黄渤海小黄鱼、大头鳕和黄鮟鱇种群生物学特征的年际变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鱼类作为海洋生态系统的重要组成部分,为人类提供大量的优质蛋白,在满足市场需求和保障食物安全方面发挥了巨大作用。但是随着人类活动(过度捕捞)和环境变化的加剧,海洋鱼类的生物学特性和种群动态发生了显著变化,进而影响了海洋生态系统的服务和产出功能。因此,本研究以黄渤海三种底层高营养级鱼类小黄鱼、大头鳕和黄鮟鱇作为研究对象,基于其在我国重要的渔业海域黄渤海的底拖网调查和取样资料(小黄鱼、大头鳕和黄鮟鱇资料的时间跨度分别为1960-2010年、1999-2009年和1985-2009年),分析其生物学特征和种群相对资源密度在捕捞和环境变化双重压力下的年际变化,以期为全球变化背景下海洋渔业种群动态的数值模拟提供基础数据,同时也为渔业资源的保护和合理开发利用提供科学依据。
     从1960年到2010年,多数年份内小黄鱼雌雄个体之间体长-体重关系参数b无显著差异(P>0.05);参数a和b呈极显著负线性关系(P<0.01),参数a的对数lga与b的比值为常数,与鱼体密度有关。小黄鱼黄海北部-渤海群系雌雄群体从1960年到2004年以等速生长为主,参数b在资源严重衰退期(1982-1983年)和资源恢复初期(1993年)有所增大;黄海南部群系雌雄个体从1960年到2010年以负异速生长为主,b在资源严重衰退期(1986年)和资源恢复初期(1994年)呈减小趋势,20世纪90年代后期开始逐渐升高。小黄鱼黄海北部-渤海群系雌雄个体的肥满度从1960年到2004年总体呈减小趋势;黄海南部群系雌雄个体1986年的肥满度极显著小于对应群体1960年的肥满度(P<0.05),此后略有升高,但年间差异不显著(P>0.05)。分析认为,性成熟比例的变化和差异是两个群系参数b变化和差异的主要原因;雄性参数b的变化与捕捞压力呈现较好的协同关系,当资源密度升高时,b值增大。1960年到20世纪80年代中期小黄鱼肥满度的减小主要原因是性成熟年龄的减小,20世纪90年代后小黄鱼两群系肥满度的变化与生活区海表温度(SST)的变化相对应,SST越高,肥满度越高。
     从1960年到2010年,小黄鱼雌性个体的50%性成熟体长(L50)和年龄(A50)呈减小趋势,其中黄海北部-渤海群系由152.8 mm减小到105.3 mm,黄海南部群系由184.4 mm减小到110.1 mm,A50分别由1.5 a和2.4 a减小到1 a左右。ARSS分析显示,两个群系内性成熟曲线在间隔时间较长时(≥4年)变化极显著(P<0.01),但在较短时间间隔内(<4年)差异不显著(P>0.05);群系之间性成熟曲线差异极显著(P<0.01),表明两个群系的性成熟模式不同。相关性分析表明种群生长参数和SST的变化是L50变化的影响因子。小黄鱼幼鱼生长速度的加快和极限体长的减小,可使其L50减小,由于幼鱼生长速度的加快和种群极限体长的减小主要由过度捕捞引起,说明过度捕捞是小黄鱼性成熟体长减小的原因;海表温度日升高率(TDIR)与黄海北部-渤海群系的L50呈负相关关系,海表温度升高快,L50减小;而SST与黄海南部群系性成熟速率(δ)呈负相关关系,表明较高的SST会使黄海南部群系δ减小,这主要因为黄海南部的SST高于小黄鱼的最佳产卵温度,并使种群向黄海深部和冷水团区域移动导致。此外,小黄鱼承受的持续高强度捕捞压力,会促进其性成熟基因的变化,使A50向低龄进化。
     2000年以来,小黄鱼黄海北部-渤海群系的相对资源密度较1985年明显升高,且较为稳定;黄海南部群系的相对资源密度从1985年到2010年呈逐年减小趋势。小黄鱼两个群系的相对资源密度通常以秋季最高,这由当年生个体大量进入渔场所致,但部分发生春季厄尔尼诺事件(El Ni?o, EN)的年份,黄海南部群系春季时相对资源密度最高,这可能由SST升高引起东海北部产卵场中的产卵群体向北移动导致。在发生EN事件的年份,江苏省小黄鱼产量在当年和之后1-2年均较高。
     黄海大头鳕主要分布在35°N以北海区,与20世纪50年代相比向北移动了约0.5°;2007-2009年冬季大头鳕的相对资源密度较1999-2002年升高,优势年龄由I龄组升高到III龄组;体长-体重关系性别间无显著差异(P>0.05),1999-2002年和2007-2009年大头鳕雌雄混合群体的体长-体重关系分别为W=4.564×10-3 L3.333和W=1.550×10-2 L2.994,群体由正异速生长转变为等速生长。两个阶段内,大头鳕主要饵料均为甲壳类,但由于2007-2009年大头鳕分布区转变,摄食了更多的甲壳类生物,饵料多样性指数(H’)由1.0升高到1.9,生境宽度增加。与20世纪80年代相比,黄海大头鳕年龄结构仍然较为简单,资源易受气候变化和人类活动的影响。
     从1985年到2009年,黄海中南部黄鮟鱇种群结构简单化、个体小型化。体长和体重由负异速生长转变为等速生长;由于雌雄间生长速度的差异和雌性的产卵洄游,导致种群中雄性占优势;2005和2009年秋季黄鮟鱇样品中出现性成熟和产卵个体,预示着黄鮟鱇部分个体的产卵时间发生变化;黄鮟鱇的饵料组成时空异质性强,表明其对饵料的选择主要受生活区饵料种类的易得性影响;但从1985-1987年到2009年,黄鮟鱇的生境宽度持续降低,一定程度上反映了黄海中南部底层生物群落结构的变化;2000年以来,黄鮟鱇的相对资源密度显著升高,从1985年到2009年,多数年份的产量与年均海表温度具有极显著正相关性(P<0.01),但过高的SST会对相对资源密度和产量产生负面影响。
As an important part of marine ecosystem, fish plays a significant role in meeting the market demands and ensuring food security, and provides a large amount of high-quality protein for human being. With the serious effects of anthropogenic activities (e.g. overfishing) and environment changes on marine ecosystem, biological characteristics and population dynamics of marine fishes have been greatly changed, which further threaten the service function of marine ecosystem. In the present study, interannual changes in biological characteristics and relative stock densities in three high trophic level demersal fishes in the Bohai Sea and Yellow Sea ecosystem were analyzed, involved in small yellow croaker Larimichthys polyactis, Pacific cod Gadus macrocephalus and anglerfish Lophius litulon. The data for this study were from the bottom trawl data in the Bohai Sea and Yellow Sea (data for small yellow croaker, Pacific cod and anglerfish were 1960-2010, 1999-2009 and 1985-2009, respectively). This study will provide useful information for management of marine living resources and modeling population dynamics.
     The allometric factors (b) of body weight-length relationship in the small yellow croaker were not significant differences (P>0.05) between sexes in most years from 1960 to 2010; but significantly negative correlations (P<0.01) were found between condition factor (a) and b in two small yellow croaker stocks, the northern Yellow Sea-Bohai Sea stock (NYBS) and the southern Yellow Sea stock (SYS). (lga)/b ratio was constant during the decades, and connected with the fish body density. The isometric growth was found in the NYBS from 1960 to 2004, and b increased during the stock regression stage (1982-1983) and the early recovery stage (1993). The negative-allometric growth was found in the SYS from 1960 to 2010, b showed a decreasing trend during the stock regression stage (1986) and the early recovery stage (1994), increased since the late 1990s. The condition factors of male and female individuals in the NYBS decreased from 1960 to 2004; the condition factors of male and female individuals in the SYS in 1986 were significantly smaller than those in 1960 (P<0.05), Since 1986, the condition factors slightly increased, but no significant differences were found between surveys. These changes were closely related to the variations in the proportion of sexual maturity. The b of male individuals showed better coordination relation with fishing stress, increased with the increase of stock density. The decrease of condition factors of small yellow croaker were mainly caused by the declines in age at maturity from 1960 to the middle 1980s, since the 1990s, the variations in condition factors in both stocks mainly attributed to the changes of sea surface temperature (SST), and the condition factor increased with the increase of SST.
     As depicted in maturity ogives, body length and age at 50% maturity were studied for female small yellow croaker in the Bohai Sea and the Yellow Sea during the 1960-2010 spawning seasons. Body length (L50) and age at median sexual maturity (A50) were estimated by an arcsin-square-root (ASR) transformative logistic model and an inverse von Bertalanffy growth function, respectively. The results show that L50 decreased from 152.8 mm to 105.3 mm between 1960 and 2003-2005 in the NYBS and from 184.4 mm to 110.1 mm between 1960 and 2010 in the SYS. Over the same period, A50 decreased from approximately 1.5 years in the NYBS and 2.4 years in the SYS to about 1 year in both stocks. Significant intrastock changes (P<0.01) in length-maturation curves were found in both stocks over long time periods (≥4 years); however, there were no significant changes (P>0.05) over short time intervals (<4 years). Significant interstock changes (P<0.01) were observed in length-maturation curves in corresponding sampling years. Significant positive correlations were found between the instantaneous rate of maturation (δ) and the growth potential index (ω) in the NYBS and between L50 and asymptotic body length (L∞) in the SYS. Significant negative correlations were found between L50 and the sea surface temperature (SST) daily rise rate in the NYBS and betweenδand the mean monthly SST in the SYS. These correlations suggest that declines in length and age at maturation primarily reflect changes in growth associated with overfishing and rising SST. Additionally, a fisheries-induced evolutionary response has contributed to changes in maturation schedules in both stocks. The principal pressures are the stress of continuously higher fishing intensity and an increasing proportion of yearling fish in the catches over time.
     The relative stock density of the NYBS were significantly increased since 2000 when compared with that in 1985, while the relative stock density in the SYS decreased from 1985 to 2010. The highest relative stock density was generally in autumn in both stocks due to the recruitment of yearling fish. However, the highest relative stock density in SYS was found in spring in some El Ni?os year, which might be caused by migration to the north of spawning population for the increase of SST in spawning ground in the northern East China Sea. Generally, the relative stock density and yield were both increased in those years and in 1-2 years after an El Ni?os event.
     The relative stock density of Pacific cod increased from 1.0 kg/h to 11.7 kg/h, and dominant age increased from 1 year old to 3 years old over 1999-2002 to 2007-2009. Moreover, proportions of females at sexual maturity (maturity degree at IV- VI) were increased from 21.9% to 67.3%. Body weight-body length relationships were W=4.564×10-3 L3.333 in 1999-2002 and W=1.550×10-2 L2.994 in 2007-2009, and no significant differences were found between male and female individuals (P>0.05). The changes of body weight-body length relationships indicated Pacific cod population was from positive-allometric growth to isometric growth. Stomach contents analysis showed that crustaceans were dominant diets of Pacific cod in both periods. The diversity of diet species in Pacific cod increased from 1.9 to 1.0 for the changes of its distribution area, and increased its niche width. The age structure of Pacific cod in the present study was simpler than that in the 1980s, and Pacific cod stock was sensitive to the climate changes and human activities.
     Anglerfish in the southern Yellow Sea were increasingly characterized by simpler age structure and smaller size from 1985 to 2009.. Body weight and body length were from negative-allometric growth to isometric growth. Male individuals were dominated in the population for the differences of growth speed between sexes. A few individuals reached to sexual maturity in autumn, which indicated the changes in spawning time of anglerfish. Food composition of anglerfish was closely connected with spatio-temporal heterogeneity of diet species, so anglerfish showed low selectivity for prey items and strong adaption to the changes in food-web. The niche width of anglerfish continuously decreased from 1985-1987 to 2009, which also indirectly improved community structure changes of fishery species in southern Yellow Sea. Since 2000, the relative stock density of anglerfish significantly increased, and its yield in year n was extremely positive correlation to SST in year n-2 (P<0.01), however, high SST negatively impacted its relative stock density and catch.
引文
[1]唐启升,范元炳,林海.中国海洋生态系统动力学研究发展战略初探[J].地球科学进展, 1996, 11(2): 160-168.
    [2]粮农组织渔业及水产养殖部.世界渔业和水产养殖状况2010[M].罗马, 2010.
    [3]杨纪明.海洋生态学的发展趋势[J].海洋科学, 1994, 1: 16-19.
    [4]唐启升.正在发展的全球海洋生态系统研究计划(GLOBEC) [J].地球科学进展, 1993, 8(4): 62-65.
    [5]唐启升,苏纪兰,孙松,等.中国近海生态系统动力学研究进展[J].地球科学进展, 2005, 20(12): 1288-1299.
    [6] IMBER. Science Plan and Implementation Strategy [R]. IGBP Report No. 52. Stockholm: IGBP Secretariat, 2005: 76
    [7] IMBER. Supplement to the Science Plan and Implementation Strategy [R]. IGBP Report No. 52A. Stockholm: IGBP Secretariat, 2010: 36
    [8]唐启升,苏纪兰,等.中国海洋生态系统动力学研究I:关键科学问题与研究发展战略[M]北京:科学出版社. 2000: 252.
    [9] Tang, Q., Su, J., and Zhang, J. China GLOBEC II: A case study of the Yellow Sea and East China Sea Ecosystem Dynamics [J]. Deep-Sea Res. II, 2010, 57(11-12): 993-995.
    [10] Garcia, S. M., de Leiva Moreno, I., Global Overview of Marine Fisheries. in: M Sinclair, G Valdimarsson, edited, Responsible fisheries in the marine ecosystem [M], Rome: FAO and CABI Publishing, 2003: 1-24.
    [11] FAO Fisheries Department. The state of world fisheries and aquaculture [M]. Rome, 1995.
    [12]王世表,宋怿,李平.我国渔业资源现状与可持续发展对策[J].中国渔业经济, 2006, 1: 24-27.
    [13]楼东,谷树忠,钟赛香.中国海洋资源现状及海洋产业发展趋势分析[J].资源科学, 2005, 5: 20-26.
    [14]刘增胜,柳正,农业部渔业局.中国渔业年鉴2008[M].中国农业出版社, 2008.
    [15]唐议,邹伟红,胡振明.基于统计数据的中国海洋渔业资源利用状况及管理分析[J].资源科学, 2009, 31(6): 1061-1068.
    [16]杨纪明.海洋渔业资源开发潜力估计[J].海洋开发, 1985(4): 40-46.
    [17]陈卫忠,李长松,胡芬.东海区海洋渔业资源近况浅析[J].中国水产科学, 1997, 4(3): 39-43.
    [18]赵传姻,陈永法,洪港船.东海区渔业资源调查和区划[M]上海:华东师范大学出版社, 1990.
    [19]林群,金显仕,张波,等.基于营养通道模型的渤海生态系统结构十年变化比较[J].生态学报, 2009, 29(7): 3613-3620.
    [20]陈作志,邱永松,贾晓平,等.捕捞对北部湾海洋生态系统的影响[J].应用生态学报, 2008,19(7): 1604-1610.
    [21] Wei, H., Shi, J., Lu, Y., et al. Interannual and long-term hydrographic changes in the Yellow Sea during 1977-1998 [J]. Deep-Sea Res. II, 2010, 57(11-12): 1025-1034.
    [22] Huang, D., Zhang, T., Zhou, F. Sea-surface temperature fronts in the Yellow and East China Seas from TRMM microwave imager data [J]. Deep-Sea Res. II, 2010, 57(11-12): 1017-1024.
    [23]张辉,袁兴伟,程家骅.东海区小黄鱼繁殖模型优化选择及其管理应用研究[J].中国水产科学, 2010, 17(6): 1300-1308.
    [24] Ning, X., Lin, C., Su, J., et al. Long-term environmental changes and the responses of the ecosystems in the Bohai Sea during 1960-1996 [J]. Deep-Sea Res. II, 2010, 57(11-12): 1079-1091.
    [25] Xian, W., Kang, B., Liu, R. Jellyfish blooms in the Yangtze Estuary [J]. Science, 2005, 307(5706): 41.
    [26] Dong, Z., Liu, D., Keesing, J. K. Jellyfish blooms in China: Dominant species, causes and consequences [J]. Mar. Pollut. Bull., 2010, 60(7): 954-963.
    [27] Halpern, B. S., Walbridge, S., Selkoe, K. A., et al. A global map of human impact on marine ecosystems [J]. Science, 2008, 319(5865): 948-952.
    [28] Pauly, D. Global fisheries: a brief review [J]. J. Biol. Res.-Thessalon., 2008(9): 3-9.
    [29] Rochet, M.-J., Trenkel, V. M. Which community indicators can measure the impact of fishing? A review and proposals [J]. Can. J. Fish. Aquat. Sci., 2003, 60(1): 86-99.
    [30]赵淑江,朱爱意,吴常文,等.海洋渔业对海洋生态系统的影响[J].海洋开发与管理, 2006, 23(3): 93-97.
    [31] Lewison, R. L., Crowder, L. B., Read, A. J., et al. Understanding impacts of fisheries bycatch on marine megafauna [J]. Trends Ecol. Evol., 2004, 19(11): 598-604.
    [32] Thrush, S. F., Hewitt, J. E., Cummings, V. J., et al. Disturbance of the marine benthic habitat by commercial fishing: impacts at the scale of the fishery [J]. Ecol. Appl., 1998, 8(3): 866-879.
    [33] Caddy, J. F., Garibaldi, L. Apparent changes in the trophic composition of world marine harvests: the perspective from the FAO capture database[J]. Ocean Coast Manag, 2000, 43(8-9): 615-655.
    [34] Pauly, D., Christensen, V., Dalsgaard, J., et al. Fishing Down Marine Food Webs [J]. Science, 1998, 279(5352): 860-863.
    [35]张波.中国近海食物网及鱼类营养动力学关键过程的初步研究[D].青岛:中国海洋大学, 2005: 159.
    [36]张波,唐启升.渤、黄、东海高营养层次重要生物资源种类的营养级研究[J].海洋科学进展, 2004, 22(4): 393-404.
    [37]金显仕,邓景耀.莱州湾渔业资源群落结构和生物多样性的变化[J].生物多样性, 2000, 8(1): 65-72.
    [38]金显仕,邓景耀.莱州湾春季渔业资源及生物多样性的年间变化[J].海洋水产研究, 1999, 20(1): 6-12.
    [39]金显仕,唐启升.渤海渔业资源结构、数量分布及其变化[J].中国水产科学, 1998, 5(3): 18-24.
    [40] Jin, X., Zhang, B., Xue, Y. The response of the diets of four carnivorous fishes to variations in the Yellow Sea ecosystems [J]. Deep-Sea Res. II, 2010, 57(11-12): 996-1000.
    [41] Savenkoff, C., Castonguay, M., Chabot, D., et al. Changes in the northern Gulf of St. Lawrence ecosystem estimated by inverse modelling: evidence of a fishery-induced regime shift? [J]. Estuar. Coast. Shelf S., 2007, 73(3-4): 711-724.
    [42] Vinther, M., Reeves, S. A., Patterson, K. R. From single-species advice to mixed-species management: taking the next step [J]. ICES J. Mari. Sci., 2004, 61(8): 1398-1409.
    [43] Pikitch, E. K., Santora, C., Babcock, E. A., et al. Ecosystem-Based Fishery Management [J]. Science, 2004, 305(5682): 346-347.
    [44] Lindegren, M., M?llmann, C., Nielsen, A., et al. Preventing the collapse of the Baltic cod stock through an ecosystem-based management approach [J]. Proc. Natl Acad. Sci. USA, 2009, 106(34): 14722-14727.
    [45] Sherman, K., Sissenwine, M. P., Christensen, V., et al. A global movement toward an ecosystem approach to management of marine resources [J]. Mar. Ecol. Prog. Ser., 2005, 300: 275-279.
    [46] IPCC.气候变化2007:综合报告[R].瑞士,日内瓦: IPCC, 2007: 104
    [47] Hughes, T. P., Baird, A. H., Bellwood, D. R., et al. Climate Change, Human Impacts, and the Resilience of Coral Reefs [J]. Science, 2003, 301(5635): 929-933.
    [48] Brander, K. M. Global fish production and climate change [J]. Proc. Natl Acad. Sci. USA, 2007, 104(50): 19709-19714.
    [49] Walther, G.-R., Post, E., Convey, P., et al. Ecological responses to recent climate change [J]. Nature, 2002, 416(6879): 389-395.
    [50] P?rtner, H. O., Peck, M. A. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding [J]. J. Fish Biol., 2010, 77(8): 1745-1779.
    [51] Perry, A. L., Low, P. J., Ellis, J. R., et al. Climate change and distribution shifts in marine fishes [J]. Science, 2005, 308(5730): 1912-1915.
    [52]陈宝红,周秋麟,杨圣云.气候变化对海洋生物多样性的影响[J].台湾海峡, 2009, 28(3): 437-443.
    [53] Ackerly, D., Loarie, S., Cornwell, W., et al. The geography of climate change: implications for conservation biogeography [J]. Divers. Distrib., 2010, 16(3): 476-487.
    [54] Cochrane, K., Young, C. D., Soto, D., et al. Climate change implications for fisheries and aquaculture: overview of current scientific knowledge [M] Rome: FAO, 2009.
    [55] Alheit, J., M?llmann, C., Dutz, J., et al. Synchronous ecological regime shifts in the central Balticand the North Sea in the late 1980s [J]. ICES J. Mar. Sci., 2005, 62(7): 1205-1215.
    [56] Rojas-Mendez, J. A., Mendoza, C. J. R. Effects of ENSO 1997-1998 on the distribution of small pelagic fish off the west coast of Baja California [J]. International Journal of Environment and Health, 2008, 2(1): 45-63.
    [57]洪华生,何发祥,陈钢. ENSO现象与台湾海峡西部海区浮游生物的关系—台湾海峡西部海区ENSO渔场学问题之一[J].海洋湖沼通报, 1998, 4: 1-9.
    [58]樊伟,程炎宏,沈新强.全球环境变化与人类活动对渔业资源的影响[J].中国水产科学, 2001, 8(4): 91-94.
    [59] Lehodey, P., Bertignac, M., Hampton, J., et al. El Ni?o Southern Oscillation and tuna in the western Pacific [J]. Nature, 1997, 389(6652): 715-718.
    [60] ?iquen, M., Bouchon, M. Impact of El Ni?o events on pelagic fisheries in Peruvian waters [J]. Deep-Sea Res. II, 51(6-9): 563-574.
    [61]何发祥,陈清花,郑爱榕.厄尔尼诺与浙江近海冬汛带鱼渔获量关系[J].海洋湖沼通报, 1995(3): 17-23.
    [62]何发祥.厄尔尼诺现象与黄、东海,对马海域马面鲀渔获量关系—长江口及其邻近海区ENSO渔场学问题之三[J].海洋湖沼通报, 1998(1): 13-22.
    [63]洪华生,何发祥,杨圣云.厄尔尼诺现象和浙江近海鲐鲹鱼渔获量变化关系—长江口ENSO渔场学问题之二[J].海洋湖沼通报, 1997(4): 8-16.
    [64] P?rtner, H. O., Berdal, B., Blust, R., et al. Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus) [J]. Cont. Shelf Res., 2001, 21(18-19): 1975-1997.
    [65] Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., et al. Projecting global marine biodiversity impacts under climate change scenarios [J]. Fish Fish., 2009, 10: 235-251.
    [66] Reid, P. C., Borges, M. d. F., Svendsen, E. A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery [J]. Fish. Res., 2001, 50(1-2): 163-171.
    [67] Beaugrand, G. The North Sea regime shift: evidence, causes, mechanisms and consequences [J]. Prog. Oceanogr., 2004, 60(2-4): 245-262.
    [68] Boehlert, G. W. Biodiversity and the sustainability of marine fisheries [J]. Oceanography, 1996, 9(1): 28-35.
    [69] Rochet, M.-J. Short-term effects of fishing on life history traits of fishes [J]. ICES J. Mar. Sci., 1998, 55(3): 371-391.
    [70] Shepherd, S. A., Brook, J. B., Xiao, Y. Environmental and fishing effects on the abundance, size and sex ratio of the blue-throated wrasse, Notolabrus tetricus, on South Australian coastal reefs [J]. Fisheries Manag. Ecol., 2010, 17(3): 209-220.
    [71] van Walraven, L., Mollet, F. M., van Damme, C. J. G., et al. Fisheries-induced evolution ingrowth, maturation and reproductive investment of the sexually dimorphic North Sea plaice (Pleuronectes platessa L.) [J]. J. Sea Res., 2010, 64(1-2): 85-93.
    [72] Kuparinen, A., Meril?, J. Detecting and managing fisheries-induced evolution [J]. Trends Ecol. Evol., 2007, 22(12): 652-659.
    [73]王新安,马爱军,侯仕营,等.大菱鲆4个不同地理群体生长性能的比较[J].渔业科学进展, 2010, 31(1): 34-39.
    [74] Rijnsdorp, A. D., van Leeuwen P. I. Changes in growth of North Sea plaice since 1950 in relation to density, eutrophication, beam-trawl effort, and temperature [J]. ICES J. Mar. Sci., 1996, 53: 1199-1213.
    [75] Lorenzen, K., Enberg, K. Density-dependent growth as a key mechanism in the regulation of fish populations: evidence from among-population comparisons [J]. Proc. Roy. Soc. Lond. B Biol. Sci., 2002, 269(1486): 49-54.
    [76] Duckworth, R. A. The role of behavior in evolution: a search for mechanism [J]. Evol. Ecol., 2009, 23(4): 513-531.
    [77] Heino, M., God?, O. R. Fisheries-induced selection pressures in the context of sustainable fisheries [J]. Bull. Mar. Sci., 2002, 70(2): 639-656.
    [78] Ricker, W. E. Changes in the average size and average age of Pacific salmon [J]. Can. J. Fish. Aquat. Sci., 1981, 38(12): 1636-1656.
    [79]梁振林,孙鹏,唐衍力,等.拖网选择性对鱼类表型性状的选择作用研究[J].海洋与湖沼, 2008, 39(5): 488-493.
    [80] Chen, Y., Harvey, H. H. Maturation of white sucker, Catostomus commersoni, populations in Ontario [J]. Can. J. Fish. Aquat. Sci., 1994, 51(9): 2066-2076.
    [81] Wooton, R. J. Ecology of teleost fishes[M]. 2nd ed, London: Kluwer Academic Publishers. 2003.
    [82] Dieckmann, U., Heino, M. Probabilistic maturation reaction norms: their history, strengths, and limitations [J]. Mar. Ecol. Pro. Ser., 2007, 335: 253-269.
    [83] Jorgensen, T. Long-term changes in age at sexual maturity of Northeast Arctic cod (Gadus morhua L.) [J]. ICES J. Mar. Sci., 1990, 46(3): 235.
    [84] Chen, Y., Mello, L. G. S. Growth and maturation of cod (Gadus morhua) of different year classes in the Northwest Atlantic, NAFO subdivision 3Ps [J]. Fish. Res., 1999, 42(1-2): 87-101.
    [85] Nash, R. D. M., Pilling, G. M., Kell, L. T., et al. Investment in maturity-at-age and-length in northeast Atlantic cod stocks [J]. Fish. Res., 2010, 104(1-3): 89-99.
    [86] Engelhard, G. H., Heino, M. Maturity changes in Norwegian spring-spawning herring before, during, and after a major population collapse [J]. Fish. Res., 2004, 66(2-3): 299-310.
    [87] Watanabe, C., Yatsu, A. Long-term changes in maturity at age of chub mackerel (Scomber japonicus) in relation to population declines in the waters off northeastern Japan [J]. Fish. Res., 2006, 78(2-3): 323-332.
    [88] Trippel, E. A., Harvey, H. H. Comparison of methods used to estimate age and length of fishes at sexual maturity using populations of white sucker (Catostomus commersoni) [J]. Can. J. Fish. Aquat. Sci., 1991, 48(8): 1446-1459.
    [89] Chen, Y., Paloheimo, J. E. Estimating fish length and age at 50% maturity using a logistic type model [J]. Aquat. Sci., 1994, 56(3): 206-219.
    [90] Trippel, E. Age at maturity as a stress indicator in fisheries [J]. BioScience, 1995, 45(11): 759-771.
    [91] Engelhard, G. H., Heino, M. Maturity changes in Norwegian spring-spawning herring Clupea harengus: compensatory or evolutionary responses? [J]. Mar. Ecol. Prog. Ser., 2004, 272: 245-256.
    [92] Marshall, C. T., McAdam, B. J. Integrated perspectives on genetic and environmental effects on maturation can reduce potential for errors of inference [J]. Mar. Ecol. Prog. Ser., 2007, 335: 301-310.
    [93] Rijnsdorp, A. D. Fisheries as a large-scale experiment on life-history evolution: disentangling phenotypic and genetic effects in changes in maturation and reproduction of North Sea plaice, Pleuronectes platessa L. [J]. Oecologia, 1993, 96(3): 391-401.
    [94] Grift, R. E., Rijnsdorp, A. D., Barot, S., et al. Fisheries-induced trends in reaction norms for maturation in North Sea plaice [J]. Mar. Ecol. Prog. Ser., 2003, 257: 247-257.
    [95] Vainikka, A., G?rdmark, A., Bland, B., et al. Two- and three-dimensional maturation reaction norms for the eastern Baltic cod, Gadus morhua [J]. ICES J. Mar. Sci., 2009, 66(2): 248-257.
    [96] Jennings, S., Kaiser, M. J. The Effects of Fishing on Marine Ecosystems [J]. Adv. Mar. Biol., 1998, 34: 201-212, 212a, 213-266, 266a, 268-352.
    [97] Jennings, S., Greenstreet, S. P. R., and Reynolds, J. D. Structural change in an exploited fish community: a consequence of differential fishing effects on species with contrasting life histories [J]. J. Anim. Ecol., 1999, 68(3): 617-627.
    [98] Law, R., Grey, D. R. Evolution of yields from populations with age-specific cropping [J]. Evol. Ecol., 1989, 3(4): 343-359.
    [99] Heino, M. Management of evolving fish stocks [J]. Can. J. Fish. Aquat. Sci., 1998, 55(8): 1971-1982.
    [100] Walters, C., Maguire, J.-J. Lessons for stock assessment from the northern cod collapse [J]. Rev. Fish Biol. Fish., 1996, 6(2): 125-137.
    [101]金显仕, Hamre, J.,赵宪勇,等.黄海鳀鱼限额捕捞的研究[J].中国水产科学, 2001, 8(3): 27-30.
    [102] Pauly, D., Christensen, V. Primary production required to sustain global fisheries [J]. Nature, 1995, 374(6519): 255-257.
    [103] Pauly, D., Alder, J., Bennett, E., et al. The Future for Fisheries [J]. Science, 2003, 302(5649):1359-1361.
    [104] Klyashtorin, L. B. Long-term climate change and main commercial fish production in the Atlantic and Pacific [J]. Fish. Res., 1998, 37(1-3): 115-125.
    [105]唐启升.黄海鲱鱼世代数量波动原因的初步探讨[J].海洋湖沼通报, 1981(2): 38-45.
    [106] Heath, M. R. Changes in the structure and function of the North Sea fish foodweb, 1973–2000, and the impacts of fishing and climate [J]. ICES J. Mar. Sci., 2005, 62(5): 847-868.
    [107] Walsh, J. J. A carbon budget for overfishing off Peru [J]. Nature, 1981, 290: 300-304.
    [108] Atkinson, A., Siegel, V., Pakhomov, E., et al. Long-term decline in krill stock and increase in salps within the Southern Ocean [J]. Nature, 2004, 432(7013): 100-103.
    [109] Essington, T. E., Beaudreau, A. H., and Wiedenmann, J. Fishing through marine food webs [J]. Proc. Natl Acad. Sci. USA, 2006, 103(9): 3171-3175.
    [110] Coll, M., Libralato, S., Tudela, S., et al. Ecosystem overfishing in the ocean. PLoS One, 2008. 3, e3881 DOI: 10.1371/journal.pone.0003881.
    [111] Brander, k. Impacts of climate change on fisheries [J]. J. mar. syst., 2010, 79: 389-402.
    [112] Pauly, D., Watson, R., Alder, J. Global trends in world fisheries: impacts on marine ecosystems and food security [J]. Phil. Trans. Roy. Soc. Lond B Biol. Sci., 2005, 360(1453): 5-12.
    [113]刘效舜.黄渤海区渔业资源调查与区划[M]北京:海洋出版社. 1990.
    [114]赵传絪,刘效舜,曾炳光,等.中国海洋渔业资源[M]杭州:浙江科学技术出版社出版. 1990.
    [115]刘效舜.小黄鱼性腺的研究[J].黄海水产研究丛刊, 1960, 1(1).
    [116]金显仕,赵宪勇,孟田湘,等.黄、渤海生物资源与栖息环境[M]北京:科学出版社. 2005: 405.
    [117]笠原昊.支那东海、黄海の底曳网渔业とその资源[R].日本水产株式会社研究所报告第3号, 1948:
    [118]林新濯,邓思明,黄正一,等.,小黄鱼种族生物学测定学的研究.见:朱元鼎,朱树屏,编,海洋渔业资源论文选集[M],北京:农业出版社, 1964: 84-108.
    [119]蒙子宁,庄志猛,金显仕,等.黄海和东海小黄鱼遗传多样性的RAPD分析[J].生物多样性, 2003, 11(3): 197-203.
    [120] Lin, L. S., Ying, Y. P., Han, Z. Q., et al. AFLP analysis on genetic diversity and population structure of small yellow croaker Larimichthys polyactis [J]. Afr. J. Biotechnol., 2009, 8(12): 2700-2706.
    [121]徐兆礼,陈佳杰.小黄鱼洄游路线分析[J].中国水产科学, 2009, 16(6): 931-940.
    [122]徐兆礼.再议中国近海小黄鱼种群的划分问题[J].应用生态学报, 2010, 21(11): 2856-2864.
    [123]吴仁协,柳淑芳,庄志猛,等.基于线粒体Cytb基因的黄海,东海小黄鱼(Larimichthys polyactis)群体遗传结构[J].自然科学进展, 2009, 19(9): 924-930.
    [124] Xiao, Y., Zhang, Y., Gao, T., et al. Genetic diversity in the mtDNA control region andpopulation structure in the small yellow croaker Larimichthys polyactis [J]. Environ. Biol. Fish., 2009, 85(4): 303-314.
    [125]罗秉征,卢继武,兰永伦,等.中国近海主要鱼类种群变动与生活史型的演变[J].海洋科学集刊, 1993, 34: 123-137.
    [126]吴敬南,叶昌臣.辽东湾小黄鱼数量变动[R].辽宁省海洋水产研究所调查研究报告第16号, 1964: 1-7
    [127]郭旭鹏,金显仕,戴芳群.渤海小黄鱼生长特征的变化[J].中国水产科学, 2006(2): 243-249.
    [128]张国政,李显森,金显仕,等.黄海中南部小黄鱼生物学特征的变化[J].生态学报, 2010, 30(24): 6854-6861.
    [129]金显仕.黄海小黄鱼(Pseudosciaena polyactis)生态和种群动态的研究[J].中国水产科学, 1996, 3(1): 32-46.
    [130]水柏年.黄海南部、东海北部小黄鱼的年龄与生长研究[J].浙江海洋学院学报:自然科学版, 2003(1): 16-20.
    [131]林龙山,程家骅.东海区小黄鱼渔业生物学现状的分析[J].中国海洋大学学报, 2004(4): 565-570.
    [132]严利平,胡芬,凌建忠,等.东海北部和黄海南部小黄鱼年龄与生长的研究[J].中国海洋大学学报, 2006(1): 95-100.
    [133]林龙山,程家骅,任一平,等.东海区小黄鱼种群生物学特性的分析[J].中国水产科学, 2004, 11(4): 333-338.
    [134]邱望春,蒋定和,黄海南部、东海小黄鱼繁殖习性的初步研究.见: 1962年海洋渔业资源学术会议论文编审委员会,编,海洋渔业资源论文选集[M],北京:中国农业出版社, 1965: 58-71.
    [135]刘勇,严利平,程家骅. 2003年东海北部和黄海南部外海小黄鱼产卵群体的分布特征及其与水温、盐度的关系[J].中国水产科学, 2007, 14(7): 89-96.
    [136]林龙山,程家骅,姜亚洲,等.黄海南部和东海小黄鱼(Larimichthys polyactis)产卵场分布及其环境特征[J].生态学报, 2008, 28(8): 3485-3494.
    [137]水柏年.小黄鱼个体生殖力及其变化的研究[J].浙江海洋学院学报:自然科学版, 2000, 19(1): 58-69.
    [138]任一平,高天翔,刘群,等.黄海南部小黄鱼Pseudosciaena plyactis (Bleeker)渔获群体结构与繁殖特征的初步研究[J].海洋湖沼通报, 2001, 1: 41-46.
    [139]林龙山,姜亚洲,严利平,等.黄海南部和东海小黄鱼产卵亲体分布特征与繁殖力的研究[J].上海海洋大学学报, 2009, 18(4): 453-459.
    [140]曾玲,金显仕,李富国,等.渤海小黄鱼生殖力及其变化[J].海洋科学, 2005(5): 80-83.
    [141]林龙山.东海区小黄鱼现存资源量分析[J].海洋渔业, 2004, 26(1): 18-23.
    [142] FAO. FIGIS - Web Site. Fisheries Global Information System (FIGIS). Update Date: 13 July2010[cited 2010 11 August]; Available from: http://www.fao.org/fishery/figis/en.
    [143]陈大刚.黄渤海渔业生态学[M]北京:海洋出版社. 1991.
    [144]鹿志创.大头鳕(Gadus macrocephalus)分子系统地理学研究[D].青岛:中国海洋大学, 2007: 59.
    [145]唐启升,叶懋中.山东近海渔业资源开发与保护[M]北京:农业出版社. 1990: 214.
    [146]程家骅,张学健.鮟鱇属鱼类的渔业生物学与渔业的研究概况[J].中国水产科学, 2010, 17(1): 161-167.
    [147]林龙山,郑元甲.东海区黄鮟鱇资源状况的初步探讨[J].海洋渔业, 2004, 26(3): 179-183.
    [148] Yoneda, M., Tokimura, M., Fujita, H., et al. Reproductive cycle, fecundity, and seasonal distribution of the anglerfish Lophius litulon in the East China and Yellow Seas [J]. Fish. Bull., 2001, 99: 356-370.
    [149] Smith, P. J., Fujo, Y. Genetic variation in marine teleosts: high variability in habitat specialists and low variability in habitat generalists [J]. Mar. Biol., 1982, 69(1): 7-20.
    [150] Yoneda, M., Tokimura, M., Fujita, H., et al. Age and growth of Anglerfish Lophius litulon in the East China Sea and the Yellow Sea[J]. Fish. Sci., 1997, 63(6): 887-892.
    [151]徐开达,贺舟挺,李鹏飞,等.东海北部、黄海南部黄鮟鱇的年龄和生长[J].渔业科学进展, 2010, 31(6): 9-14.
    [152]张学健,程家骅,沈伟,等.黄鮟鱇繁殖生物研究[J].中国水产科学, 2011, 18(2): 290-298.
    [153]徐开达,贺舟挺,朱文斌,等.东海北部和黄海南部黄鮟鱇的数量分布及其群体结构特征[J].大连海洋大学学报, 2010, 25(5): 465-470.
    [154]中国科学院《中国自然地理》编辑委员会.中国自然地理—海洋地理[M]北京:科学出版社. 1979: 159-174.
    [155]周诗赉,陈聚法,马绍赛,等.渤海增殖水文环境及年代变异特点[J].海洋水产研究, 1997, 18(2): 86-100.
    [156]陈聚法,张云尚,刘海映,等.黄渤海近岸水域生态环境[M].见:程济生,编.黄渤海近岸水域生态环境与生物群落.青岛:中国海洋大学出版社. 2004: 3-16.
    [157]邓景耀.渤海渔业资源增殖与管理的生态学基础[J].海洋水产研究, 1988, 9: 1-10.
    [158]邓景耀,孟田湘,任胜民,等.渤海鱼类种类组成及数量分布[J].海洋水产研究, 1988, 9: 11-89.
    [159]汤毓祥,邹娥梅, Heung-Jae, L.冬至初春黄海暖流的路径和起源[J].海洋学报, 2001, 23(1): 1-12.
    [160]赫崇本,汪园祥,雷宗友,等.黄海冷水团的形成及其性质的初步探讨[J].海洋与湖沼, 1959, 2(1): 11-15.
    [161] Finke, D. L., Denno, R. F. Predator diversity dampens trophic cascades [J]. Nature, 2004, 429(6990): 407-410.
    [1]刘效舜.黄渤海区渔业资源调查与区划[M].北京:海洋出版社. 1990.
    [2]金显仕.黄海小黄鱼(Pseudosciaena polyactis)生态和种群动态的研究[J].中国水产科学, 1996, 3(1): 32-46.
    [3]金显仕,赵宪勇,孟田湘,等.黄、渤海生物资源与栖息环境[M].北京:科学出版社. 2005.
    [4] FAO. FIGIS - Web Site. Fisheries Global Information System (FIGIS). Update Date: 13 July 2010[cited 2010 11 August]; Available from: http://www.fao.org/fishery/figis/en.
    [5]程家骅,林龙山,凌建忠,等.东海区小黄鱼伏季休渔效果及其资源合理利用探讨[J].中国水产科学, 2004, 11(6): 554-560.
    [6]林龙山.东海区小黄鱼现存资源量分析[J].海洋渔业, 2004, 26(1): 18-23.
    [7]黄真理,常剑波.鱼类体长与体重关系中的分形特征[J].水生生物学报, 1999(4): 330-336.
    [8] Pitcher, T. J., Hart, P. J. B. Fisheries ecology [M]. Manuka: Croom Helm. 1982.
    [9]林学群.粤东近海雄性条尾鲱鲤体长与体重关系研究[J].汕头大学学报:自然科学版, 1999, 14(2): 64-71, 80.
    [10] Froese, R. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations [J]. J. Appl. Ichthyol., 2006, 22(4): 241-253.
    [11]詹秉义.渔业资源评估[M].北京:中国农业出版社. 1995: 353.
    [12] Stergiou, K., Fourtouni, H. Food habits, ontogenetic diet shift and selectivity in Zeus faber Linnaeus, 1758 [J]. J. Fish Biol., 1991, 39(4): 589-603.
    [13] Bolger, T., Connolly, P. L. The selection of suitable indicies for the measurement and analysis of fish condition[J]. J. Fish Biol., 1989, 34: 171-182.
    [14]戴强,戴建洪,李成,等.关于肥满度指数的讨论[J].应用与环境生物学报, 2006, 12(5): 715-718.
    [15] Smith, T. M., Reynolds, R. W., Peterson, T. C., et al. Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006) [J]. J. Climate, 2008, 21: 2283-2296.
    [16] Ricker, W. E. Computation and interpretation of biological statistics of fish populations [J]. Bull. Fish. Res. Board. Can., 1975, 191: 1-382
    [17]黄海水产研究所.海洋水产资源调查手册[M].第2版.上海:上海科学技术出版社. 1981:38-39.
    [18] Stergiou, K., Moutopoulos, D. A review of length-weight relationships of fishes from Greek marine waters [J]. Naga, 2001, 24(1/2): 23-39.
    [19]郭旭鹏,金显仕,戴芳群.渤海小黄鱼生长特征的变化[J].中国水产科学, 2006, 13(2): 243-249.
    [20]张国政,李显森,金显仕,等.黄海中南部小黄鱼生物学特征的变化[J].生态学报, 2010, 30(24): 6854-6861.
    [21]王雪辉,杜飞雁,邱永松.南海北部主要经济鱼类体长与体重关系[J].台湾海峡, 2006, 25(2): 262-266.
    [22] Le Cren, E. D. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis) [J]. J. Anim. Ecol., 1951: 201-219.
    [23]杨纪明,杨伟祥,王新成,等.渤海底层的鱼类生物量估计[J].海洋学报, 1990, 12(3): 359-365.
    [24]张建国.完善休渔制度促进渔业资源合理开发利用—1995年7月,我国首次在东,黄海实行伏季全面休渔制度[J].中国渔业改革开放三十年, 2008.
    [25]水柏年.黄海南部、东海北部小黄鱼的年龄与生长研究[J].浙江海洋学院学报(自然科学版), 2003, 22(1): 16-20.
    [26] Li, Z., Shan, X., Jin, X., et al. Long-term variations in body length and age at maturity of the small yellow croaker (Larimichthys polyactis Bleeker, 1877) in the Bohai Sea and the Yellow Sea, China [J]. Fish. Res., 2011, doi: 10.1016/j.fishres.2011.03.013.
    [27] Trippel, E. A. Age at maturity as a stress indicator in fisheries [J]. BioScience, 1995, 45(11): 759-771.
    [28]郭学武,张波,孙耀,等.真鲷幼鱼的摄食与生态转换效率—一种现场研究方法在室内的应用[J].海洋水产研究, 1999, 20(2): 26-31.
    [1]金显仕,赵宪勇,孟田湘,等.黄、渤海生物资源与栖息环境[M].北京:科学出版社. 2005: 405.
    [2] Jin, X., Tang, Q. Changes in fish species diversity and dominant species composition in the Yellow Sea [J]. Fish. Res., 1996, 26(3-4): 337-352.
    [3] Jin, X. Long-term changes in fish community structure in the Bohai Sea, China [J]. Estuar., Coast. Shelf S., 2004, 59(1): 163-171.
    [4]刘效舜.黄渤海区渔业资源调查与区划[M].北京:海洋出版社. 1990.
    [5]金显仕.黄海小黄鱼生态和种群动态的研究[J].中国水产科学, 1996, 3(1): 32-46.
    [6] Kim, S., Jung, S., and Zhang, C. I. The effect of seasonal anomalies of seawater temperature and salinity on the fluctuation in yields of small yellow croaker, Pseudosciaena polyactis, in the Yellow Sea [J]. Fish. Oceanogr., 1997, 6(1): 1-9.
    [7] Xu, B., Jin, X. Variations in fish community structure during winter in the southern Yellow Sea over the period 1985-2002 [J]. Fish. Res., 2005, 71(1): 79-91.
    [8]张波,金显仕,唐启升.长江口及邻近海域高营养层次生物群落功能群及其变化[J].应用生态学报, 2009, 20(2): 344-351.
    [9] FAO, FAO FishFinder, the Species Identification and Data Programme, in FAO: Fisheries and Aquaculture Department [online]. 2010, Updated 6 April 2010.
    [10]严利平,胡芬,凌建忠,等.东海北部和黄海南部小黄鱼年龄与生长的研究[J].中国海洋大学学报, 2006, 36(1): 95-100.
    [11] Hilborn, R., Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty [M]. New York: Chapman & Hall. 1992.
    [12] Cardinale, M., Modin, J. Changes in size-at-maturity of Baltic cod (Gadus morhua) during a period of large variations in stock size and environmental conditions [J]. Fish. Res., 1999, 41(3): 285-295.
    [13] Chen, Y., Mello, L. G. S. Growth and maturation of cod (Gadus morhua) of different year classes in the Northwest Atlantic, NAFO subdivision 3Ps [J]. Fish. Res., 1999, 42(1-2): 87-101.
    [14] Olsen, E., Lilly, G., Heino, M., et al. Assessing changes in age and size at maturation incollapsing populations of Atlantic cod (Gadus morhua) [J]. Can. J. Fish. Aquat. Sci., 2005, 62(4): 811-823.
    [15] Nash, R. D. M., Pilling, G. M., Kell, L. T., et al. Investment in maturity-at-age and-length in northeast Atlantic cod stocks [J]. Fish. Res., 104(1-3): 89-99.
    [16] Beacham, T. D. Growth and maturity of Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence [R]. Canadian Technical Report of Fisheries and Aquatic Sciences 1168. Government of Canada, Fisheries and Oceans, 1983:
    [17] Engelhard, G. H., Heino, M. Maturity changes in Norwegian spring-spawning herring before, during, and after a major population collapse [J]. Fish. Res., 2004, 66(2-3): 299-310.
    [18] Trippel, E. Age at maturity as a stress indicator in fisheries[J]. BioScience, 1995, 45(11): 759-771.
    [19] Gerritsen, H. D., Armstrong, M. J., Allen, M., et al. Variability in maturity and growth in a heavily exploited stock: whiting (Merlangius merlangus L.) in the Irish Sea [J]. J. Sea Res., 2003, 49(1): 69-82.
    [20] Dominguez-Petit, R., Korta, M., Saborido-Rey, F., et al. Changes in size at maturity of European hake Atlantic populations in relation with stock structure and environmental regimes[J]. J. Marine Syst., 2008, 71(3-4): 260-278.
    [21] Johannessen, A., Iversen, S. A., Jin, X., et al. Biological investigations of anchovy and some selected fish species caught during the R/V "Bei Dou" surveys 1984-1999 [J].海洋水产研究, 2001, 22(4): 45-56.
    [22] Law, R. Fishing, selection, and phenotypic evolution [J]. ICES J. Mar. Sci., 2000, 57(3): 659.
    [23] Heino, M., God?, O. R. Fisheries-induced selection pressures in the context of sustainable fisheries [J]. Bull. Mar. Sci., 2002, 70(2): 639-656.
    [24] Ernande, B., Dieckmann, U., Heino, M. Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation [J]. P. Roy. Soc. B: Biol. Sci., 2004, 271(1537): 415-423.
    [25] Engelhard, G. H., Heino, M. Maturity changes in Norwegian spring-spawning herring Clupea harengus: compensatory or evolutionary responses? [J]. Mar. Ecol. Prog. Ser., 2004, 272: 245-256.
    [26] Brown, M., Kawaguchi, S., Candy, S., et al. Temperature effects on the growth and maturation of Antarctic krill (Euphausia superba) [J]. Deep-Sea Res. II, 2010, 57(7-8): 672-682.
    [27] Brander, K. M. Cod Gadus morhua and climate change: process, productivity and prediction [J]. J. Fish Biol., 2010, 77: 1899-1911.
    [28] Strüssmann, C. A., Conover, D. O., Somoza, G. M., et al. Implications of climate change for the reproductive capacity and survival of New World silversides (family Atherinopsidae) [J]. J. Fish Biol., 2010, 77: 1818-1834.
    [29]郭旭鹏,金显仕,戴芳群.渤海小黄鱼生长特征的变化[J].中国水产科学, 2006, 13(2): 243-249.
    [30]张国政,李显森,金显仕,等.黄海中南部小黄鱼生物学特征的变化[J].生态学报, 2010, 30(24): 6854-6861.
    [31]林龙山,程家骅.东海区小黄鱼渔业生物学现状的分析[J].中国海洋大学学报, 2004, 34(4): 565-570.
    [32]曾玲,金显仕,李富国,等.渤海小黄鱼生殖力及其变化[J].海洋科学, 2005, 29(5): 80-83.
    [33]林龙山,姜亚洲,严利平,等.黄海南部和东海小黄鱼产卵亲体分布特征与繁殖力的研究[J].上海海洋大学学报, 2009(004): 453-459.
    [34]程济生,邱盛尧,李培军,等.黄渤海近岸水域生态环境与生物群落[M].青岛:中国海洋大学出版社. 2004.
    [35]苏纪兰,袁耀初,姜景忠.建国以来我国物理海洋学的进展[J].地球物理学报, 1994, 37(增刊I): 85-95.
    [36]邱望春,蒋定和.黄海南部、东海小黄鱼繁殖习性的初步研究.见:海洋渔业资源论文选集, 1962年海洋渔业资源学术会议论文编审委员会编.北京:中国农业出版社. 1965: 58-71.
    [37] Chen, Y., Paloheimo, J. E. Estimating fish length and age at 50% maturity using a logistic type model [J]. Aquat. Sci., 1994, 56(3): 206-219.
    [38] von Bertalanffy, L. A quantitative theory of organic growth (inquiries on growth laws II) [J]. Human biology, 1938, 10(2): 181-213.
    [39] Smith, T. M., Reynolds, R. W., Peterson, T. C., et al. Improvements to NOAA's HistoricalMerged Land-Ocean Surface Temperature Analysis (1880-2006) [J]. J. Climate, 2008, 21: 2283-2296.
    [40] Gallucci, V. F., Quinn, T. J. Reparameterizing, fitting, and testing a simple growth model [J]. Trans. Am. Fish. Soc., 1979, 108(1): 14-25.
    [41] Chen, Y., Harvey, H. H. Maturation of white sucker, Catostomus commersoni, populations in Ontario[J]. Can. J. Fish. Aquat. Sci., 1994, 51(9): 2066-2076.
    [42] Chen, Y., Jackson, D. A., and Harvey, H. H. A comparison of von Bertalanffy and polynomial functions in modelling fish growth data [J]. Can. J. Fish. Aquat. Sci., 1992, 49(6): 1228-1235.
    [43]蒙子宁,庄志猛,金显仕,等.黄海和东海小黄鱼遗传多样性的RAPD分析[J].生物多样性, 2003(3): 197-203.
    [44] Tang, Q., Jin, X., Wang, J., et al. Decadal-scale variations of ecosystem productivity and control mechanisms in the Bohai Sea [J]. Fish. Oceanogr., 2003, 12(4-5): 223-233.
    [45] Lorenzen, K., Enberg, K. Density-dependent growth as a key mechanism in the regulation of fish populations: evidence from among-population comparisons [J]. Proc. Roy. Soc. Lond. B Biol. Sci., 2002, 269(1486): 49-54.
    [46] Plaistow, S. J., Lapsley, C. T., Beckerman, A. P., et al. Age and size at maturity: sex, environmental variability and developmental thresholds [J]. Proc. Roy. Soc. B Biol. Sci., 2004, 271(1542): 919-924.
    [47] Law, R., Grey, D. R. Evolution of yields from populations with age-specific cropping [J]. Evol. Eco., 1989, 3(4): 343-359.
    [48]林龙山,程家骅,姜亚洲,等.黄海南部和东海小黄鱼(Larimichthys polyactis)产卵场分布及其环境特征[J].生态学报, 2008, 28(8): 3485-3494.
    [49]刘勇,严利平,程家骅. 2003年东海北部和黄海南部外海小黄鱼产卵群体的分布特征及其与水温、盐度的关系[J].中国水产科学, 2007, 14(7): 89-96.
    [50] Miethe, T., Dytham, C., Dieckmann, U., et al. Marine reserves and the evolutionary effects of fishing on size at maturation[J]. ICES J. Mar. Sci., 67(3): 412-425.
    [1] IPCC.气候变化2007:综合报告[R].瑞士,日内瓦: IPCC, 2007: 104
    [2]陈宝红,周秋麟,杨圣云.气候变化对海洋生物多样性的影响[J].台湾海峡, 2009, 28(3): 437-443.
    [3] Brander, K. M. Global fish production and climate change [J]. P. Natl. Acad. Sci. USA, 2007, 104(50): 19709-19714.
    [4] Arcos, D. F., Cubillos, L. A., and Nú?ez, S. P. The jack mackerel fishery and El Ni?o 1997-98 effects off Chile [J]. Prog. Oceanogr., 2001, 49(1-4): 597-617.
    [5] Climate Prediction Center NOAA. Cold & warm episodes by season. Update Date: 2011 March 7[cited 2011 March 30]; Available from: http://www.cpc.ncep.noaa.gov/products /analysis_monitoring/ensostuff/ensoyears.shtml.
    [6]刘效舜.黄渤海区渔业资源调查与区划[M].北京:海洋出版社. 1990.
    [7]金显仕,赵宪勇,孟田湘,等.黄、渤海生物资源与栖息环境[M].北京:科学出版社. 2005: 405.
    [8]林龙山.东海区小黄鱼现存资源量分析[J].海洋渔业, 2004, 26(1): 18-23.
    [9] Kim, S., Jung, S., and Zhang, C. I. The effect of seasonal anomalies of seawater temperature and salinity on the fluctuation in yields of small yellow croaker, Pseudosciaena polyactis, in the Yellow Sea [J]. Fish. Oceanogr., 1997, 6(1): 1-9.
    [10]刘允芬.气候变化对我国沿海渔业生产影响的评价[J].中国农业气象, 2000, 21(4): 1-5, 28.
    [11]李建生,林龙山,程家骅.东海北部秋季小黄鱼分布特征及其与底层温度和盐度的关系[J].中国水产科学, 2009, 16(3): 348-356.
    [12]王继隆,李继龙,杨文波,等.主要气侯因子对东中国海主要经济鱼种生物量的影响研究[J].湖南农业科学, 2010(9): 142-147.
    [13]张辉,袁兴伟,程家骅.东海区小黄鱼繁殖模型优化选择及其管理应用研究[J].中国水产科学, 2010, 17(6): 1300-1308.
    [14] Xu, B., Jin, X. Variations in fish community structure during winter in the southern Yellow Sea over the period 1985-2002 [J]. Fish. Res., 2005, 71(1): 79-91.
    [15]农业部渔业局.中国渔业年鉴[M]. Vol. 1960-2008.北京:中国农业出版社. 2010.
    [16]徐兆礼,陈佳杰.小黄鱼洄游路线分析[J].中国水产科学, 2009, 16(6): 931-940.
    [17]林龙山,姜亚洲,严利平,等.黄海南部和东海小黄鱼产卵亲体分布特征与繁殖力的研究[J].上海海洋大学学报, 2009, 18(4): 453-459.
    [18]徐宾铎,金显仕,梁振林.秋季黄海底层鱼类群落结构的变化[J].中国水产科学, 2003, 10(2): 148-154.
    [19]程家骅,林龙山,凌建忠,等.东海区小黄鱼伏季休渔效果及其资源合理利用探讨[J].中国水产科学, 2004, 11(6): 554-560.
    [20] Perry, A. L., Low, P. J., Ellis, J. R., et al. Climate change and distribution shifts in marine fishes [J]. Science, 2005, 308(5730): 1912-1915.
    [21]唐议,邹伟红,胡振明.基于统计数据的中国海洋渔业资源利用状况及管理分析[J].资源科学, 2009, 31(6): 1061-1068.
    [22]杨纪明,杨伟祥,王新成,等.渤海底层的鱼类生物量估计[J].海洋学报, 1990, 12(3): 359-365.
    [23]殷名称.鱼类早起生活史研究与其进展[J].水产学报, 1991, 15(4): 348-358.
    [24]曹从华,曲如美,张惠滋.东中国海海温场对厄尔尼诺与反厄尔尼诺事件的响应[J].海洋预报, 1999, 16(4): 39-45.
    [25]李超.埃尔尼诺对我国汛期降水的影响[J].海洋学报, 1992, 14(8): 45-51.
    [26]何发祥,陈清花,郑爱榕.厄尔尼诺与浙江近海冬汛带鱼渔获量关系[J].海洋湖沼通报, 1995(3): 17-23.
    [27]杨宇峰,王庆,陈菊芳,等.河口浮游动物生态学研究进展[J].生态学报, 2006, 26(2): 576-585.
    [28]李建生,严利平,李惠玉,等.黄海南部、东海北部夏秋季小黄鱼数量分布及与浮游动物的关系[J].海洋渔业, 2007, 29(1): 31-37.
    [29] Wootton, R. J. Ecology of teleost fishes [M]. 2ed Edition. Dordrecht: Kluwer Academic Publishers. 1998: 259-266.
    [30] Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., et al. Projecting global marine biodiversity impacts under climate change scenarios [J]. Fish Fish., 2009, 10: 235-251.
    [1]刘允芬.气候变化对我国沿海渔业生产影响的评价[J].中国农业气象, 2000, 21(4): 1-5, 28.
    [2]樊伟,程炎宏,沈新强.全球环境变化与人类活动对渔业资源的影响[J].中国水产科学, 2001, 8(4): 91-94.
    [3] Kim, S., Zhang, C.-I., Kim, J.-Y., et al. Climate variability and its effects on major fisheries in Korea [J]. Ocean Sci. J., 2007, 42(3): 179-192.
    [4]陈宝红,周秋麟,杨圣云.气候变化对海洋生物多样性的影响[J].台湾海峡, 2009, 28(3): 437-444.
    [5] Tang, Q., Su, J., and Zhang, J. China GLOBEC II: A case study of the Yellow Sea and East China Sea Ecosystem Dynamics [J]. Deep-Sea Res. II, 2010, 57(11-12): 993-995.
    [6]唐启升,叶懋中.山东近海渔业资源开发与保护[M].北京:农业出版社. 1990: 214.
    [7]陈大刚.黄渤海渔业生态学[M].北京:海洋出版社. 1991.
    [8]方明烈.黄海鳕鱼(Gadus macrocephalus Tilesius)摄食习性的初步研究[J].海洋湖沼通报, 1982(2): 46-54.
    [9]高天翔,杜宁,张义龙,等.大头鳕Gadus macrocephalus Tilesius摄食食性的初步研究[J].海洋湖沼通报, 2003(004): 74-78.
    [10] Jin, X., Zhang, B., and Xue, Y. The response of the diets of four carnivorous fishes to variations in the Yellow Sea ecosystems [J]. Deep-Sea Res. II, 2010, 57(11-12): 996-1000.
    [11]方华华.江鳕和大头鳕形态学和遗传学的研究[D].青岛:中国海洋大学, 2005: 63.
    [12]方华华,高天翔,姜作发,等.江鳕和大头鳕形态学的初步研究[J].海洋水产研究, 2005, 26(003): 22-26.
    [13]高天翔,张肖荣,王丹,等.几种鳕鱼的生物学初步研究[J].海洋湖沼通报, 2003(1): 35-42.
    [14]郭旭鹏,金显仕,戴芳群.渤海小黄鱼生长特征的变化[J].中国水产科学, 2006(2): 243-249.
    [15]张国政,李显森,金显仕,等.黄海中南部小黄鱼生物学特征的变化[J].生态学报, 2010, 30(24): 6854-6861.
    [16] Reynolds, R. W., Rayner, N. A., Smith, T. M., et al. An improved in situ and satellite SST analysis for climate [J]. J. Climate, 2002, 15(13): 1609-1625.
    [17]金显仕.底拖网资源调查的昼夜误差分析[J].海洋水产研究, 1997, 18(1): 42-46.
    [18]黄海水产研究所.海洋水产资源调查手册[M].第2版.上海:上海科学技术出版社. 1981:39-39.
    [19]张波,唐启升.东、黄海六种鳗的食性[J].水产学报, 2003, 27(4): 307-314.
    [20] Schafer, L. N., Platell, M. E., Valesini, F. J., et al. Comparisons between the influence of habitat type, season and body size on the dietary compositions of fish species in nearshore marine waters [J]. J. Exp. Mar. Biol. Ecol., 2002, 278(1): 67-92.
    [21] Stergiou, K., Fourtouni, H. Food habits, ontogenetic diet shift and selectivity in Zeus faber Linnaeus, 1758 [J]. J. Fish Biol., 1991, 39: 589-603.
    [22]王雪辉,杜飞雁,邱永松.南海北部主要经济鱼类体长与体重关系[J].台湾海峡, 2006, 25(2): 262-266.
    [23]唐启升,渔业生物学研究方法概述.见:邓景耀,赵传絪,唐启升,等编.海洋渔业生物学[M],北京:农业出版社, 1991.
    [24]张建国.完善休渔制度、促进渔业资源合理开发利用—1995年7月,我国首次在东、黄海实行伏季全面休渔制度[J].中国渔业改革开放三十年, 2008.
    [25]卞晓东.鱼卵、仔稚鱼形态生态学基础研究—兼报黄河口海域鱼类浮游生物调查[D].青岛:中国海洋大学, 2010: 213.
    [26] Laurel, B. J., Hurst, T. P., Copeman, L. A., et al. The role of temperature on the growth and survival of early and late hatching Pacific cod larvae (Gadus macrocephalus) [J]. J. Plankton Res., 2008, 30(9): 1051-1060.
    [27] Alderdice, D. F., Forrester, C. R. Effects of salinity, temperature, and dissolved oxygen on early development of the Pacific cod (Gadus macrocephalus) [J]. J. Fish. Res. Board Can., 1971, 28(6): 883-902.
    [28] Perry, A. L., Low, P. J., Ellis, J. R., et al. Climate change and distribution shifts in marine fishes[J]. Science, 2005, 308(5730): 1912-1915.
    [29]王荣,高尚武,王克,等.冬季黄海暖流的浮游动物指示[J].水产学报, 2003, 27(增刊): 39-48.
    [30]金显仕.山东半岛南部水域春季游泳动物群落结构的变化[J].水产学报, 2003, 27(1): 19-24.
    [1]林龙山,郑元甲.东海区黄鮟鱇资源状况的初步探讨[J].海洋渔业, 2004, 26(3): 179-183.
    [2]程家骅,张学健.鮟鱇属鱼类的渔业生物学与渔业的研究概况[J].中国水产科学, 2010, 17(1): 161-167.
    [3] Yoneda, M., Tokimura, M., Fujita, H., et al. Age and growth of Anglerfish Lophius litulon in the East China Sea and the Yellow Sea [J]. Fish. Sci., 1997, 63(6): 887-892.
    [4]徐开达,贺舟挺,李鹏飞,等.东海北部、黄海南部黄鮟鱇的年龄和生长[J].渔业科学进展, 2010, 31(6): 9-14.
    [5] Yoneda, M., Tokimura, M., Fujita, H., et al. Reproductive cycle, fecundity, and seasonal distribution of the anglerfish Lophius litulon in the East China and Yellow Seas [J]. Fish. Bull., 2001, 99: 356-370.
    [6]张学健,程家骅,沈伟,等.黄鮟鱇繁殖生物研究[J].中国水产科学, 2011, 18(2): 290-298.
    [7]薛莹,徐宾铎,高天翔,等.北黄海秋季黄鮟鱇摄食习性的初步研究[J].中国海洋大学学报, 2010, 40(9): 39-44.
    [8]张学健,程家骅,沈伟,等.黄海南部黄鮟鱇摄食生态[J].生态学报, 2010, 30(12): 3117-3125.
    [9]徐开达,贺舟挺,朱文斌,等.东海北部和黄海南部黄鮟鱇的数量分布及其群体结构特征[J].大连水产学院学报, 2010, 25(5): 465-470.
    [10] Smith, T. M., Reynolds, R. W., Peterson, T. C., et al. Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006) [J]. J. Climate, 2008, 21: 2283-2296.
    [11] FAO, FIGIS - Web Site. Fisheries Global Information System (FIGIS), Updated: 13 July 2010. [Cite 11 August 2010]. FAO Fisheries and Aquaculture Department [online]. http://www.fao. org/ fishery /figis/en,
    [12]黄海水产研究所.海洋水产资源调查手册[M].第2版.上海:上海科学技术出版社. 1981.
    [13]郭斌,张波,金显仕.黄海海州湾小黄鱼幼鱼的食性及其随体长的变化[J].中国水产科学, 2010, 17(2): 289-297.
    [14] Jin, X., Zhang, B., Xue, Y. The response of the diets of four carnivorous fishes to variations in the Yellow Sea ecosystems [J]. Deep-Sea Res. II, 2010, 57(11-12): 996-1000.
    [15] Schafer, L. N., Platell, M. E., Valesini, F. J., et al. Comparisons between the influence of habitat type, season and body size on the dietary compositions of fish species in nearshore marine waters [J]. J. Exp. Mar. Biol. Ecol., 2002, 278(1): 67-92.
    [16] Xu, B., Jin, X. Variations in fish community structure during winter in the southern Yellow Sea over the period 1985-2002[J]. Fish. Res., 2005, 71: 79-91.
    [17] Fari?a, A. C., Azevedo, M., Landa, J., et al. Lophius in the world: a synthesis on the common features and life strategies [J]. ICES J. Mar. Sci., 2008, 65: 1272-1280.
    [18] Richards, R. A., Nitschke, P. C., and Sosebee, K. A. Population biology of monkfish Lophiusamericanus [J]. ICES J. Mar. Sci., 2008, 65: 1291-1305.
    [19] Duarte, R., Azevedo, M., Landa, J., et al. Reproduction of anglerfish (Lophius budegassa Spainola and Lophius piscatorius linnaeus) from the Atlantic Iberian coast [J]. Fish. Res., 2001, 51: 349-361.
    [20]徐宾铎,金显仕,梁振林.秋季黄海底层鱼类群落结构的变化[J].中国水产科学, 2003, 10(2): 148-154.
    [21]姬广磊,高天翔,卓本柳.黄海和日本海黄鮟鱇的形态和同工酶差异[J].海洋水产研究, 2007, 28(3): 73-79.
    [22]林龙山,姜亚洲,严利平,等.黄海南部和东海小黄鱼产卵亲体分布特征与繁殖力的研究[J].上海海洋大学学报, 2009, 18(4): 453-459.
    [23]林龙山,程家骅,姜亚洲,等.黄海南部和东海小黄鱼(Larimichthys polyactis)产卵场分布及其环境特征[J].生态学报, 2008, 28(8): 3485-3494.
    [24]张波,孙耀,唐启升.鱼类的胃排空率及其影响因素[J].生态学报, 2001, 21(4): 665-670.
    [25]程济生.黄海无脊椎动物资源结构及多样性[J].中国水产科学, 2005, 12(1): 68-75.
    [26]蔡德陵,李红燕,唐启升,等.黄东海生态系统食物网连续营养谱的建立:来自碳氮稳定同位素方法的结果[J].中国科学C辑:生命科学, 2005, 35(2): 123-130.
    [27]张波,唐启升.渤、黄、东海高营养层次重要生物资源种类的营养级研究[J].海洋科学进展, 2004, 22(4): 393-404.
    [28]唐启升,黄海鲱.见:邓景耀,赵传絪,唐启升,等编.海洋渔业生物学[M],北京:农业出版社, 1991: 296-356.
    [29] P?rtner, H. O., Berdal, B., Blust, R., et al. Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus) [J]. Cont. Shelf Res., 2001, 21(18-19): 1975-1997.
    [30] Kim, S., Zhang, C.-I., Kim, J.-Y., et al. Climate variability and its effects on major fisheries in Korea [J]. Ocean Sci. J., 2007, 42(3): 179-192.
    [31]张甲珅,苏奋振,杜云燕.东海区中上层鱼类资源与海表温度关系[J].资源科学, 2004, 26(5): 147-152.
    [32]薛莹,金显仕,赵宪勇,等.秋季黄海中南部鱼类群落对饵料生物的摄食量[J].中国海洋大学学报, 2007, 37(1): 75-82.
    [33]张波,唐启升,金显仕,等.东海和黄海主要鱼类的食物竞争[J].动物学报, 2005, 51(4): 616-623.
    [34]凌建忠,李圣法,严利平,等.基于Beverton-Holt模型的东海带鱼资源利用与管理[J].应用生态学报, 2008, 19(1): 178-182.
    [35]张波.黄海中部高眼鲽的摄食及随体长的变化[J].应用生态学报, 2007, 18(8): 1849-1854.
    [36] Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., et al. Projecting global marine biodiversity impacts under climate change scenarios [J]. Fish Fish., 2009, 10: 235-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700