生物表面海洋防污性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋污损生物给社会生产和军事装备造成极大的危害和巨大的经济损失,传统毒物释放型防污涂料在有效防止污损生物附着的同时,也给海洋环境带来了严重污染,随着国际社会对环境问题的日益关注,开发高效、广谱、环境友好型的海洋防污涂料势在必行。许多海洋生物通过非常“友好”的方法来防止污损,这些方式非常巧妙,具有广谱性和高效性,符合防污技术的发展方向。
     本文基于生物具有很强防污能力的现象,从研究生物的防污方式出发,探寻生物防污的基本规律,以此为依据,选择合适的方法构建及调控材料表面特性,建立防污效果评估方法并结合附着点理论、破坏力学、粘结模型等理论方法分析表面特性对防污性能的影响,研究其防污机制。本文主要研究内容如下:
     (1)通过SEM、EDS、GC-MS等测试手段以及实地调查、观测等方式,较全面地分析了陆地及淡水生植物(荷叶、洋紫荆、樟树)、硬骨鱼系、软骨鱼系(如鲨鱼)、红树科植物、大型藻类、贝螺类等典型生物表面的防污方式,归纳提取了对仿生设计有益的因素。
     (2)以生物防污为依据,利用聚二甲基硅氧烷(PDMS)为涂层基体仿生设计了5种表面特性不同的涂层样板并对其进行表征:①通过在涂层中添加5%、10%、15%的改性纳米SiO2制备不同模量的涂层;②采用不同型号的金相砂纸复制其表面结构制备具有不同微观尺度表面的涂层;③通过在不同色漆表面刷涂PDMS制备了不同颜色的涂层;④通过在涂层中添加与基体结构相近、低表面能、不相容的硅油制备润滑剂渗出的涂层;⑤选择PTFE、PMMA、PDMS三种材质作为不同表面能样板。
     (3)采用实验室内微生物(小新月菱形藻)粘附实验、大型污损生物(东方小藤壶)幼虫粘附实验和青岛实海挂板试验建立防污效果评估方法,并对上述涂层表面各因素对防污效果的影响进行评价。结果表明,模量影响污损生物脱落方式和粘附强度,降低涂层模量可降低污损程度;微结构表面相对光滑表面防污效果不明显;润滑剂渗出涂层能明显抑制污损,是一种行之有效的防污方式;颜色对污损生物附着有一定影响;表面能对防污效果影响较复杂,理论上存在一定范围表面能数值使得涂层表面生物粘附强度较低。
     通过本项目研究,进一步在理论上揭示海洋生物防污的规律,为新型防污涂料的表面工程优化设计拓展思路、提供依据。
Any marine structures such as ship hulls, jetties and platforms are subject to diverse and severe biofouling, which restricts their applications and results in tremendous expense. Traditional toxic antifouling coating can prevent marine organisms fouling effectively, but it also causes serious pollution to the marine environment. As more attention is payed to protecting the marine environment, the research and development of high efficient, broad-spectrum, non-toxic antifouling paint is imperative. Many marine foliages and animals have environmental friendly and ingenious antifouling properties, which accord with the trend of antifouling technology.
     Inspired from nature, different antifouling quomodos of representative biologic surfaces were studied firstly. Then, biomimetic coatings were prepared and modified based on nature antifouling quomodos. Finally, efficient evaluation methods of testing the antifouling performances were established and the antifouling performances of different man-made coatings were analyzed by academic methods, such as attachment point theory, fracture mechanics, adhesion model, etc. The major work of this dissertation is summarized as follows:
     Firstly, some testing methods of scan electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), gas chromatography (GC)-mass spectrum (MS), etc and investigation method were used to study representative biologic surfaces, including land foliages (lotus leaves, Cinnamoum camphora (Linn.) leaves, Bauhinia blakeana Dunn leaves), chondrichthyes, osteichthyes, mangrove plants, macroalgae, etc. Beneficial biomimetic factors were aslo summarized based on these reseach.
     Secondly, polydimethyl siloxane (PDMS) was chosen as matrix material and five different types of biomimetic PDMS surfaces were prepared and charactered.①Coatings of different elastic modulus were prepared by doping 5%, 10%, 15% weight percent silicon dioxide nanoparticles into the PDMS matrix.②Based on the soft lithography and casting, PDMS surfaces with different microtopographies were obtained by using five different types of metallographic abrasive paper as templates and replicating them.③Different coloured PDMS coatings were prepared by coating PDMS liquid on different coloured paint surfaces.④Coatings with diffuse lubricant surfaces were prepared by adding silicone oil with similar structure and low surface energy into PDMS matrix.⑤Three kinds of materials of polytetrafluroethene (PTFE), polymethyl methacrylate (PMMA) and PDMS were chosen as different surface energy coatings.
     Thirdly, diatom (Nitzschia closterium f. minutissima) attachment experiment, macrofouler (Chthamalusc hallengeri Hoek) attachment experiment and marine immersion experiment in sea area of Qingtao were used as evaluation methods of testing the antifouling performances, the influence of elastic modulus, sueface microtopography, colour, diffuse lubricant and surface energy on antifouling performances was studied by these evaluation methods. The results show that elastic modulus has influence on adhesive strength and fracture types of fouling organisms, low elastic modulus coating is advisable. Microtextured surface does not have obvious antifouling performances compare to slippery surface. Silicone oil can diffuse to the surface of the coating and improve the antifouling performances remarkably. Colour has influence on antifouling performances, antifouling paints with excellent colour could be prepared based on the main fouling organisms in corresponding sea area. Effect of surface energy on attachment of fouling organisms is complicated, no linear relationship is found, a certain surface energy numerical value range in which the surface has the least adhesive strength is existent in theory.
     This dissertation makes chear antifouling mechanisms of biologic surfaces theoretically, the work makes theoretical preparations for the development of novel non-toxic antifouling coatings.
引文
[1] Yebra D M, Kiil S, Johansen K D. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings[J]. Progress in Organic Coatings, 2004, 50: 75-104.
    [2]张洪荣,原培胜.船舶防污技术[J].舰船科学技术, 2006, 28(1): 10-14.
    [3]黄宗国,蔡如星.海洋污损生物及其防除(上册)[M].北京:海洋出版社, 1984.
    [4]苏振霞,严岩,黄良民.海水贝类养殖中污损生物的防除研究进展[J].水产科学, 2007, 26(4): 240-243.
    [5] Konstantinou I K, Albanis T A. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review[J]. Environment International, 2004, 30: 235-248.
    [6]王俊莲,王凤奇,于杰,等.我国部分海域贝类动物内脏重金属生物存储受海洋船舶防污涂料影响的调查分析[J].科学通报, 2008, 53(8): 900-903.
    [7] Chambers L D, Stokes K R, Walsh F C, et al. Modern approaches to marine antifouling coatings[J]. Surface & Coatings Technology, 2006, 201: 3642–3652.
    [8] Abarzua S, Jakubowsky S. Biotechnological investigation for the prevention of biofouling.Ⅰ. Biological and biochemical principles for the prevention of biofouling [J]. Mar Ecol Prog Ser, 1995, 123: 301-312.
    [9]黄宗国.海洋污损生物及其防除(下册)[M].北京:海洋出版社, 2008.
    [10] Horbund H M, Freiberger A. Slime films and their role in marine fouling: A review[J]. Ocean Eng, 1970, 1(6): 631-634.
    [11] Costerton J W, Irvin R T, Cheng K J. The bacterial glycocalyx in nature and disease[J]. Annu Rev Microbiol, 1981, 35: 299-324.
    [12] Hoagland K D, Rosowski J R, Gretz M R, et al. Diatom extracellular polymeric substances:function,fine structure,chemistry and physiology[J]. J Phycol, 1993, 29(5): 537-566.
    [13] Bhaskar P V, Bhosle N B. Microbial extracellular polymeric substances in marine biogeochemical processes[J]. Current Science, 2005, 88(1): 45-53.
    [14] Kennedy A F D, Sutherland I W. Analysis of bacterial exopolysaccharides[J]. Biotechnol Appl Biochem, 1987, 9: 12-19.
    [15] Waite J H. Adhesionàla Moule[J]. Integr Comp Biol, 2002, 42: 1171-1180.
    [16] Zhao H, Waite J H. Proteins in load-bearing junctions: the histidine-rich metal-binding protein of mussel byssus[J]. Biochemistry, 2006, 45(47): 14223-14231.
    [17] Haeshin L, Norbert F S, Phillip B M. Single-molecule mechanics of mussel adhesion[J]. PNAS, 2006, 103(35): 12999-13003.
    [18] Walker G. The biochemical composition of the cement of two barnacle species, Balanus hameri and Balanus crenatus[J]. J Mar Biol Assoc, 1972, 52: 429-435.
    [19]廖智,申望,王日昕.海洋生物黏附蛋白研究进展[J].浙江海洋学院学报(自然科学版), 2007, 26(4): 439-447.
    [20] Saroyan J R, Lindner E, Dooley C A. Attachment mechanism of barnacles [C]. Proc. of 2nd international congress on marine corrosion and fouling. Athens.1968.
    [21] Kamino K, Inoue K, Maruyama T, et al. Barnacle cement proteins. Importance of disulfidebonds in their insolubility[J]. The Journal of Biological Chemistry, 2000, 275(35).
    [22] Waite J H, Jensen R A, Morse D E. Cement precursor proteins of the reef-building polychaete Phragmatopoma californica (Fewkes)[J]. biochemistry, 1992, 31(25): 5733-5738.
    [23] Yin J, Zhao Y P, Zhu R Z. Molecular dynamics simulation of barnacle cement[J]. Materials Science and Engineering, 2005, 409: 160-166.
    [24] Khandeparker L, Anil A C. Underwater adhesion: The barnacle way[J]. International Journal of Adhesion & Adhesives, 2007, 27: 165-172.
    [25]宋永香,王志政.海洋生物及其粘附机理——藤壶、帽贝、海葵、管栖蠕虫[J].中国胶粘剂, 2003, 12(4): 60-63.
    [26]宋永香,王志政.海洋生物及其粘附机理——微生物、小型海藻、巨型海藻、贻贝[J].中国胶粘剂, 2002, 11(4): 48-52.
    [27]史航,王鲁民.海洋污损生物藤壶的附着机理及防除[J].广东农业科学, 2006(6): 72-73.
    [28] Alberte R S , Snyder S, Zahuranec B J , et al. Biofouling research needs for the United States Navy : Program history and goals.[J]. Biofouling, 1992, 6(2): 91-95.
    [29] Speranza G, Gottardi G, Pederzolli C, et al. Biofouling, 2004, 25(11): 2029-2037.
    [30] Gimmler H, Schieder M, Kowalski M, et al. Dunaliella acidophila:an algae with a postive zeta potential at its optimal pH for growth[J]. Plant, Cell and Environment, 1991, 14: 261-269.
    [31] Saito T, Takatsuka T, Kato T, et al. Adherence of oral streptococci to an immobilized antimicrobial agent[J]. Arch Oral Biol, 1997, 42: 539-545.
    [32] Rosenhahn A, Finlay J A, Pettit M E, et al. Zeta potential of motile spores of the green alga Ulva linza and the influence of electrostatic interactions on spore settlement and adhesion strength[J]. Biointerphases, 2009, 4(1): 7-11.
    [33] Hamza A, Pham V A, Matsuura T, et al. Development of membranes with low surface energy to reduce fouling in ultrafiltration applications[J]. J Memb Sci, 1997, 131: 217-227.
    [34] Pasmore M, Todd P, Smidt S, et al. J Membr Sci, 2001, 194: 15-21.
    [35] Holland R, Dugdale T M, Wetherbee R, et al. Adhesion and motility of fouling diatoms on a silicone elastomer[J]. Biofouling, 2004, 20(6): 323-329.
    [36] Krishnan S, Wang N, Ober C K, et al. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva[J]. Biomacromolecules, 2006, 7(5): 1449-1462.
    [37] Finlay J A, Callow M E, Ista L K, et al. The influence of surface wettability on the adhesion strength of settled spores of the green alga Enteromorpha and the diatom Amphora[J]. Integrative and Comparative Biology 2002, 42(6): 1116-1122.
    [38] Baier R E. Influence of the initial surface condition of materials on bioadhesion[C]. Proc 3th Int Congr Marine Corrosion and Fouling. Gaithersburg.1973.
    [39] Vladkova T. Suface engineering for non-toxic biofouling Control (Review)[J]. Journal of the University of Chemical Technology and Metallurgy, 2007, 42(3): 239-256.
    [40]韩磊,张秋禹.低表面能防污涂料的最新研究进展[J].材料保护, 2006, 39(2): 37-41.
    [41]李永清,郑淑贞.有机硅低表面能海洋防污涂料的合成及应用研究[J].化工新型材料,2003, 31(7): 1-4.
    [42]田军,薛群基.有机硅涂层表面能对海生物附着的影响[J].海洋学报, 1998, 20(5): 61-64.
    [43]王强,零昌诚,阁雪峰,等.低表面能海洋防污涂层技术及其评价方法[J].材料导报, 2008, 22(10): 84-87.
    [44]张强,徐世前,周天承,等.船舶用低表面能防污涂料的性能研究[J].应用化工, 2010, 39(4): 552-557.
    [45]张占平,刘红,齐育红,等.含PTFE氟碳涂层表面形貌对底栖硅藻附着的影响[J].高分子材料科学与工程, 2006, 22(6): 122-125.
    [46]郑群锁.低表面能防污涂料的进展[J].材料开发与应用2001, 16(1): 33-35.
    [47]史航,陈晓蕾,刘永利,等.新型有机硅海洋防污涂料的研究[J].有机硅材料, 2008, 22(6): 339-343.
    [48]张占平,齐育红,刘红. PTFE/FEVE氟碳防污涂层的表面特性与海藻附着[J].中国表面工程, 2010, 23(3): 70-73.
    [49] Chisholm B J, Stafslien S J, Christianson D A, et al. Combinatorial materials research applied to the development of new surface coatings.VIII: Overview of the high-throughput measurement systems developed for a marine coating workflow[J]. Applied Surface Science, 2007, 254: 692–698.
    [50] Brady R F, Singler I L. Mechanical factors favoring release from fouling release coatings[J]. Biofouling, 2000, 15: 73-81.
    [51] Ball P. Engineering - shark skin and other solutions[J]. Nature, 1999, 400: 507-509.
    [52] Baum C, Meyer W, Stelzer R, et al. Average nanorough skin surface of the pilot whale (Globicephala melas, Delphinidae): considerations on the self-cleaning abilities based on nanoroughness[J]. Mar Biol, 2002, 140: 653-657.
    [53] Scardino A, de Nys R, Ison O, et al. Microtopography and antifouling properties of the shell surface of the bivalve molluscs Mytilis galloprovincialis and Pinctada imbricata[J]. Biofouling, 2003, 19: 221-230.
    [54] Bers A V, Wahl M. The influence of natural surface microtopographies on fouling[J]. Biofouling, 2004, 20: 43-51.
    [55] Wahl M, Kroeger K L M. Non-toxic protection against epibiosis[J]. Biofouling, 1998, 12: 1-3.
    [56] Scardino A J, Guenther J, de Nys R. Attachment point theory revisited: the fouling response to a microtextured matrix[J]. Biofouling, 2008, 24(1): 45-53.
    [57] Bers A V, Prendergast G S, Zurn C M, et al. A comparative study of the antisettlement properties of mytilid shells[J]. Biol Lett, 2006, 2: 88-91.
    [58] Scardino A J, de Nys R. Fouling deterrence on the bivalve shell Mytilus galloprovincialis: a physical phenomenon?[J]. Biofouling, 2004, 20: 249-257.
    [59] Scardino A J, Harvey E, de Nys R. Testing attachment point theory: diatom attachment on microtextured polyimide biomimics[J]. Biofouling, 2006, 22: 55-60.
    [60] Berntsson K M, Andreasson H, Jonsson P R, et al. Reduction of barnacle recruitment on micro-textured surfaces: analysis of effective topographic characteristics and evaluation of skin friction[J]. 2000, 16: 245-261.
    [61] Berntsson K M, Jonsson P R, Lejhall M, et al. Analysis of behavioural rejection ofmicrotextured surfaces and implications for recruitment by the barnacle Balanus improvisus[J]. J Exp Mar Biol Ecol, 2000, 251: 59-83.
    [62] Petronis S, Berntsson K, Gold J, et al. Design and microstructuring of PDMS surfaces for improved marine biofouling resistance[J]. J Biomater Sci: Polym Ed, 2000, 11: 1051-1072.
    [63] K?hler J, Hansen P D, Wahl M. Colonization patterns at the substratum-water interface: how does surface microtopography influence recruitment patterns of sessile organisms?[J]. Biofouling, 1999, 14: 237-248.
    [64] Hills J M, Thomason J C, Muhl J. Settlement of barnacle larvae is governed by euclidean and not fractal surface characteristics[J]. Funct Ecol, 1999, 13: 868-875.
    [65] Lemire M, Bourget E. Substratum heterogeneity and complexity influence micro-habitat selection of Balanus sp. and Tubularia crocea larvae[J]. Mar Ecol Prog Ser, 1996, 135: 77-87.
    [66] Callow M E, Jennings A R, Brennan A B, et al. Microtopographic cues for settlement of zoospores of the green fouling alga Enteromorpha[J]. Biofouling, 2002, 18: 237-245.
    [67] Hoipkemeier-Wilson L, Schumacher J F, Carman M L, et al. Antifouling potential of lubricious, micro-engineered, PDMS elastomers against zoospores of the green alga Ulva (Enteromorpha)[J]. Biofouling, 2004, 20: 53-63.
    [68] Hoipkemeier-Wilson L, Schumacher J F, Finlay J A, et al. Towards minimally fouling substrates: surface grafting and topography[J]. Polym Preprint, 2005, 46: 1312-1313.
    [69] Carman M L, Estes T G, Feinberg A W, et al. Engineered antifouling microtopographies- correlating wettability with cell attachment[J]. Biofouling, 2006, 22: 11-21.
    [70] Schumacher J F, Carman M L, Estes T G, et al. Engineered antifouling microtopographies- effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva[J]. Biofpuling, 2007, 23: 55-62.
    [71]高海平,蔺存国,张桂玲,等.表面微结构防污研究[J].涂料工业, 2010, 40(1): 75-78.
    [72] Granha L M, Finlay J A, Jonsson P R, et al. Roughness-dependent removal of settled spores of the green alga Ulva (syn. Enteromorpha) exposed to hydrodynamic forces from a water jet[J]. 2004, 20: 117-122.
    [73]王喆,邢汝博,韩艳春,等.软刻蚀及其应用[J].化学通报, 2002(9): 606-613.
    [74] Carman M L, Estes T G, Peinberg A W, et al. Engineered antifouling microtopographies - correlating wettability with cell attachment[J]. Biofouling, 2006, 22: 11-21.
    [75]刘建平,石锦霞,杨小敏,等.薄层软刻蚀法制备PMMA微图案结构[J].高分子学报, 2007(1): 42-46.
    [76]王奕.软刻蚀技术[J].宿州教育学院学报, 2006, 9(5): 108-110.
    [77]陈长琦,王艳,王旭迪,等.软刻蚀技术及其应用[J].真空, 2003(6): 11-14.
    [78]潘力佳,何平笙.软刻蚀——图形转移和微制造新工艺[J].微细加工技术, 2000(2): 1-7.
    [79]刘建平,何平笙.微接触印刷法构造金属银的二维和准三维微图纹结构[J].物理化学学报, 2003, 19(12): 1143-1145.
    [80]金邦坤,何平笙.微接触印刷法制造聚合物多层次准三维立体微结构[J].化学物理学报, 2005, 18(3): 439-442.
    [81]刘建平,郭斌,何平笙,等.微模塑法制备PMMA/ SiO2二氧化硅杂化材料微结构[J].化学物理学报, 2004, 17(6): 779-782.
    [82]石锦霞,何平笙.微热模塑法制备聚苯乙烯球面微透镜阵列[J].高等学校化学学报, 2007, 28(5): 978-981.
    [83]金邦坤,严云飞,吴晓松,等.用毛细微模塑法制造无机盐及聚合物的微结构[J].应用化学, 2003, 20(1): 1-5.
    [84]唐雨钊,周虹杉,张峰,等.用于软刻蚀复型及转印前后形貌比较的反向重定位AFM成像方法[J].电子显微学报, 2006, 25(6): 472-476.
    [85]司卫华,董晓文,顾文琪.紫外压印模版的制备[J].微细加工技术, 2007(2): 5-8.
    [86]李红,蒋稼欢,蔡绍皙. PDMS微流体系统的加工制作[J].高分子通报, 2005(1): 108-111.
    [87]金鹏,谭久彬,刘岩. PDMS微小流路微加工技术的研究[J].微细加工技术, 2001(3): 31-34.
    [88] ?ner D, McCarthy T J. Ultrahydrophobic surfaces. effects of topography length scales on wettability[J]. Langmuir, 2000, 16: 7777-7782.
    [89]叶超,谢永军,付绍军,等.采用弹性基底制作变间距光栅[J].微细加工技术, 2006(2): 21-24.
    [90]程佳,朱纪军, Ang S S.基于玻璃基底微流控芯片的制备[J].生物医学工程研究, 25(3): 119-122.
    [91]金邦坤,吴晓松,陈大柱,等.有机硅橡胶/蒙脱土纳米复合弹性印章的制备[J].高等学校化学学报, 2003, 24(6): 1142-1144.
    [92]钱斯文,董树华,张勇,等.低表面能涂料防污性能评价的快速实验方法[J].新技术新工艺, 2008, 8: 66-69.
    [93]钱斯文,王建方,吴文健,等.纳米SiO2改性含氟丙烯酸酯杂化材料的研究[J].高分子材料科学与工程, 2008, 24(3): 106-109.
    [94]钱斯文.低表面能及仿生表面微结构防污技术[D].博士,国防科技大学, 2008.
    [95]陈美玲,曲园园,杨莉,等. SiO2改性低表面能纳米结构无毒海洋防污涂料[J].化工新型材料, 2008, 36(5): 71-72.
    [96] Chen M L, Qu Y Y, Yang L, et al. Structures and antifouling properties of low surface neergy non-toxic antifouling coatings modified by nano-SiO2 powder[J]. Science in China Series B:Chemistry, 2008, 51(9): 848-852.
    [97]钱良存,邵陆寿,王川.材料表面减粘自洁的研究与进展[J].昆明理工大学学报(理工版), 2008, 33(3): 30-34.
    [98]王庆军,陈庆民.超疏水膜表面构造及构造控制研究进展[J].高分子通报2005(2): 63-69.
    [99]曲爱兰,文秀芳,皮丕辉,等.超疏水涂膜的研究进展[J].化学进展, 2006, 18(11): 1434-1439.
    [100]郑傲然,周明,杨加宏.仿生超疏水表面的制备及润湿性研究[J].功能材料, 2007, 38(11): 1874-1876.
    [101]袁志庆.超疏水表面的仿生构建[D].博士,中南大学, 2006.
    [102]杨加宏.超疏水非光滑表面的设计与制作及其血液相容性和流体减阻的初步研究[D].硕士,江苏大学, 2007.
    [103]蒋中英.嵌段共聚物的自组装(一)[J].伊犁师范学院学报(自然科学版), 2007(2): 19-23.
    [104]于清泉,杨其,刘岁林,等.嵌段共聚物受限自组装的实验研究进展[J].高分子通报2007(11): 25-29.
    [105] Xie Q D, Xu JFeng L. Facile creation of a super - amphiphobic coating surface with bionicmicrostructure[J]. Advanced Materials, 2004, 16(4): 302-305.
    [106] Su Y L, Cheng W, Li C, et al. Preparation of antifouling ultrafiltration membranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers[J]. Journal of Membrane Science, 2009, 329: 246-252.
    [107] Grozea C M, Gunari N, Finlay J A, et al. Water-stable diblock polystyrene-block-poly (2-vinyl pyridine) and diblock polystyrene-block-poly(methyl methacrylate) cylindrical patterned surfaces inhibit settlement of zoospores of the green alga Ulva[J]. Biomacromolecules, 2009, 10: 1004-1012.
    [108] Crisp D J. Factors influencing the settlement of marine invertebrate larvae[M]. London: Academic Press, 1974.
    [109] Rodríguez S R, Ojeda F P, Inestrosa N C. Settlement of benthicmarine invertebrates[J]. Mar Ecol Prog Ser, 1993, 97: 193-207.
    [110] Dahlem C, Moran P J, Grant T R. Larval settlement of marine sessile invertebrates on surfaces of different colour and position[J]. Ocean Sci Eng, 1984, 9: 225-236.
    [111] Crisp D J. Overview of research on marine invertebrate larvae, 1940–1980[M]. MD: Naval Institute Press, 1984.
    [112] Svane I, Dolmer P. Perception of light at settlement: a comparative study of two invertebrate larvae, a scyphozoan planula and a simple ascidian tadpole[J]. J Exp Mar Biol Ecol, 1995, 187: 51-61.
    [113] Henschel J R, Branch G M, Cook P A. The colonisation of artificial substrata by marine sessile organisms in False Bay: Substratal material[J]. S Afr J Mar Sci, 1990, 9: 299-307.
    [114] Fletcher R L, Jones A M, Jones E B G. The attachment of fouling macroalgae[M]. MD: Naval Institute Press, 1984.
    [115] James R J, Underwood A J. Influence of colour of substratum on recruitment of spirorbid tubeworms to different types of intertidal boulders[J]. J Exp Mar Biol Ecol, 1994, 181: 105-115.
    [116] Swain G, Herpe S, Ralston E, et al. Short-term testing of antifouling surfaces: the importance of colour[J]. Biofouling, 2006, 22: 425-429.
    [117] Christie A O, Shaw M. Settlement experiments with zoospores of Enteromorpha intestinalis (L.) Link[J]. Br Phycol Bull, 1968, 3: 529-534.
    [118] Hodson S L, Burke C M, Bissett A P. Biofouling of fish-cage netting: the efficacy of a silicone coating and the effect of netting colour[J]. Aquaculture, 2000, 184: 277-290.
    [119] Finlay J A, Fletcher B R, Callow M E, et al. Effect of background colour on growth and adhesion strength of Ulva sporelings[J]. biofouling, 2008, 24(3): 219-225
    [120] Guenther J, Carl C, Sunde L M. The effects of colour and copper on the settlement of the hydroid Ectopleura larynx on aquaculture nets in Norway[J]. Aquaculture, 2009, 292: 252-255.
    [121]何庆光,任润桃,叶章基.船舶防污涂料用树脂基料的发展及作用[J].涂料工业, 2009, 39(6): 51-55.
    [122]张凯,程永清,吕晓燕.低毒自抛光防污涂料发展现状[J].涂料技术与文摘: 4-7.
    [123] Vallee - Rehel K, Langlois V, Guerin P. Contribution of pendant ester group hydrolysis tothe erosion of acrylic polymers in binders aimed at organotin - free antifouling paints[J]. Journal of Polymers and the Environment, 1998, 6: 175-186.
    [124] Yebra D M, Kiil S, Weinell C E, et al. Effects of marine microbial biofilms on the biocide release rate from antifouling paints-A model-based analysis[J]. Progress in Organic Coatings, 2006, 57: 56-66.
    [125]曹文浩,严涛,刘永宏,等.海洋生物防污作用机制及应用前景[J].生态学杂志, 2009, 28(1): 146-151.
    [126]方芳,严涛,刘庆.化学生态学在海洋污损生物防除中的应用[J].应用生态学报, 2005, 16(10): 1997-2002.
    [127]李昕.天然生物防污涂料技术及应用[J].天津化工, 2009, 23(6): 5-7.
    [128]罗爱梅.仿生有机硅树脂防污表面材料的制备及表征[D].硕士,中国海洋大学, 2008.
    [129]黄智慧,马爱军,汪岷.鱼类体表黏液分泌功能与作用研究进展[J].海洋科学, 2009, 33(1): 90-94.
    [130]桂泰江.有机硅氟低表面能防污涂料的制备和表征[D].博士,中国海洋大学, 2008.
    [131]王科,于雪艳,陈绍平,等.硅油对低表面能有机硅防污涂料性能的影响[J].涂料工业, 2009, 39(5): 39-42.
    [132]桂泰江,王修林,王科,等.无毒有机硅低表面能防污涂料表面性能研究[J].现代化工, 2008, 28(6): 49-53.
    [133]舛岗茂.有机硅聚合物水解型船底防污涂料[J].有机硅材料及应用, 1994(3): 27-28.
    [134]王利,蔺存国,段东霞,等.可水解释放硅油的丙烯酸树脂的合成及其防污性能研究[J].涂料工业, 2009, 39(4): 1-4.
    [135]杨晓东,尚广瑞,李雨田.荷叶表面的二元复合结构及其疏水性[J].吉林工程技术师范学院学报(自然科学版), 2006, 22(3): 1-5.
    [136]刘国敏,李建桥,田喜梅,等.蚯蚓非光滑体表减粘降阻试验[J].农业机械学报, 2008, 39(9): 138-143.
    [137]施卫平,任露泉, Y Yuying.蚯蚓蠕动过程中非光滑波纹形体表的力学分析[J].力学与实践, 2005, 27: 73-74.
    [138]许亚婷,李建桥,孙久荣,等.蚯蚓体表形貌及润湿性研究[J].华中农业大学学报, 2005: 40-43.
    [139]张占立,杨继昌,丁建宁,等.竹叶青蛇腹鳞的超微结构及减阻机理[J].江苏大学学报(自然科学版), 2006, 27(6): 471-474.
    [140]孙霁宇,佟金.甲壳类昆虫生物材料性能、微观结构研究与仿生进展[J].华中农业大学学报, 2005, 24(10): 31-39.
    [141] Koch K, Ensikat H-J. The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly[J]. Micron, 2008, 39: 759-772.
    [142] Wen M, Buschhaus C, Jetter R. Nanotubules on plant surfaces: Chemical composition of epicuticular wax crystals on needles of Taxus baccata L.[J]. Phytochemistry, 2006, 67: 1808-1817.
    [143]岑斌,王慧中.植物蜡质合成与分泌的研究进展[J].科技通报, 2009, 25(3): 265-271.
    [144]胡晓敏,张志飞,饶力群,等.植物角质层蜡质合成与调控的分子生物学研究进展[J].武汉植物学研究, 2007, 25(4): 377-380.
    [145] Barthlott W, Neinhuis C. Purity of the sacred lotus,or escape from contamination in biological surfaces[J]. Planta, 1997, 202: 1-8.
    [146]任露泉,王淑杰,周长海,等.典型植物非光滑疏水表面的理想模型[J].吉林大学学报(工学版), 2006, 36(Z2): 97-102.
    [147] Koch K, Hartmann K D, Schreiber L, et al. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability[J]. Environmental and Experimental Botany, 2006, 56: 1-9.
    [148] Koch K, Dommisse A, Barthlott W. Chemistry and crystal growth of plant wax tubules of Lotus Nelumbo nucifera and Nasturtium Tropaeolum majus leaves on technical substrates[J]. Cryst Growth Des, 2006, 6: 2571-2578.
    [149] Jetter R, Riederer M. In vitro reconstitution of epicuticular wax crystals: Formation of tubular aggregates by long chain secondary alkendiols[J]. Bot Acta, 1995, 108: 111-120.
    [150] Schaper A K, Yoshioka T, Ogawa T, et al. Electron microscopy and diffraction of radiation-sensitive nanostructured materials[J]. J Microsc, 2006, 223: 88-95.
    [151] Meusel I, Neinhuis C, Markst?dter C, et al. Chemical composition and recrystallization of epicuticular waxes: coiled rodlets and tubules[J]. Plant Biol, 2000, 2: 1-9.
    [152] Jeffree C E, Baker E A, Holloway P J. Ultrastructure and recrystallization of plant epicuticular waxes[J]. New Phytol, 1975, 75: 539-549.
    [153] Meusel I, Neinhuis C, Markst?dter K, et al. Ultrastructure, chemical composition and recrystallization of epicuticular waxes: transversely ridged rodlets[J]. Can J Bot, 1999, 77: 706-720.
    [154] Meusel I, Barthlott W, Kutzke H, et al. Crystallographic studies of plant waxes[J]. Powder Diffraction, 2000, 15: 123-129.
    [155] Koch K, Neinhuis C, Ensikat H J, et al. Self assembly of epicuticular waxes on plant surfaces investigated by atomic force microscopy (AFM)[J]. J Exp Bot, 2004, 55: 711-718.
    [156] Schumacher J F, Aldred N, Callow M E, et al. Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids[J]. Biofouling, 2007: 1-11.
    [157]彭衍磊,蔺存国,王利.鲨鱼表皮微观形貌及防污性能研究[J].涂料工业, 2009, 39(12): 40-43.
    [158]罗爱梅,蔺存国,王利,等.鲨鱼表皮的微观形貌观察及其防污能力评价[J].海洋环境科学, 2009, 28(6): 715-718.
    [159] Han X, Zhang D Y, Li X, et al. Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin[J]. Chinese Science Bulletin, 2008, 53(10): 1587-1592.
    [160]韩鑫,张德远.鲨鱼皮复制工艺研究[J].中国科学E辑:技术科学, 2008, 38(1): 9-15.
    [161] Hu H B, Song B W, Liu G S, et al. A simulation study of the turbulent drag reduction mechanisms derived from shark skin[J]. J China Ordnance, 2009, 5(3): 168-174.
    [162]胡海豹,宋保维,潘光,等.鲨鱼沟槽表皮减阻机理的仿真研究[J].系统仿真学报, 2007, 19(21): 4091-4094.
    [163]刘文生,郭锦彭,文伟,等.金鱼早期仔鱼体表的电镜观察[J].动物学杂志, 2006, 41(2): 81-86.
    [164]向平,杨志伟,林鹏.人工红树林幼林藤壶危害及防治研究进展[J].应用生态学报, 2008, 17(8): 1526-1529.
    [165]林秀雁,卢昌义.滩涂高程对藤壶附着秋茄幼林影响的初步研究[J].厦门大学学报(自然科学版), 2006, 45(4): 575-579.
    [166]林秀雁,卢昌义.不同高程对藤壶附着红树幼林的影响[J].厦门大学学报(自然科学版), 2008, 47(2): 253-259.
    [167]何斌源,赖廷和.红树植物桐花树上污损动物群落研究[J].广西科学, 2000, 7(4): 309-312.
    [168]桑树勋,刘焕杰,施健.海南岛红树植物的形态与生态适应[J].中国矿业大学学报, 1993, 22(3): 27-35.
    [169]周凡,邝栋明,简永强,等.珠海市淇澳岛红树林群落组成初步研究[J].生态科学, 2003, 22(3): 237-241.
    [170]李保家.仿生周期微结构表面设计制备及其润湿性能研究[D].硕士,江苏大学, 2007.
    [171]桂泰江.有机硅氟低表面能防污涂料的制备和表征[D].博士,中国海洋大学, 2008.
    [172]马伟,李树材.自分层涂料的机理和研究进展[J].现代涂料与涂装, 2006(10): 5-9.
    [173]张向宇.胶黏剂分析与测试技术[M].北京:化学工业出版社, 2004.5.
    [174]吴人洁.高聚物的表面与界面[M].北京:科学出版社, 1998.
    [175]李旭洋.纳米SiO2制备低表面能海洋防污涂料[D].硕士,大连交通大学, 2009.
    [176]刘红,张占平,齐育红,等.无毒防污涂料表面底栖硅藻附着评价的实验方法[J].海洋环境科学, 2009, 35(3): 89-92.
    [177]石娟,潘克厚,王晓青,等.对小新月菱形藻(Nitzschia closterium f. minutissima)分类地位的重新认识[J].科学通报, 2008, 53(2): 197-202.
    [178]邹宁,孙东红,郭小燕.培养条件对底栖硅藻生长的影响[J].水产养殖, 2005, 26(5): 11-13.
    [179]邢荣莲.海洋底栖硅藻的筛选、培养和应用研究[D].博士,大连理工大学, 2007.
    [180]钱振明.海洋底栖硅藻生长条件及其理化成分的研究[D].硕士,大连理工大学, 2008.
    [181] Fukudae a1. Biodegradable resin composition and antifouling paint composition[P]. US,1999.
    [182]张宗宝.船底防护涂层动态性能研究[D].硕士,大连海事大学, 2009.
    [183] Barton A, Brandner P, Sargison J, et al. A force balance to measure the total drag of biofilms on test plates[C]. 16th Australasian Fluid Mechanics Conference. Gold Coast, Australia, 2007.
    [184] Barton A. Friction, roughness and boundary layer characteristics of freshwater biofilms in hydraulic conduits[D]. PhD, 2006.
    [185] Andrewartha J M, Sargison J E, Perkins K J. The influence of freshwater biofilms on drag in hydroelectric power schemes[J]. Wseas Transactions on Fluid Mechanics, 2008, 3(3).
    [186]田斌.海洋防污涂层生物学性能的研究[D].硕士,中国海洋大学, 2005.
    [187]周媛.活性氧对东方小藤壶(Chthamalusc hallengeri Hoek)的伤害效应[D].硕士,中国海洋大学, 2007.
    [188]周媛,杨震,许宁,等.三种重金属离子对东方小藤壶幼虫的急性毒性效应[J].海洋科学, 2003, 27(8): 56-58.
    [189]黄英,柯才焕,周时强.国外对藤壶幼体附着的研究进展[J].海洋科学, 2001, 25(3): 30-32.
    [190]冯丹青,柯才焕,卢昌义,等.白脊藤壶(Balanus albicostatus)应用于天然海洋防污产物筛选模型的研究[J].海洋与湖沼, 2008, 39(4): 395-400.
    [191] Brady R F. A fracture mechanical analysis of fouling release from nontoxic antifouling coatings[J]. Progress in Organic Coatings, 2001, 43: 188-192.
    [192] Kendall K. Adhesion: molecules and mechanics[J].Science, 1994, 263: 1720-1725.
    [193] Wenzel R N. Ind Eng Chem, 1936, 28: 988.
    [194]潘莹,张三平,周建龙,等.有机硅低表面能防污涂料控制因素与研究进展[J].涂料工业, 2009, 39(12): 58-61.
    [195] Lindner Eler. Low surface free energy fouling resistant coatings[J]. Recent Development in Biofouling Control, 1994: 305-311.
    [196] Schmidt D L. Surface Coatings International, 1999, 1(2): 582-585.
    [197] Absolom D R, Lamberti F V, Policova Z, et al. Surface thermodynamics of bacterial adhesion[J]. Applied and Environmental Microbiology, 1983, 46(1): 90-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700