水溶性炭质中间体的制备及其在电化学领域的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于日趋严重的环境问题和日益紧缺的化石资源,绿色能源越来越受到人们的关注,尤其是双电层电容器和锂离子电池等储能元件的发展,水溶性炭质中间体在制备炭材料过程中可以避免有机溶剂的使用,降低化学试剂用量,省去氧化稳定化过程,具有经济,节能,环保的特点,符合绿色化工的要求。考察了水溶性中间体的结构,形成机理,拓展其在储能领域的应用,具有一定的科研价值与应用前景。
     本文分别在水溶液和丙酮两种不同的溶剂中制备出两种不同形态的水溶性炭质中间体—片状中间体和球状中间体,并通过多种表征手段对其结构和形成机理进行了分析。结果表明,水溶性中间体一级单元是官能化的稠环分子,在碱溶液中以纳米形态稳定存在,在炭层边缘和骨架上均被引入官能团,包括-COOH,-SO_3H,-OH,-NO_2,-C=O等,其中-NO_2的存在是水溶性中间体能够溶于碱溶液的主要原因。使用丙酮置换水溶性中间体乙二胺溶液中的水,可以得到球状中间体,这些微球粒径分布在30~50nm范围内,微球之间粘连聚集成类似炭气凝胶的外貌结构。形成的球状中间体的微晶尺寸比片状中间体小,层间距大。生成的球状中间体比表面积为89.8m~2/g,经过800°C炭化之后比表面积升高到292.3m~2/g,在炭化过程中有许多微孔形成。
     以针状焦为原料制备出两种不同氧化深度的水溶性中间体,使用X射线衍射和X射线光电子能谱对两种水溶性中间体进行了表征,然后考察了氧化深度和KOH的用量对孔结构的影响。实验证明以水溶性中间体为前驱体制备的活性炭孔结构发达,氧化程度越深,结构被破坏越严重,微晶尺寸越小,在相同的活化条件下得到的活性炭比表面积越大,中孔率越高,用作双电层电容器电极材料,其传输孔道比较短,孔道结构更有利于离子传输,尤其适用于大电流性能测试。
     为了考察不同结构的前驱体对水溶性中间体的结构,以及相应的活性炭的孔结构的影响,本文使用了中温煤沥青为前驱体,并与针状焦基活性炭做对比。实验结果证明,沥青基水溶性中间体活化后得到的活性炭离子传输通道更短,微孔与中孔的分布更加合理,有利于离子的快速移动,提高了电容器的功率密度,最高可以达到5kW/kg。碱炭比为1.5时,得到的活性炭比表面积为2575m~2/g,孔容为1.54cm~3/g,中孔主要分布在2~4nm范围内。做为电极材料表现出优异的功率特性,在100A/g的电流密度下,质量比电容为195F/g。在有机系电容器中,此活性炭也体现出优异的能量特性,在不同的电流密度下能量密度为30~40Wh/kg。这也证明了我们找到了一种在相对较低的碱炭比条件下仍能保持较高中孔率和较高比表面积的前驱体—沥青基水溶性中间体。
     利用中间体的水溶性和两亲性,在水相体系下包覆天然鳞片石墨,并考察包覆材料的电化学性能。随着包覆量的增加,样品的比表面积有所减小,拉曼光谱结果显示R(ID/IG)值随着包覆量的增加升高。在电化学测试中,随着包覆量的增加,首次效率呈现先升高后下降的趋势,在最佳包覆条件下得到的包覆样品首次效率能达到92.2%,可逆容量为359.6mAh/g,不可逆容量仅为30.4mAh/g;不同的炭化温度得到的样品首次效率不同,800-1400°C的热处理温度是最优范围,过高的升温速率也会造成样品首次效率的降低,最佳升温速率是1~5°C/min。
In view of environmental pollution and increasingly exhausted of fossil resource,renewable resource as alternate resources attracts more and more attention, especiallyfor the energy storage devices such as lithium ion battery and supercapacitor. Watersoluble carbonaceous intermediate can soluble in water owing to abundant functionalgroups. Based on this property, no organic solvent and stabilization process is neededduring the preparation of carbon materials when using intermediate as precursor.Therefore, ACM is economic, facile, and green in carbon materials production. It isnecessary to study the forming mechanism of intermediate and develop itsapplications in energy storage.
     Two kinds of intermediate with different morphology were prepared in water andacetone respectively, and then various tools were used to study the structure andforming mechanism of intermediates. The results showed that the primary units ofintermediate are functionalized condensed nucleus molecular, which can disperse inalkaline solution in nanoscale. All these units were introduced onto variousO-containing groups, such as–COOH,-SO_3H,-OH,-NO_2,-C=O and so on, of which-NO_2is one of the main groups that influence the solubility of intermediate. Sphericalintermediate can be obtained using acetone to replace the water of alkaline solution.The resulting product was piled up by highly connected nano-particles with diametersof30~50nm, which constructed a3-D architecture also providing certain mesoporesand macropores. N2sorption analysis showed that the SBETof carbonized sphericalintermediate is292m2/g and had a wide pore size distribution from micropores tomacropores.
     The properties of water soluble carbonaceous intermediates derived from greenneedle coke (GNC) and their influence on the subsequent porous carbon materialswere studied. Using the intermediates is an effective way for preparingwell-developed porous carbons by KOH activation. The degree of oxidation hadsignificant effects on the structures of the intermediates and further determined thestructure and EDLC performance of the final porous carbon. Soluble intermediatesproduced better high-rate-capacitive EDLC’s electrode materials than insoluble intermediates, which can be attributed that soluble intermediates have fewercarbonaceous stacked layers, which give the short diffusion path for the electrolyteand enable a high utilization rate of the micropores.
     In order to further study the effect of microcrystalline structure on the poroustexture of activated carbon, another contrastive precursor, coal tar pitch from (CP)was taken into account. At the KOH/intermediate mass ratio of1.5, the porous carbonobtained exhibited surface area as high as2575m~2/g and pore volume as large as1.54cm~3/g, the pore size centered at2~4nm. Electrochemical characterizationsdemonstrated that CP-derived porous carbon showed superior capacitances both inaqueous (6M KOH) and organic (1M Et4NBF4/acetonitrile) electrolytes. In aqueoussystem, the specific capacitance of CP-A5-1.5reached284F/g at a current density of0.05A/g and still maintained at195F/g at current density of100A/g. In organicsystem, the energy density of CP-A5-1.5can reach to40Wh/Kg.
     Based on the unique property of water solubility, intermediate was employed tocoat natural graphite, results showed that coated natural graphite show lessirreversible capacity and improved coulombic efficiency than unmodified naturalgraphite. The BET specific surface area of unmodified NFG drastically decreases aftercarbon coating. On the contrary, the R (ID/IG) value increases with the increase ofcoated amount. In order to have certain improvement in anode performance, optimumconditions for carbon coating had to be applied, under the optimum conditions, thereversible and irreversible capacity of coated sample is359.6mAh/g and30.4mAh/g,heat treatment temperature should be in the range of800-1400°C and heating rate inthe range of1-5°C/min.
引文
[1] Fujii M, Yamada Y, Imamura T, Preparation of aqua-mesophase by nitration orsulfonation of carbonaceous mesophase and properties of carbon material madefrom it,18th Biennial Conference of Carbon,1987:405-406.
    [2] Tateishi D, Esumi K, Honda H, Formation of carbonaceous gel, Carbon,1991,29(8):1296-1298.
    [3] Tateishi D, Esumi K, Honda H, et al., Preparation of carbonaceous gel beads,Carbon,1992,30(6):942-944.
    [4] Tateishi, D, Esumi, K, Honda, H, Preparation of Organo-carbonaceous gel,Carbon,1992,30(6):944-945.
    [5]余高奇,李轩科,刘秀然等,混酸系制备水性中间相,炭素技术,2000,108(1):22-24.
    [6]李轩科,刘朗,沈士德,原料以及制备条件对水性中间相产率和性能的影响,新型炭材料,2000,15(1):57-60.
    [7]王同华,孟秀英,施柳等,常温干燥法制备纳米碳粉,大连理工大学学报,2007,47(5):643-646.
    [8]余高奇,刘秀然,王东梅等,超细炭前躯体的分析,武汉科技大学学报,2001,24(4):355-357.
    [9]吴卫泽,朱珍平,刘振宇,水相炭基溶胶-凝胶法制备纳米炭粉的研究,新型炭材料,2001,16(3):12-16.
    [10] Li X, Liu L, Li Z, et al., The characterization of ultrafine carbon powders bySAXS and Raman spectra, Carbon,2000,38(4):639-641.
    [11] Li X, Liu L, Shen S, The influence of starting materials on the structure ofultrafine carbon powders. Carbon,2001,39(15):2335-2338.
    [12]王瑨,两亲性炭材料的结构机理及其在电极材料领域应用的研究:[博士学位论文],天津;天津大学,2010.
    [13]吴卫泽,朱珍平,刘振宇,Fe/C复合纳米材料的制备研究,新型炭材料,2002,17(1):4-9.
    [14] Esumi K, Eshima S, Murakami Y, et al., Preparation of hollowcarbon-microbeads from water-in-oil emulsion using amphiphilic carbonaceousmaterial, Colloids Surf., A: Physicochemical and Engineering Aspects,1996,108(1):113-116.
    [15] Li Z, Yan W, Dai S, A novel vesicular carbon synthesized using amphiphiliccarbonaceous material and micelle templating approach, Carbon,2004,42(4):767-770.
    [16] Wang J, Wang C, Chen M, et al., Preparation of mesoporous carbons fromamphiphilic carbonaceous material for high-performance electric double-layercapacitors, J. Power Sources,2011,196(1):550-558.
    [17]古可隆,活性炭,北京:教育科学出版社,2007,13.
    [18] Rodríguez-Reinoso F, Molina-Sabio M, González MT, The use of steam and CO2as activating agents in the preparation of activated carbons, Carbon,1995,33(1):15-23.
    [19] Caturla F, Molina-Sabio M, Rodriguez-Reinoso F, Preparationof activated carbonby chemical activation with zinc chloride. Carbon,1991,29(7):999–1007.
    [20] Martin MJ, Balaguer MD, Rigola M, Feasibility of activated carbon productionfrom biological sludge by chemical activation with ZnCl2and H2SO4, EnvironTechnol,1996,17(6):667-672.
    [21] Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, et al., Development ofporosity upon chemical activation of kraft lignin with ZnCl2, Ind Eng Chem Res,1997,36(11):4832-4838.
    [22] Tsai WT, Chang CY, Lee SL, A low cost adsorbent from agricultural waste corncob by zinc chloride activation, Bioresour Technol,1998,64(3):211-217.
    [23] Teng H, Yeh T-S, Preparation of activated carbons from bituminous coals withzinc chloride activation, Ind Eng Chem Res,1998,37(1):58-65.
    [24] Oliveira L C A, Pereira E, Guimaraes I R, et al., Preparation of activated carbonsfrom coffee husks utilizing FeCl3and ZnCl2as activating agents, J. Hazard.Mater.,2009,165(1-3):87-94.
    [25] Wang T H, Tan S X, Liang C H, Preparation and characterization of activatedcarbon from wood via microwave-induced ZnCl2activation, Carbon,2009,47(7):1880-1883.
    [26] Baccar R, Bouzid J, Feki M, Montiel A, Preparation of activated carbon fromTunisian olive-waste cakes and its application for adsorption of heavy metal ions,J. Hazard. Mater.,2009,162(2-3):1522-1529.
    [27] Yorgun S, Vural N, Demiral H, Preparation of high-surface area activatedcarbons from Paulownia wood by ZnCl2activation, Microporous MesoporousMater.,2009,122(1-3):189-194.
    [28] Guo Y P, Rockstraw D A, Physical and chemical properties of carbonssynthesized from xylan, cellulose, and Kraft lignin by H3PO4activation, Carbon,2006,44(8):1464-1475.
    [29] Gómez-Serrano V, Cuerda-Correa E M, Fernández-González M C, et al.,Preparation of activated carbons from chestnut wood by phosphoricacid-chemical activation, Study of microporosity and fractal dimension, Mater.Lett.,2005,59(7):846-853.
    [30] Li W, Peng J H, Zhang L B, et al., Investigations on carbonization processes ofplain tobacco stems and H3PO4-impregnated tobacco stems used for thepreparation of activated carbons with H3PO4activation, Ind. Crops Prod.,2008,28(1):73-80.
    [31] Wang L, Guo Y, Zou B, Rong C, Ma X, Qu Y, Li Y, and Wang Z, High surfacearea porous carbons prepared from hydrochars by phosphoric acid activation,Bioresour. Technol.,2011,102(2):1947-1950.
    [32]赵朔,马铃薯淀粉基炭微球制备机理及电化学性能的研究:[博士学位论文],天津;天津大学,2009
    [33] Chunlan L, Shaoping X, Yixiong G, et al., Effect of pre-carbonization ofpetroleum cokes on chemical activation process with KOH, Carbon,2005,43(11):2295-301.
    [34] Lu C, Xu S, Wang M, et al., Effect of pre-oxidation on the development ofporosity in activated carbons from petroleum coke, Carbon,2007,45(1):206-9.
    [35] Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A, Understandingchemical reactions between carbons and NaOH and KOH: An insight into thechemical activation mechanism, Carbon,2003,41(2):267-275.
    [36] Hayashi Ji, Uchibayashi M, Horikawa T, et al., Synthesizing activated carbonsfrom resins by chemical activation with K2CO3, Carbon,2002,40(15):2747-2752.
    [37] Ahmadpour A, Do DD, The preparation of activated carbon from macadamianutshell by chemical activation, Carbon,1997,35(12):1723-1732.
    [38] Wu M, Zha Q, Qiu J, et al., Preparation of porous carbons from petroleum cokeby different activation methods, Fuel,2005,84(14-15):1992-1997.
    [39] Ue M, Mobility and ionic association of lithium and quaternary ammonium saltsin propylene carbonate and γ-butyrolactone, J. Electrochem. Soc.,1994,141(12):3336-3342.
    [40] Arulepp M, Permann L, Leis J, et al., Influence of the solvent properties on thecharacteristics of a double layer capacitor, J. Power Sources2004,133(2):320-328.
    [41] Morita M, Kaigaishi T, Yoshimoto N, et al., Effects of the electrolytecomposition on the electric double-layer capacitance at carbon electrodes,Electrochem. Solid-State Lett.,2006,9(8):A386-A389.
    [42] Lust E, Nurk G, J nes A, et al., Electrochemical properties of nanoporous carbonelectrodes in various nonaqueous electrolytes, J. Solid State Electrochem.,2003,7(2):91-105.
    [43] Lazzari M, Mastragostino M, Soavi F, Capacitance response of carbons insolvent-free ionic liquid electrolytes, Electrochem. Commun.,2007,9(7):1567-1572.
    [44] Mastragostino M, Soavi F, Strategies for high-performance supercapacitors forHEV, J. Power Sources,2007,174(1):89-93.
    [45] Liu X, Osaka T, All-solid-state electric double-layer capacitor with isotropichigh-density graphite electrode and polyethylene oxide/LiClO4polymerelectrolyte, J. Electrochem. Soc.,1996,143(12):3982-3986.
    [46] Liu X, Osaka T, Properties of electric double-layer capacitors with variouspolymer gel electrolytes, J. Electrochem. Soc.,1997,144(9):3066-3071.
    [47] Eliad L, Salitra G, Soffer A, et al., Ion sieving effects in the electrical doublelayer of porous carbon electrodes: Estimating effective ion size in electrolyticsolutions, J. Phys. Chem. B,2001,105(29):6880-6887.
    [48] Endo M, Maeda T, Takeda T, et al., Capacitance and Pore-Size Distribution inAqueous and Nonaqueous Electrolytes Using Various Activated CarbonElectrodes, J. Electrochem. Soc.,2001,148(8):A910-A914.
    [53] Braun A, B rtsch M, Schnyder B, et al., X-ray scattering and adsorption studiesof thermally oxidized glassy carbon, J. Non-Cryst. Solids,1999,260(1-2):1-14.
    [54] Teng H, Chang YJ, Hsieh CT, Performance of electric double-layer capacitorsusing carbons prepared from phenol~formaldehyde resins by KOH etching,Carbon,2001,39(13):1981-1987.
    [55] Weng T-C, Teng H, Characterization of High Porosity Carbon Electrodes Derivedfrom Mesophase Pitch for Electric Double-Layer Capacitors, J. Electrochem.Soc.,2001,148(4),A368-A373.
    [56] Endo M, Kim YJ, Maeda T, et al., Morphological effect on the electrochemicalbehavior of electric double-layer capacitors, J. Mater. Res.,2001,16(12):3402-3410.
    [57] Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, et al., Influence ofpore structure and surface chemistry on electric double layer capacitance innon-aqueous electrolyte, Carbon,2003,41(9):1765-1775.
    [58] Kierzek K, Frackowiak E, Lota G, et al., Electrochemical capacitors based onhighly porous carbons prepared by KOH activation, Electrochimica Acta,2004,49(4):515-523.
    [59] Asakura R, Kondo T, Morita M, et al., Electric double-layer capacitorcharacteristics of activated wood charcoals, Tanso,2004,215:231-235.
    [60] Kim YJ, Horie Y, Ozaki S, et al., Correlation between the pore and solvated ionsize on capacitance uptake of PVDC-based carbons, Carbon,2004,42(8-9):1491-1500.
    [61] Barbieri O, Hahn M, Herzog A, et al., Capacitance limits of high surface areaactivated carbons for double layer capacitors, Carbon,2005,3(6):1303-1310.
    [62] Toupin M, Bélanger D, Hill IR, et al., Performance of experimental carbon blacksin aqueous supercapacitors, J. Power Sources,2005,140(1):203-210.
    [63] Alonso A, Ruiz V, Blanco C, et al., Activated carbon produced from Sasol-Lurgigasifier pitch and its application as electrodes in supercapacitors, Carbon,2006,44(3):441-446.
    [64] Rufford TE, Hulicova-Jurcakova D, Zhu Z, et al., Nanoporous carbon electrodefrom waste coffee beans for high performance supercapacitors, Electrochem.Commun.,2008,10(10):1594-1597.
    [65] Zhai D, Li B, Kang F, et al., Preparation of mesophase-pitch-based activatedcarbons for electric double layer capacitors with high energy density,Microporous Mesoporous Mater.,2010,130(1-3):224-228.
    [66] Zubizarreta L, Arenillas A, Pirard J-P, et al., Tailoring the textural properties ofactivated carbon xerogels by chemical activation with KOH, MicroporousMesoporous Mater.,2008,115(3):480-490.
    [67] Chen W, Zhang H, Huang Y, et al., A fish scale based hierarchical lamellarporous carbon material obtained using a natural template for high performanceelectrochemical capacitors, J. Mater. Chem.,2010,20():4773-4775.
    [68] Huang W, Zhang H, Huang Y, et al., Hierarchical porous carbon obtained fromanimal bone and evaluation in electric double-layer capacitors, Carbon,2011,49(3):838-843.
    [69] Xia K, Gao Q, Jiang J, et al., Hierarchical porous carbons with controlledmicropores and mesopores for supercapacitor electrode materials, Carbon,2008,46(13):1718-1726.
    [70] Xing W, Huang CC, Zhuo SP, et al., Hierarchical porous carbons with highperformance for supercapacitor electrodes, Carbon,2009,47(7):1715-1722.
    [71] Zhu Y, Murali S, Stoller MD, et al., Carbon-Based Supercapacitors Produced byActivation of Graphene, Science,2011,332(6037):1537-1541.
    [72] Lee J, Yoon S, Hyeon T, et al., Synthesis of a new mesoporous carbon and itsapplication to electrochemical double-layer capacitors, Chem Commun1999:2177-2178.
    [73] Lee J, Yoon S, Oh SM, et al., Development of a new mesoporous carbon usingan HMS aluminosilicate template,Adv Mater,2000,12(5):359-362.
    [74] Zhou H, Zhu S, Hibino M, et al., Electrochemical capacitance of self-orderedmesoporous carbon, J. Power Sources,2003,122(2):219-223.
    [75] Vix-Guterl C, Saadallah S, Jurewicz K, et al., Supercapacitor electrodes fromnew ordered porous carbon materials obtained by a templating procedure, MaterSci Eng B,2004,108(1-2):148-155.
    [76] Jurewicz K, Vix-Guterl C, Frackowiak E, et al., Capacitance properties ofordered porous carbon materials prepared by a templating procedure, J PhysChem Solids,2004,65(2-3):287-293.
    [77] Fuertes AB, Pico F, Rojo JM, Influence of pore structure on electric double-layercapacitance of template mesoporous carbons, J. Power Sources,2004,133(2):329-336.
    [78] Liu HY, Wang KP, Teng H, A simplified preparation of mesoporous carbon andthe examination of the carbon accessibility for electric double layer formation,Carbon,2005,43(3):559-566.
    [79] álvarez S, Blanco-López MC, Miranda-Ordieres AJ, et al., Electrochemicalcapacitor performance of mesoporous carbons obtained by templating technique,Carbon,2005,43(4):866-870.
    [80] Vix-Guterl C, Frackowiak E, Jurewicz K, et al., Electrochemical energy storagein ordered porous carbon materials, Carbon,2005,43(6):1293-1302.
    [81] Fuertes AB, Lota G, Centeno TA, et al., Templated mesoporous carbons forsupercapacitor application, ElectrochimActa,2005,50(14):2799-2805.
    [82] Li L, Song H, Chen X, Pore characteristics and electrochemical performance ofordered mesoporous carbons for electric double-layer capacitors, ElectrochimActa,2006,51(26):5715-5720.
    [83] Xing W, Qiao SZ, Ding RG, et al., Superior electric double layer capacitors usingordered mesoporous carbons, Carbon,2006,44(2):216-224.
    [84] Wang DW, Li F, Fang HT, et al., Effect of pore packing defects in2-D orderedmesoporous carbons on ionic transport, J Phys Chem B,2006,110(17):8570-8575.
    [85] Kim Y J, Lee B J, Suezaki H, Preparation and characterization of bamboo-basedactivated carbons as electrode materials for electric double layer capacitors,Carbon,2006,44(8):1592-1595.
    [86] Wang T H, Tan S X, Liang C H, Preparation and characterization of activatedcarbon from wood via microwave-induced ZnCl2activation, Carbon,2009,47(7):1880-1883.
    [87] Baccar R, Bouzid J, Feki M, et al., Preparation of activated carbon from Tunisianolive-waste cakes and its application for adsorption of heavy metal ions, J.Hazard. Mater.,2009,162(2-3):1522-1529.
    [88] Yorgun S, Vural N, Demiral H, Preparation of high-surface area activatedcarbons from Paulownia wood by ZnCl2activation, Microporous MesoporousMater.,2009,122(1-3):189-194.
    [89] Enes Sayan, Ultrasound-assisted preparation of activated carbon from alkalineimpregnated hazelnut shell: An optimization study on removal of Cu2+fromaqueous solution, Chem. Engin. J.,2006,115(3):213-218.
    [90] Hameed B H, Tan I A W, Ahmad A L, Preparation of oil palm empty fruitbunch-based activated carbon for removal of2,4,6-trichlorophenol: Optimizationusing response surface methodology, J. Hazard. Mater.,2009,164(2-3):1316-1324.
    [91] Li W, Peng J H, Zhang L B, et al., Preparation of activated carbon from coconutshell chars in pilot-scale microwave heating equipment at60kW, Waste Manage.,2009,29(2):756-760.
    [92] Nabais J V, Carrott P, Ribeiro Carrott M M L, et al., Influence of preparationconditions in the textural and chemical properties of activated carbons from anovel biomass precursor: The coffee endocarp, Bioresour. Technol.,2008,99(15):7224-7231.
    [93] Oliveira L C A, Pereira E, Guimaraes I R, et al., Preparation of activated carbonsfrom coffee husks utilizing FeCl3and ZnCl2as activating agents, J. Hazard.Mater.,2009,165(1-3):87-94.
    [94] Achaw O W, Afrane G, The evolution of the pore structure of coconut shellsduring the preparation of coconut shell-based activated carbons, MicroporousMesoporous Mater.,2008,112(1-3):284-290.
    [95] Bouchelta C, Medjram M S, Bertrand O, et al., Preparation and characterizationof activated carbon from date stones by physical activation with steam, J. Anal.Appl. Pyrolysis,2008,82(1):70-77.
    [96] Tan I A W, Ahmad A L, Hameed B H, Preparation of activated carbon fromcoconut husk: Optimization study on removal of2,4,6-trichlorophenol usingresponse surface methodology, J. Hazard. Mater.,2008,153(1-2):709-717.
    [97] Tan I A W, Ahmad AL, Hameed B H, Optimization of preparation conditions foractivated carbons from coconut husk using response surface methodology, Chem.Eng. J.,2008,137(1):462-470.
    [98] Dastgheib S A, Rockstraw D A, Pecan shell activated carbon: synthesis,characterization, and application for the removal of copper from aqueoussolution, Carbon,2001,39(12):1849-1855.
    [99] Hayashi J, Horikawa T, Takeda I, et al., Preparing activated carbon from variousnutshells by chemical activation with K2CO3, Carbon,2002,40(13):2381-2386.
    [100]施啸奔,沥青包覆人造石墨用作锂离子电池的研究:[硕士学位论文],天津;天津大学,2009.
    [101] Megahed S, Scrosati B, Lithium-ion rechargeable batteries, J. Power Sources,51(2):79-104.
    [102]吴川,吴锋,陈实等,锂离子电池正极材料的研究进展,电池,2001,30(1):36-38.
    [103]王文燕,酚醛树脂包覆针状焦作为锂离子电池负极材料的研究:[硕士学位论文],天津;天津大学,2007.
    [104] Walter A V S, Bruno S, Advances in lithium ion batteries, New York: KluwerAcadimic/Plenum Publishers,2002.
    [105] Whittingham M S, Electrical energy storge and intercalation chemisty, Science,1976,192(4244):1126-1127.
    [106] Murphy D W, Broodhead J, Steel B C, Materials for advanced batteries,Newyork: Plenum Press,1980.145.
    [107]李海霞,焦丽芳,袁华堂等,LiV3O8的合成及其电化学性能研究,无机化学学报,2005,21(12):1865-1868.
    [108] Morimoto H, Tatsumisago M, Minami T, Anode properties of amorphous50SiO·50SnO powders synthesized by mechanical milling, Electrochem.Solid-State Lett.,2001,4(2):A16-A18.
    [109] Nagaura T, Tozawa K, Lithium ion rechargeable batteries, Prog. Batteries. Sol.Cells,1990,9:209-217.
    [110]曹高萍,锂离子电池碳负极材料及其改性研究:[硕士学位论文],天津;天津大学,1998.
    [111]张永刚,锂离子二次电池炭负极材料的改性与修饰:[博士学位论文],天津;天津大学,2004.
    [112] Nozaki H, Nagaoka K, Hoshi K, et al., Carbon-coated graphite for anode oflithium ion rechargeable batteries: Carbon coating conditions and precursors, J.Power Sources,2009,194(1):486-493.
    [113] Liu D, Du F, Pan W, et al., Electrochemical characterizations ofLi2.6Co0.4N/Graphite anodes for lithium ion batteries, Mater. Lett.,2009,63(4):504-506.
    [114]李鹏,锂电用中间相炭微球的结构与电化学性能的研究:[硕士学位论文],天津;天津大学,2002.
    [115]徐仲榆,尹笃林,谢辉等,HTTmax对碳微球的结构及电化学性能的影响,电池,2003,33(1):8-11.
    [116] Hara M, Sach A, Takami N, et al., Surface structures and charge characteristicsof mesocarbon microbeads as the anodes for secondary lithium-ion batteries,Tanso,1994,165(2):261-267.
    [117] Liao XZ, Ma Z-F, Hu J-H, et al., SnNi-deposited carbonaceous mesophasespherule as anode material for lithium ion batteries, Electrochem. Commun.,2003,5(8):657-661.
    [118]冯熙康,王伯良,陈爱松等,电动汽车锂离子动力电池系统的研制,电源技术,2002,26(2):63-65.
    [119]周震涛,严燕,锂离子动力蓄电池充放电基本性能的研究,华南理工大学学报(自科版),2001,29(4):17-21.
    [120]时志强,天然石墨的改性及其用作锂离子电池负极材料的研究:[硕士学位论文],天津;天津大学,2003.
    [121] Ratnakumar B V, Smart M C, Surampudi S, Effects of SEI on the kinetics oflithium intercalation, J. Power Sources,2001,101(2):137-139.
    [122] Ohta N, Nagaoka K, Hoshi K, et al., Carbon-coated graphite for anode oflithium ion rechargeable batteries: Graphite substrates for carbon coating, J.Power Sources,2009,194(2):985-990.
    [123] Lee H-Y, Baek J-K, Jang S-W, et al., Characteristics of carbon-coated graphiteprepared from mixture of graphite and polyvinylchloride as anode materials forlithium ion batteries, J. Power Sources,2001,101(2):206-212.
    [124] Ding Y-S, Li W-N, Iaconetti S, et al., Characteristics of graphite anode modifiedby CVD carbon coating, Surf. Coat. Technol.,2006,200(9):3041-3048.
    [125] Zhang H-L, Liu S-H, Li F, et al., Electrochemical performance of pyrolyticcarbon-coated natural graphite spheres, Carbon,2006,44(11):2212-2218.
    [126] Zhang H-L, Li F, Liu C, et al., Poly(vinyl chloride)(PVC) Coated IdeaRevisited: Influence of Carbonization Procedures on PVC-Coated NaturalGraphite as Anode Materials for Lithium Ion Batteries, J. Phys. Chem. C,2008,112(20):7767-7772.
    [127] Wan C, Li H, Wu M, et al., Spherical natural graphite coated by a thick layer ofcarbonaceous mesophase for use as an anode material in lithium ion batteries, J.Appl. Electrochem.,2009,39(7):1081-1086.
    [128] Zhou Y F, Xie S, Chen C H, Pyrolytic polyurea encapsulated natural graphite asanode material for lithium ion batteries, Electrochimica Acta,2005,50(24):4728-4735.
    [129] Yoon S, Kim H, Oh S M, Surface modification of graphite by coke coating forreduction of initial irreversible capacity in lithium secondary batteries, J. PowerSources,2001,94(1):68-73.
    [130]张永刚,王成扬,包覆修饰石墨微观结构与嵌锂电化学分析,材料导报,2008,20(7):117-119.
    [131]郑洪河,蒋凯,秦建华,超声浸渍包覆石墨的嵌脱锂性能,应用化学,2008,21(8):801-805.
    [132] Yoshio M, Wang H, Fukuda K, et al., Effect of Carbon Coating onElectrochemical Performance of Treated Natural Graphite as Lithium-IonBatteryAnode Material, J. Electrochem. Soc.,2000,147(4):1245-1250.
    [133] Yoshio M, Wang H, Fukuda K, et al., Improvement of natural graphite as alithium-ion battery anode material, from raw flake to carbon-coated sphere, J.Mater. Chem.,2004,14(11):1754-1758.
    [134] Wang H, Yoshio M, Carbon-coated natural graphite prepared by thermal vapordecomposition process, a candidate anode material for lithium-ion battery, J.Power Sources,2001,93(1-2):123-129.
    [135] Ohzawa Y, Yamanaka Y, Naga K, et al., Pyrocarbon-coating on powderyhard-carbon using chemical vapor infiltration and its electrochemicalcharacteristics, J. Power Sources,2005,146(1-2):125-128.
    [136]徐秀丽,蔡奉翰,锂离子电池碳负极材料生产方法,中国专利,1624956A,2005-06-08.
    [137] Tateishi D, Esumi K, Honda H, et al., Characterization of carbonaceous gel andbeads, Tanso,1993,(157):59-68.
    [138] Preiss H, Lischke G, Eckelt R, et al., Preparation of carbon catalysts byhydrothermal treatment of a carbonaceous hydrogel, Carbon,1994,32(4):587-592.
    [139] K tz R, Carlen M, Principles and applications of electrochemical capacitors,ElectrochimicaActa,2000,45():2483-2498.
    [140] Chan Kim, Yeong-Og Choi, Wan-Jin Lee, et al., Supercapacitor performances ofactivated carbon fiber webs prepared by electrospinning of PMDA-ODApoly(amic acid) solutions, ElectrochimicaActa,2004,50(2-3):883-887.
    [141] Kyong-Min Kim, Jin-Woo Hur, Se-II JungKim, et al., Electrochemicalcharacteristics of activated carbon/Ppy electrode combined withP(VdF-co-HFP)/PVP for EDLC, ElectrochimicaActa,2004,50(2-3):863-872.
    [142] Chun-Ling Liu, Wen-Sheng Dong, Gao-Ping, et al., Influence of KOH followedby oxidation pretreatment on the electrochemical performance of phenolicbased activated carbon fibers, J. Electroanal. Chem.,2007,611:225-231.
    [143]刘希邈,龙东辉,张睿等,双电层电容器用沥青焦基活性炭的制备工艺条件对其孔结构及电化学性能的影响,炭素,2007,2:6-10.
    [144] Taberna P L, Simon P, Fauvarque J F, Electrochemical characteristics andimpedance spectroscopy studies of carbon-carbon supercapacitors, J.Electrochem. Soc.,2003,150(3):A292-A300.
    [145] Chmiola J, Yushin G, Gogotsi Y, et al., Anomalous Increase in CarbonCapacitance at Pore Sizes Less Than1Nanometer, Science,2006,313(5794):1760-1763.
    [146] Shi H, Activated carbons and double layer capacitance, Electrochimica Acta,1996,41(10):1633-1639.
    [147] Buiel E, Dahn JR, Li-insertion in hard carbon anode materials for Li-ionbatteries, Electrochim.Acta,1999,45(1-2):121-130.
    [148] Azuma H, Imoto H, Yamada S, et al., Advanced carbon anode materials forlithium ion cells, J. Power Sources,1999,81-82:1-7.
    [149] Nagao M, Pitteloud C, Kamiyama T, et al., Structure characterization andlithiation mechanism of nongraphitized carbon for lithium secondary batteries, J.Electrochem. Soc.,2006,153(5):A914-A919.
    [150] Dai Y, Wang Y, Eshkenazi V, et al., Lithium-7nuclear magnetic resonanceinvestigation of lithium insertion in hard carbon, J. Electrochem. Soc.,1998,145(4):1179-1183.
    [151] Mochida I, Ku CH, Korai Y, Anodic performance and insertion mechanism ofhard carbons prepared from synthetic isotropic pitches, Carbon,2001,39(2):399-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700