1573-1577
    [67]Liu C, Xu Y W, Ouyang F, et al. Improvement of artemisinin accumulation in hairy root cultures of Artemisia annua L by fungal elicitor. Bioproc Biosyst Eng.1999,20(2): 161-164.
    [68]王红,叶和春,刘本叶等.青蒿素生物合成分子调控研究进展.生物工程学报.2003,19(6):646-650.
    [69]赵兵,王玉春,欧阳藩.青蒿素生物合成机理研究现状.广西植物.1999,19(2):154-158.
    [70]Bouwmeestera H J, Wallaart T E, Janssena M H A, et al. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 1999,52: 843-854.
    [71]Wallaart T E, Bouwmeester H J, Hille J. Amorpha-4,11-diene synthase:cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 2001,21:460-465.
    [72]Wallaart T E, van Uden W, Lubberink H G M, et al. Isolation and identification of dihydroartemisinic acid from Artemisia annua and its possible role in the biosynthesis of artemisinin. J Nat Prod.1999,62:430-433.
    [73]Choi D, Word B L, Bostock R M. Differential induction and suppression of potato 3-hydroxyl-3-methylglutaryl coenzyme A reductase genes in response to phytophores infestans and to its elicitor arechidonic acid. Plant cell 1992,4:1333-1334.
    [74]Matsuchita Y, Kang W Y, Charlwood B V. Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua. Gene 1996,172:207-209.
    [75]Mercke P, Crock J, Croteau R, et al. Cloning, expression and characterization of epi-cedrol synthase, a sesquiterpene cyalase from Artemisia annua L. Arch Biochem Biophys.1999,369:213-222.
    [76]Han J L, Liu B Y, Ye H C, et al. Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J Integr Plant Biol. 2006,48(4):482-487.
    [77]Chen D H, Ye H C, Li G F, et al. Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci.2000,155:179-185.
    [78]Zhang L, Jing F, Tang K, et al. Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol Appl Biochem.2009,52(3): 199-207.
    [79]Yang R Y, Feng L L, Yang X Q, et al. Quantitative transcript profiling reveals down-regulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua Plants. Planta Med.2008,74:1510-1516.
    [80]Martin V J, Pitera D J, Keasling J D, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol.2003,21(7):796-802.
    [81]Ro D K, Paradise E M, Keasling J D, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006,440:940-943.
    [82]Yong Ling, Yeouruenn Ling.中国植物志/第七十六卷/第二分册.科学出版社.1991.76(2):60.
    [83]WHO 2000. General guidelines for methologies on research and evaluation of traditional medicine. WHO/EDM/TRM/2000.1. Geneva:WHO.
    [84]WHO 2001. The World Health Report 2001,144-145. Geneva:WHO.
    [85]Liu C Z, Zhao Y, Wang Y C. Artemisinin:current state and perspectives for biotechnological production of an antimalarial drug. Appl Microbiol Biotechnol.2006, 71:11-20.
    [86]DiCosmo F, Misawa M. Plant cell and tissue culture:alternatives for metabolite production. Biotechnol Adv.1995,13(3):425-453.
    [87]Shanks J V, Morgan J. Plant' hairy root' culture. Curr Opin Biotech.1999,10:151-155.
    [88]韦记青,韦霄,蒋水元等.广西黄花蒿资源及发展策略.广西农学报.2005,3:24-26
    [89]黄磷.青蒿素供大于求局面近期难转.医药化工.2007,9:40.
    [90]吕红梅.青蒿素的生产及市场近况.医药化工.2008,10:33-37.
    [91]朱磷扬,董建梅,秦绪成.肿瘤发病情况分析.中华疾病控制杂志.2008,12(6):620-622.
    [92]赵树进,陈念,韩丽萍.药用植物来源的新药研发进展.时珍国医国药.2008,19(6):1309-1310.
    [93]汝海龙,陈敏明.抗肿瘤中药诱导细胞凋亡研究进展.黑龙江医学.2002,26(1):8-10.
    [94]Hickman J A. Apoptosis induced by anticancer drugs. Cancer Metast Rev.1992,11: 121-139.
    [95]Hengartner M O. The biochemistry of apoptosis. Nature 2000,407:770-776.
    [96]王瑞年.分子肿瘤学概论.上海科技教育出版社.2001.
    [97]Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant.1962,15:473-497.
    [98]司徒镇强,吴军正.细胞培养.世界图书出版公司.1996.
    [99]Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. J Immunol Methods.1983,65(1-2):55-63.
    [100]Tang W, Liu J W, Zhao W M, et al. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci.2006,80: 205-211.
    [101]Li Z B, Wang J Y, Bao Y M, et al. Benzobijuglone, a novel cytotoxic compound from Juglans mandshurica, induced apoptosis in HeLa cervical cancer cells. Phytomedicine 2007,14:846-852.
    [102]Jiang H, Hou C H, Zhang S B, et al. Matrine upregulates the cell cycle protein E2F-1 and triggers apotosis via the mitochondrial pathway in K562 cells. Eur J Pharmacol. 2007,559:98-108.
    [103]Van Engeland M, Nieland L J, Ramaekers F C, et al. Annexin V-affinity assay:a review on an apotosis detection system based on phosphatidylserine exposure. Cytometry 1998, 31:1-9.
    [104]Ray R S, Rana B, Swami B, et al. Vanadium mediated apoptosis and cell cycle arrest in MCF7 cell line. Chem Biol Interact.2006,163:239-247.
    [105]Zamzami N, Maisse C, Metivier D, et al. Measurement of membrane permeability and permeability transition of mitochondria. Methods Cell Biol.2001,65:147-158.
    [106]Palmeira C M, Moreno A J M, Madeira V M C, et al. Continuous monitoring of mitochondrial membrane potential in hepatocyte cell suspensions. J Pharmacol Toxicol Methods 1996,35:35-43.
    [107]Lavrik I N, Golks A, Krammer P H. Caspases:pharmacological manipulation of cell death. J Clin Invest.2005,115:2665-2672.
    [108]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976, 72:248-254.
    [109]Bohlmann F, Schumann D, Zdero C. Naturally occurring terpene derivatives, ⅩⅩⅤⅢ. A new sesquiterpene derivative from Artemisia pontica L. Chem Ber.1974,107:644-649
    [110]Bohlmann F, Zdero C. Naturlich vorkommende Terpen-Derivate, XLVIII. Uber neue Inhaltsstoffe der Gattung Anthemis. Chem Ber.1975,108(6):1902-1910.
    [111]Rueda A, Zubia E, Ortega M J, et al. New acyclic sesquiterpenes and norsesquiterpenes from the Caribbean gorgonian Plexaurella grisea. J Nat Prod.2001,64:401-405.
    [112]Ravi B N, Faulkner D J. Acyclic diterpenes from the marine sponge Didiscus species J Org Chem.1979,44:968-970.
    [113]Breitmaier E, Volelter W. Carbon-13 NMR Spectroscopy,3rd ed., VCH:New York. 1989,192.
    [114]左连富.流式细胞术与生物医学.辽宁科学技术出版社.1996.11.
    [115]Green D R, Reed J C. Mitochondria and apoptosis. Science 1998,281:1308-1312.
    [116]Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 2007,12:835-840.
    [117]Alnemri E S, Livingston D J, Yuan J, et al. Human ICE/CED-3 protease nomenclature. Cell 1996,87:171.
    [118]Chen M, Wang J. Initiator caspases in apoptosis signaling pathways. Apoptosis 2003,7: 313-319.
    [119]Wagner H, Ulrich-Merzenich G. Synergy research:Approaching a new generation of phytopharmaceuticals. Phytomedicine 2009,16:97-110.
    [120]Borris R P, Cordell G A, Farnsworth N R. Isofraxidin, a cytotoxic coumarin from Micrandra elata (Euphorbiaceae). J Nat Prod.1980,43:641-643.
    [121]Jansen B J M, de Groot A. Occurrence, biological activity and synthesis of drimane sesquiterpenoids. Nat Prod Rep.2004,21:449-477.
    [122]Waldman T, Zhang Y G, Dillehay L, et al. Cell-cycle arrest versus cell death in cancer therapy. Nat Med.1997,3:1034-1036.
    [123]陈意生,史景泉.肿瘤分子细胞生物学.人民军医出版社.2004.8.
    [124]Kessel D, Luo Y. Cells in cryptophycin-induced cell-cycle arrest are susceptible to apoptosis. Cancer Lett.2000,151:25-29.
    [125]Hu Y W, Liu C Y, Du C M, et al. Induction of apoptosis in human hepatocarcinoma SMMC-7721 cells in vitro by flavonoids from Astragalus complanatus. J Ethnopharmacol.2009,123:293-301.
    [126]Sancar A, Lindsey-Boltz L A, et al. Molecular mechanism of mammalian DNA replication and the DNA damage checkpoints. Annu Rev Biochem.2004,73:39-85.
    [127]Kerr J F R, Winterford C M, Harmon B V. Apoptosis:its significance in cancer and cancer therapy. Cancer 1994,73:2013-2016.
    [128]Li P, Nijhawan D, Wang X, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell.1997,91(4): 479-89.
    [129]Pellegrini M, Bath S, Marsden V S, et al. FADD and caspase-8 are required for cytokine-induced proliferation of hemopoietic progenitor cells. Blood,2005.106(5): 1581-1589.
    [130]Bhakuni R S, Jain D C, Sharma R P, et al. Secondary metabolites of Artemisia annua and their biological activity. Curr Sci.2001,80:35-48.
    [131]Tan R X, Zheng W F, Tang H Q. Biologically active substances from the genus Artemisia. Planta Med.1998,64:295-302.
    [132]Dev S, Koul O.1997. Insecticides of natural origin. CRC Press:New York; 12.
    [133]Washida D, Kitanaka S. Determination of polyacetylenes and ginsenosides in Panax species using HPLC. Chem Pharm Bull.2003,51:1314-1317.
    [134]Malgorzata B, Hartwig S, Rafal B, et al. In situ simultaneous analysis of polyacetylenes, carotenoids and polysaccharides in carrot roots (Raman spectroscopy). J Agr Food Chem. 2005,53:6565-6571.
    [135]Liu J H, Lee C S, Leung K M, et al. Quantification of two polyacetylenes in Radix ginseng and roots of related Panax species using a GC-MS spectrometric method. J Agr Food Chem.2007,55:8830-8835.
    [136]El-Razek A M H, Ohta S, Hirata T. Terpenoid coumarins of the genus Ferula. Heterocycles 2003,60:689-716.
    [137]Appendino G, Maxia L, Bascope M, et al. A meroterpenoid NF-KB inhibitor and drimane sesquiterpenoids from Asafetida. J Nat Prod.2006,69:1101-1104.
    [138]Feng C, Cai Y L, Ruan J L. Simultaneous determination of 10 active components in traditional Chinese medicine "YIGONG" capsule by RP-HPLC-DAD. J Pharmaceut Biomed.2008,47:442-447.
    [139]Altria K D. Essential peak area normalisation for quantitative impurity content determination by capillary electrophoresis. Chromatographia 1993,35:177-182.
    [140]Yan X L, Wu P, Ling H Q, et al. Plant nutriomics in China:an overview. Ann Bot.2006, 98(3):473-482.
    [141]Li Q. Red soils in China.1985. Beijing:China science press.
    [142]Nair M S, Acton N, Klayman D L, et al. Production of artemisinin in tissue cultures of Artemisia annua. J Nat Prod.1986,49:504-507.
    [143]Liu C Z, Zhao Y, Wang Y C. Artemisinin:current state and perspectives for biotechnological production of an antimalarial drug. Appl Microbiol Biotechnol.2006, 71:11-20.
    [144]Ataru H, Yuko M, Yoshie K. Iron deficiency induces changes in riboflavin secretion and the mitochondrial electron transport chain in hairy roots of Hyoscyamus albus. J Plant Physiol.2010, doi:10.1016/j.jplph.2010.01.011.
    [145]Wang H and Jin JY. Effects of zinc deficiency and drought on plant growth and metabolism of Reactive Oxygen Species in maize (Zea mays L). Agri Sci in China.2007, 6(8):988-995.
    [146]Basso L C, Smith T A. Effect of mineral deficiency on amine formation in higher plants. Phytochemistry 1974,13(6):875-883.
    [147]Camacho-Cristobala J J, Anzellottib D, Gonzalez-Fontes A. Changes in phenolic metabolism of tobacco plants during short-term boron deficiency. Plant Physiol. Biochem.2002,40(12):997-1002.
    [148]Rajesh K T, Praveen K, Parma N S.Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Sci. Hort.2006,108(1):7-14.
    [149]Davies M J, Atkinson C J, Burns C, et al. Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua. Ann Bot.2009,104(2):315-323.
    [150]Stevens J S E, Nierzwicki-Bauer S A, Balkwill D L. Effect of nitrogen starvation on the morphology and ultrastructure of the cyanobacterium Mastigocladus laminosus. J Bacteriol.1985,161(3):1215-1218.
    [151]He C J, Morgan P W, Drew M C. Enhanced sensitivity to ethylene in nitrogen-or phosphate-starved roots of Zea mays L. during aerenchyma formation. Plant Physiol. 1992,98:137-142.
    [152]Darvill A G, Albersheim P. Phytoalexins and their elicitors-a defense against microbial infection in plants. Annu Rev Plant Physiol.1984,35:243-275.
    [153]Wang W, Zhong J J. Manipulation of ginsenoside heterogeneity in cell cultures of Panax notoginseng by addition of jasmonates. J Biosci Bioeng.2002,93:48-53.
    [154]Wang W, Zhang Z Y, Zhong J J. Enhancement of ginsenoside biosynthesis in high-density cultivation of Panax notoginseng cells by various strategies of methyl jasmonate elicitation. Appl Microbiol Biotechnol.2005,67:752-758.
    [155]Qian Z G, Zhao Z J, Zhong J J, et al. Novel synthetic jasmonates as highly efficient elicitors for taxoid production by suspension cultures of Taxus chinensis. Biotechnol Bioeng.2004,86:595-599.
    [156]Qian Z G, Zhao Z J, Zhong J J, et al. Novel chemically synthesized hydroxyl-containing jasmonates as powerful inducing signals for plant secondary metabolism. Biotechnol Bioeng.2004,86:809-816.
    [157]Krolicka A, Szpitter A, Gilgenast E, et al. Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants grown in vitro by addition of elicitors. Enzyme Microb Tech.2007,42(3):216-221.
    [158]Baldi A, Dixit V K. Yield enhancement strategies for artemisinin production by suspension cultures of Artemisia annua. Bioresource Technol.2008,99(11):4609-4614.
    [159]Zabetakis I, Edwards R, O'Hagan D. Elicitation of tropane alkaloid biosynthesis in transformed root cultures of Datura stramonium. Phytochemistry 1999,50(1):53-56.
    [160]Kauss H, Krause K, Jeblick W. Methyl jasmonate conditions parsley suspension cells for increased elicitation of phenylpropanoid defense responses. Biochem Biophys Res Commun.1992,189(1):304-308.
    [161]Wasternack C. Jasmonates:An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Botany 2007, doi:10.1093/aob/mcm079.
    [162]Pauwels L, Inze D, Goossens A. Jasmonate-inducible gene:what does it mean? Trends Plant Sci.2009,14(2):87-91.
    [163]Staswick P E. JAZing up jasmonate signaling. Trends Plant Sci.2008,13(2):66-71.
    [164]Chini A, Fonseca S, Fernandez G, et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 2007,448(7154):666-671.
    [165]Fonseca S, Chico J M, Solano R. The jasmonate pathway:the ligand, the receptor and the core signalling module. Curr Opin Plant Biol.2009,12(5):539-47.
    [166]Hu X Y, Neill S, Cai W M, et al. Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid-induced saponin accumulation in suspension-cultured cells of Panax ginseng. Physiol Plant 2003,118:414-421.
    [167]Jabs T, Tschfpe M, Colling C, et al. Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci.1997,94:4800-4805.
    [168]Mehdy M C. Active oxygen species in plant defense against pathogens. Plant Physiol. 1994,105:467-472.
    [169]Thoma I, Loeffler C, Sinha A K, et al. Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant J.2003,34:363-375.
    [170]孙乃恩,孙东旭,朱德煦.分子遗传学.南京大学出版社.2004.
    [171]Bertea C M, Freije J R, Woude H V D, et al. Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med.2005.71:40-47.
    [172]Chappell J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol.1995,46:521-547.
    [173]Zhao J, Sakai K. Peroxidases are involved in biosynthesis and biodegradation of P-thujaplicin in fungal elicitor-treated Cupressus lusitanica cell cultures. New Phytol, 2003,159(3):719-731.
    [174]Edwards K, Cramer C L, Bolwell G P, et al. Rapid transient induction of phenylalanine ammonia-lyase mRNA in elicitor-treated bean cells. Proc Natl Acad Sci.1985,82(20): 6731-6735.
    [175]Yuan Y J, Li C, Hu Z D, et al. Signal transduction pathway for oxidative burst and taxol production in suspension cultures of Taxus chinensis var. mairei induced by oligosaccharide from Fusarium oxysprum. Enzyme Microbiol Technol.2001,29: 372-379.
    [176]Heide L, Nishioka N, Fukui H, et al. Enzymatic regulation of shikonin biosynthesis in Lithospermum erythrorhizon cell cultures. Phytochemistry 1989,28:1873-1877.
    [177]Engelberth J, Alborn H T, Schmelz E A, et al. Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci.2004,101:1781-1785.
    [178]Engelberth J, Schmelz E A, Alborn H T, et al. Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Anal Biochem.2003,312: 242-250.
    [179]Sharan M, Taguchi G, Gonda K, et al. Effects of methyl jasmonate and elicitor on the activation of phenylalanine ammonia-lyase and the accumulation of scopoletin and scopolin in tobacco cell cultures. Plant Sci.1998,132(1):13-19.
    [180]Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7(7):1085-1097.
    [181]Kovacik J, Klejdus B, Backor M, et al. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Sci.2007,172(2):393-399.
    [182]Stout M J, Brovont R A, Duffey S S. Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum. J Chem Ecol.1998,24(6):945-963.
    [183]Solecka D. Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiol Plant 1997,19(3):257-268.
    [184]Suzuki H, Reddy M S S, Naoumkina M, et al. Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta 2005,220:606-607.
    [185]Katz V A, Thulke O U, Conrath U. A benzothiadiazole primes parsley cells for augmented elicitation of defense responses. Plant Physiol.1998,117:1333-1339.
    [186]Hugueney P, Bouvier F, Badillo A, et al. Developmental and stress regulation of gene expression for plastid and cytosolic lsoprenoid pathways in pepper Fruits. Plant Physiol.1996,111:619-626.
    [187]Choi D, Ward B L, Bostock R M. Differential induction and suppression of potato 3-hydroxy-3-methylgiutaryl coenzyme A reductase genes in response to phytophthora infestans and to its elicitor arachidonic acid. Plant Cell 1992,4:1333-1344.
    [188]Jing F Y, Zhang L, Tang K X, et al. Abscisic acid (ABA) treatment increases artemisinin content in Artemisia annua by enhancing the expression of genes in artemisinin biosynthetic pathway. Biologia 2009,64(2):319-323.
    [189]Nelson A J, Doerner P W, Zhu Q, et al. Isolation of a monocot 3-hydroxy-3-methyiglutaryl coenzyme A reductase gene that is elicitor-inducible. Plant Mol Biol.1994,25:401-412.
    [190]Liu C J, Heinstein P, Chen X Y. Expression pattern of genes encoding farnesyl diphosphate synthase and sesquiterpene cyclase in cotton suspension-cultured cells
    treated with fungal elicitors. Mol Plant-Microbe Interact.1999,12(12):1095-1104.
    [191]Wang J W, Zheng L P, Zhang B, et al. Stimulation of artemisinin synthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots. Appl Microbiol Biotechnol.2009,85(2):285-292.
    [192]Ge X C, Wu J Y. Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+and yeast elicitor. Plant Sci.2005,168:487-491.
    [193]Burnett R J, Maldonado-Mendoza L E, McKnight T D, et al. Expression of a 3-hydroxy-3-methylglutaryl coenzyme A reductase cene from camptotheca acuminate is differentially regulated by wounding and methyl jasmonate. Plant Physiol.1993,103: 41-48.
    [194]Ortiz-Gomez A, Jimenez C, Estevez A M, et al. Farnesyl diphosphate synthase is a cytosolic enzyme in leishmania major promastigotes and its overexpression confers resistance to risedronate. Eukaryot Cell 2006,5(7):1057-1064.
    [195]Munoz-Bertomeu J, Arrillaga I, Ros R, et al. Up-regulation of 1-deoxy-d-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol.2006,142(3):890-900.
    [196]Vogeli U, Vogeli-Lange R, Chappell J. Inhibition of phytoalexin biosynthesis in elicitor-treated tobacco cell-suspension cultures by calcium/calmodulin antagonists. Plant Physiol.1992,100:1369-1376.
    [197]Szabo E, Thelen A, Petersen M. Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep.1999,18:485-489.
    [198]Hu F X, Zhong J J. Role of jasmonic acid in alteration of ginsenoside heterogeneity in elicited cell cultures of Panax notoginseng. J Biosci Bioeng.2007,104(6):513-516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700