非抄造型复合云母板制备工艺研究及其机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云母以其优异的电气绝缘性能广泛用于电工绝缘材料行业,随着大鳞片云母资源的日益枯竭,云母工业通常将碎云母进行水力破碎后抄造成云母纸,以实现碎云母资源的综合利用,但云母纸强度较低,往往需要加入胶粘剂和补强材料将多层云母纸进行复合制成云母板等产品用于电气绝缘行业,从而使得工艺流程较为复杂,而溶剂型绝缘胶粘剂的加入,易在生产过程中排放有毒有害的有机气体,存在环境污染、人员健康威胁等相关问题,同时,由于细粒级云母(<74μ m)无法用于云母纸的抄造,造成云母资源浪费,因此,开发环保型绝缘胶粘剂,改善现有云母板生产工艺流程是当前云母电工绝缘材料行业的发展方向。
     针对上述问题,本文提出了以水性环氧绝缘胶粘剂取代现有的溶剂型环氧绝缘胶粘剂,并采用非抄造一次成型技术,不经云母纸的抄造,直接制备复合云母板的新工艺。水性环氧绝缘胶粘剂以水为溶剂,对基材有良好的渗透性和粘结力,安全无毒,经固化交联后,水性环氧树脂具有力学强度高、附着粘结能力强、良好的化学稳定性以及优异的电气绝缘性能,完全满足云母绝缘行业的要求;非抄造成型技术是指不经过云母纸的抄取,直接将混胶好的云母浆料经沉降预成型烘干成云母坯料后热压固化成云母板,工艺流程简单,同时可以利用细粒级云母填充粗粒级云母间的空隙,增强复合云母板的致密程度,解决细粒级云母的浪费问题,提高云母资源利用率。通过大量的试验研究,确定了云母浆料制备工艺、水性环氧绝缘胶粘剂合成及混胶工艺、预成型热压固化工艺,获得了一套较为完整的制备工艺流程,提高非抄造型复合云母板的性能指标,使其满足工业标准。具体结果如下:
     1.以混合云母料作为复合云母板的制备原料,通过水力分级和超声波剥片除去细粒级云母(<74μ m)中的石英等杂质,提高其径厚比,与粗粒级云母(>74μ m)进行合理级配,以粗粒级云母为骨架,细粒级云母进行填充,并采用硅烷偶联剂改性云母浆料,提高其与水性环氧树脂的吸附和包裹作用,改善复合材料的电气绝缘性能和耐水性,有效增强了非抄造型复合云母板的性能;
     2.根据云母绝缘材料要求,采用聚乙二醇(PEG2000)、苯酐(PA)和顺丁烯二酸酐(MA)复合改性环氧树脂,引入羧基基团,使其具有亲水性,聚乙二醇(PEG2000)改善环氧树脂柔韧性和亲水性,苯酐(PA)由于其结构中含有苯环,能够提高水性环氧树脂的耐热性和耐水性,顺丁烯二酸酐(MA)含有活泼双键,提高固化交联密度,增强复合云母板抗弯强度,并以高度甲醚化的氨基树脂5747作为固化剂,该固化剂含交联活性基团多,有效提高了水性环氧绝缘胶粘剂的成膜性能,降低其吸水率,并确定了最佳的混胶工艺参数,进一步提高非抄造型复合云母板的性能;
     3.通过沉降工艺、抽滤工艺和烘干工艺获得了结构较为紧密的复合云母板坯料,采用分步热压成型工艺,包括升温排气阶段,热压固化阶段和保压冷却阶段,解决了排气问题,并确定了最佳热压固化工艺参数。整套工艺的完成有效提高了非抄造型复合云母板的性能,其抗弯强度由165.03N/mm2提高至245.79N/mm2,介电强度由21.96KV/mm提高至28.05KV/mm,分别提升了32.9%和21.7%,吸水率由0.72%下降至0.43%,下降40.3%。经各项性能测试表明,该非抄造型复合云母板在外观、层间结构、机械性能、电气绝缘性能等方而基本达到工业标准,具有良好的工业应用前景。
     4.探讨了非抄造型复合云母板制备过程中所涉及的级配增强机理、界面作用机理和水性环氧固化机理,解释了复合材料强度变化的原因,为进一步完善该工艺提供一定的理论基础。
     非抄造型复合云母板制备工艺的研究和完成,解决了目前云母电工绝缘材料中存在的相关问题,实现了细粒级云母的重新再利用,提高了云母资源利用率约5%-8%,降低VOC排放,改善了环境污染,对促进我国云母电工绝缘材料的发展,提升云母绝缘材料技术水平,调整产品结构都将起着积极的作用。
Mica widely used in electrical insulation materials industry because of its excellent electrical insulating properties. With the exhausting of large scale mica resource, mica flake is used to producing mica paper by hydraulic crushing in mica insulation industry, and achieve the comprehensive utilization of mica flake. Because low strength of the mica paper, the solvent type adhesive and reinforcing materials is needed when producing the multilayer mica composite insulation materials. Thereby making the process more complicated, and the emission of toxic and hazardous organic gases during the process, this will cause the environmental contamination and personnel health threats and other related issues. Meanwhile, due to the fine mica (<74μm) can not be used for papermaking, caused the waste of mica resources, therefore, the development of environmentally friendly insulation adhesive and improve the existing the mica plate production process is the sustainable development direction of the current mica electrical insulation materials industry.
     In order to solve such problems, the preparation of composite mica plate molding technology without papermaking and solvent-based insulation adhesive is introduced. Waterborne epoxy is used as insulation adhesive with the solvent of water; it is safe and non-toxic with good permeability and bond strength for the most materials. After curing crosslinkable, waterborne epoxy resin is fully meet the requirements of the mica insulation industry with a high mechanical strength, strong adhesion bonding capacity, a good chemical stability as well as excellent electrical insulating properties. Non papermaking technology is a new direct molding process. Mixing the mica slurry with the adhesive and preformed by settlement, then the mica composite plate material is directly obtained by hot press curing. The new process is more convenient, and the fine mica can be used to filling the gap between the coarse-grained mica. The densification of mica composite plate is enhanced and the utilization of mica resources is improved. Through extensive experimental research, a complete preparation process is obtained, and specific results are as follow:
     1. The raw material of mica composite plate is a kind of mixed mica. After comminuting, the quartz and other impurities in fine-grade mica (<74μm) is removed by hydraulic classification, and the ratio of diameter to thickness is improved by ultrasonic peeling. A reasonable gradation is accomplished, the coarse-grained mica(>74μm) as the skeleton and the fine-grade mica (<74μm) is for filling. In order to improve the adsorption of waterborne epoxy resin with mica slurry, silane coupling agent is introduced to modify the mica particle;
     2. According to the requirements of the mica insulation materials, the polyethylene glycol (PEG2000), phthalic anhydride (PA) and maleic anhydride (MA) are used to modify epoxy resin, the carboxyl groups is grafted and make epoxy resin hydrophilic. The polyethylene glycol (PEG2000) is used to improve the flexibility and hydrophilic of epoxy resin, phthalic anhydride (PA) containing a benzene ring in its structure, it is possible to improve the heat resistance and water resistance of the aqueous epoxy resin, maleic acid anhydride (MA) containing a reactive double bond, that can be improving the curing crosslinking density and enhancing the flexural strength of the mica composite plate. Considering the performance and water absorption of the aqueous epoxy insulating adhesive film-forming, highly methylated amino resin5747containing more cross-linking reactive groups is be chosen as the curing agent. In order to improve the performance of non papermaking mica composite plate, the mixing binder process is optimized.
     3. The closely structure composite mica blank is obtained after settling, filtering and drying. The program of hot forming process is introduced including heating up and the exhaust stage, the hot pressing and curing stage and holding pressure and cooling stage. The best hot curing process parameter is determined. The performance of the non-papermaking mica composite plate is improved by the completion of the process. The flexural strength of this product is increased from165.03N/mm2to245.79N/mm2, and also of the dielectric strength from21.96KV/mm to28.05KV/mm, all promoted32.9%and21.7%respectively, the water absorption decreased by0.72%to0.43%, a decrease of40.3%. The performance tests indicate that non papermaking mica composite plate is achieve the industry standard basically in appearance, layer structure, mechanical properties, electrical insulation performance, only the high temperature resistance somewhat less than the index. These results illustrate that the composite material have certain industrial applications prospects.
     4. The gradation enhancement mechanism, the interface mechanism and the waterborne epoxy curing mechanism is discussed. Explaining the reason of the strength improvement for the composite material, and providing a theoretical basis for the future.
     The completion of non papermaking mica composite plate solves the related issues in mica electrical insulation materials and increases the utilization of mica resource. The new process will play an active role to enhance the technical level of mica insulation materials and promote the development of mica electrical insulation industry.
引文
[1]肖汉宁,黄彩青.云母绝缘材料[J].大众用电,2008,(08):41-42.
    [2]徐文忻,郭陀珠,李衡,薛柳.云母矿物材料研究现状及前景[J].矿产与地质,2001,(03):201-204.
    [3]田中凯.云母及其深加工[J].国外金属矿选矿,1996,(04):42-45.
    [4]《中国非金属矿业》编委会.中国非金属矿业[M].地质出版社,2008,(08):60-68
    [5]Madhukar.B. B. L. ROLE OF INDIAN MICA IN WORLD MARKETS.Proceedings of the 'Industrial Minerals'International Congress,1984,p 17.
    [6]龚先政,祖占良,郑水林.云母加工利用技术现状与发展动向[J].中国非金属矿工业导刊,2005,(05),18-21.
    [7]《全国矿产资源储量通报.国土资源部,2005.
    [8]吴照洋.云母资源概况及加工应用现状[J].中国粉体技术,2009,(13):179-182.
    [9]徐立铨.我国云母工业的现状和发展对策[J].非金属矿,1989,(1):42-43.
    [10]丁浩,邹蔚蔚.中国绢云母资源综合利用的现状与前景[J].四川地质科技情报,1998,(03):25-28.
    [11]张凌燕,唐华伟,赖伟强.白云母改性和填充ABS工程塑料的试验研究[J].塑料,2007,36,(04):5-7.
    [12]王国方,欧阳胜林.耐高温绝缘晶体合成云母[J].新材料产业,2007,(03):42-45.
    [13]崔冬乐.云母的解理断裂及其在珠光颜料中的应用[D].安徽:合肥工业大学,2010年.
    [14]云母综合利用编写组.云母综合利用[M].北京:中国建筑工业出版社,1984:1.
    [15]N.P.Orlova, T.I.Shishelova, M.S.Metsik, V.A.Luopo, and K.Ya.Sokolov.Infrared spectra of micanite and mica-sheet papers.Original article submitted,1973,21(05):870-873.
    [16]J.Schomburg and H.Zwahr.Thermal differential diagnosis of mica mineral group. Journal of thermal analysis,48(1997):135-139.
    [17]俞翔霄,俞赞琪,陆惠英等.环氧树脂电绝缘材料[M].化学工业出版社,2007,(02):246.
    [18]肖汉宁,黄彩青.云母绝缘材料[J].大众用电,2008,(08):41-42.
    [19]戴为胜.我国云母纸和湿磨云母粉工业现状及展望[J].非金属矿,1995,(05):45-46.
    [20]吴自强,魏鹏,唐四丁.云母纸的性能及其主要制品[J].化工纵横,1997,(04):7-10.
    [21]黄鸿.云母纸的生产工艺及应用[J].中华纸业,2004,25(11):29-31.
    [22]程亮.湿磨云母纸浆造纸级配研究[D].湖北:武汉理工大学,2009年.
    [23]傅冬.湿法云母粉的开发应用及其发展前景[J].四川地质科技情报,1998,(03):42-43.
    [24]刘士珍.F级高云母含量云母带的研制及应用[J].黑龙江科技信息,2007,(04):20.
    [25]李万新.浅析原材料对云母带质量的影响[J].中国非金属矿工业导刊,2001,(06):12-13.
    [26]刘芳,范文捷,周传勋.可加工陶瓷系列产品的设计[J].金刚石与磨料磨具工程,2002,(06):45-46.
    [27]李元章.云母绝缘材料的发展及新产品开发情况[J].电工材料,2001,(01):32-34.
    [28]解原,汪灵.白云母类矿物在绝缘材料中的应用现状与开发利用建议[J].中国非金属矿工业导刊.2004,(06):10-14.
    [29]胡兆斌等.绝缘材料工艺学[M].化学工业出版社,2005,(01):218.
    [30]云母综合利用编写组.云母综合利用[M].北京:中国建筑工业出版社,1984,(01).
    [31]张小伟.性能复合云母纸的制造技术及增强机理研究[D].湖北:武汉理工大学,2011年.
    [32]张小伟.云母板边角料回收再利用新技术[D].武汉:武汉理工大学,2007年.
    [33]张小伟,朱瀛波,张翼,刘淑鹏.云母纸板边角料回收再利用新技术[J].非金属矿.2007,(06):32-34.
    [34]杜巨根,张志杰.有机硅耐高温粉云母板的研究[J].绝缘材料通讯,1985,(02):22-25.
    [35]杜巨根.无机耐高温粉云母板的研制[J].绝缘材料通讯,1985,(02):5-8.
    [36]Charles D. Richardson and Algerd F. Zavist, Schenectady, N.Y. TRWATED MICA PAPER INSULATION [P].United States Patent:2,707,204,1951-10-31
    [37]Gaines Jr., George L. MICA PAPER [P].United States Patent:2,842,183,1958-08-08
    [38]赵敏如.水合力对云母纸强度的影响[J].人工晶体学报,1986,(04):268-270.
    [39]张小伟,张翼,刘淑鹏,钱玉鹏,朱瀛波.云母纸质量的影响因素[J].矿产保护与利用,2011,(01):18-21.
    [40]程亮,钱玉鹏,张小伟等.我国云母纸生产现状分析与发展建议[J].矿产保护与利用,2009,(06):47-51.
    [41]徐清钢,姚金水,李梅,马慧荣.耐高温有机硅树脂的合成和改性研究状况[J].山东轻工业学院学报(自然科学版),2010,(01):33-36.
    [42]岳远志,杨志洲,冯圣玉.耐高温有机硅粘接剂的研究新进展[J].有机硅材料,2010,(06):385-390.
    [43]张晓艳.耐高温有机硅树脂及其固化体系的研究[D].北京航空材料研究院,2000.
    [44]KNOLLMULLER KO. Polymer Science [J].1971, (09):1071.
    [45]黄愔,李耀星.水基绝缘浸渍漆[J].绝缘材料,2003,(03):46-52.
    [46]Daniel R.Sassano. Electrical Insulating Varnishes:An Over view[J].IEEE Electrical Insulation Magazine,1992-VOL.8, NO.6:25-32.
    [47]H. Mrrsui. Progress in Japan in Electrical Insulation at High Temperatures[J].IEEE Electrical Insulation Magazine,1996,5(12),NO.3:16-27
    [48]严瑞,陈振兴等.水溶性聚合物[M].北京:化学工业出版社,1988年.
    [49]王华林,王(启文)明,贺楠男等.桐油改性醇酸氨基水性绝缘漆的制备及性能[J].高分子材料科学与工程,2011,(02):133-136.
    [50]贺楠男,王华林,王啟明,王继植.硅树脂改性桐油醇酸树脂水性绝缘漆的研究[J].涂料工业,2010,(06):39-43.
    [51]陈辉.水溶性聚酯的合成与性能研究[D].山东:青岛大学,2004.
    [52]U.Jejurkar, V. Shrinet, C.N.Murthy.Synthesis and Characterization of Novel Water-Soluble Polyesters for Electrical Insulation[J]. Journal of Applied Polymer Science,2007, Vol. 104:3309-3316.
    [53]Barbara R. Garland, Elizabeth Township. WATER REDUCIBLE MODIFIED POLYESTER RESIN[P]. United States Patent 4,430,368, Feb.7,1984.
    [54]Kojima M, Noda Y,Suzuki Y. Polyimide Water-soluble Composition[P].United States Patent 3,925,313,1975
    [55]严昌虹.由水溶性聚酰胺酸制备聚酰亚胺[J].绝缘材料通讯,1981,(01):34-42.
    [56]严昌虹,蔡兴贤.由水溶性聚胺-酰胺酸制备的几种电绝缘材料制品[J].绝缘材料通讯,1982,(02):8-14.
    [57]俞翔宵,金宜秀.水溶性云母胶粘剂及其制品的研究[J].绝缘材料通讯,1983,(03):17-23.
    [58]Willibald Paar, Roland Feola. AQUEOUS BINDERS BASED ON EPOXY RESINS[P]. United States Patent 6,653,370 B2, Nov,25,2003.
    [59]Li Ding, Gui You Wang, Chun Pu Hu. Preparation and Characterization of Polysiloxane-Modified Epoxy Resin Aqueous Dispersions and Their Films[J].Journal of Applied Polymer Science,2005, Vol.98:880-885.
    [60]Songwei Chen, Bo You. Preparation and Characterization of Scratch and Mar Resistant Waterborne Epoxy/Silica Nanocomposite Clearcoat[J].Journal of Applied Polymer Science, 2009, Vol.112:3634-3639.
    [61]曹诺,肖卫东.水性环氧树脂体系的制备及研究进展[J].上海涂料,2005,7(43):35-38.
    [62]刘洋,黄焕,孔振武等.环氧树脂水性化技术进展[J].涂料工业,2009,5(39):19-24.
    [63]包哈森.水性环氧树脂及其固化剂的合成与性能研究[D].天津:天津大学,2008年.
    [64]张建生,沈玉龙.环氧乳液水泥砂浆修补材料的性能研究[J].化学建材,2003,(02):30-35.
    [65]余丽丽,李仲谨,吕世民等.水性环氧树脂的合成及其应用[J].化工科技,2009,17(04):46-51.
    [66]周立新.环氧树脂的相反转乳化与水性环氧树脂防腐涂料的研究[D].广东:华南理工大学,2004年.
    [67]刘冬梅,程振炎,刘文慧等.抗静电涂料的应用及其发展[J].上海涂料,2007,46(09):35-37.
    [68]张鑫.水性环氧用非离子型活性乳化剂的制备与性能研究[D].湖北:武汉理工大学,2011年.
    [69]张肇英,黄玉惠等.环氧树脂水基化化学改性的研究[J].广州化学,2000,(02):7-11.
    [70]朱方,赵宝华,裘兆蓉.环氧树脂水性化体系研究进展[J].高分子通报,2006(01):53-57.
    [71]Zhang Z Y,Huang Y H,Liao B,et al. Studies on particle size of waterborne emulsions derived from epoxy resin[J].2001,37(06):1207-1211.
    [72]于晓辉,郭忠诚.水性环氧涂料体系进展[J].电镀与涂料,2005,24(09):81-85.
    [73]Zhaoying Zhang, Yuhui Huang, Bing Liao, et al. Studies of waterborne emulsion of chemically modified epoxy resin[J].POLYMERS FOR ADVANCED TECHNOLOGIES, 2004,(15):26-29.
    [74]余丽丽,李仲谨,吕世民等.水性环氧树脂的合成及其应用[J].化工科技,2009,17(04):46-51.
    [75]Reiter, et al. Preparation of aqueous thermosetting electrical insulating varnishes, and use of the varnishes[P].Untied States Patent 4,429,072,1984.
    [76]朱博雅,张防,陆顺平等.水溶性环氧绝缘涂料的合成与表征[J].电动工具,2011,(03):18-20.
    [77]俞翔宵,金宜秀.水溶性云母胶粘剂及其制品的研究[J].绝缘材料通讯,1983:17-23.
    [78]陆顺平,张防,罗小锋等.一种碱性介质中水溶性环氧绝缘树脂的制备方法[P].CN101550226A,2009.
    [79]Mark D. Soucek, Ganghua Teng, Shaobing Wu. Cycloaliphatic Epoxide Crosslinkable Core-Shell Latexes:A New Strategy for Waterborne Epoxide Coating[J]. Journal of Coatings Technology,2001,10(73):117-125.
    [80]黄愔,李耀星.水基绝缘浸渍漆[J].绝缘材料,2003,(03);46-52.
    [81]韦绍廉,杜钜根.用粉云母直接压板新工艺的研究[J].绝缘材料通讯,1996,(04):4-6.
    [82]雷芸.绢云母表面改性及机理研究[D].湖北:武汉理工大学,2003年.
    [83]钱玉鹏.水射流磨粉碎云母技术研究[D].湖北;武汉理工大学,2009年.
    [84]钱玉鹏,程亮,朱瀛波.水射流粉碎技术发展及其在云母粉碎中的应用[J].矿产保护与利用,2009,(06);12-16.
    [85]董孔祥,卢迪芬.超声波对氟金云母剥离细化作用研究[J].中国粉体技术,2008,14(02):29-32.
    [86]罗义昌.超声波粉碎技术的原理和系统研究[J].国外金属矿选矿,1994,(09):1-10.
    [87]MCQUEEN D H. Ultrasonically enhanced chemical dissociation from solid surfaces with application to cleaning electronic circuit boards[J]. Ultrasonics,1990,28(6):422-427.
    [88]SUHR D, BRUMMER F, IRMER U. et al. Reduced cavitation-in-duced cellular damage by the antioxidative effect of vitamin E[J]. Ultrasonics,1994,32(04):761-768.
    [89]COLEMAN A J,SAUNDERS J E. A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy[J].Ultrasonics,1993, 31(02):5-89.
    [90]白翠萍.云母粉径厚比测定方法[D].湖北:武汉理工大学,2008年.
    [91]管俊芳,白翠萍,朱瀛波等.片状超细粉厚度测定制样方法研究[J].中国粉体技术,2010,4(16):16-18.
    [92]杜林虎,陈大明,潘伟等.超声波对鳞片状石墨的粉碎作用及结构影响[J].硅酸盐通报,2000,(04):27-30.
    [93]L. M. Popplewell and M. Peleg. Powder Technology,1989,58:145-148.
    [94]D. J. Casadonte, Jr and J. D. Sweet, et al. Ultrasonics,1994,32:477-480.
    [95]谢建雄.颗粒增强复合材料集料级配及其力学性能研究[D].湖北:武汉理工大学,2006年.
    [96]朱梦良,张起森,陈强.沥青玛蹄脂碎石混合料的集料级配优化[J].中国公路学报,2001,14(02):1-5.
    [97]盖国胜,陶珍东.粉体工程[M].北京:清华大学出版社,2009年.
    [98]陈宇飞,郭艳宏,戴亚杰等.聚合物基复合材料[M].北京:化学工业出版社,2008年.
    [99]曾凡等.矿物加工颗粒学[M].徐州:中国矿业出版社,2001年.
    [100]赵若飞,刘兵,戴干策等.一种大分子偶联剂对云母的表面处理[J].高分子材料科学与工程,2002,18(06):115-118.
    [101]HOKKAIDO J M. Surface Modification Power Technology Handbook[M].London: ButterworthS.1994:453-457.
    [102]王晓艳,高延敏,李国一等.绢云母改性及其对环氧涂料性能的影响[J].中国涂料,2009,24(12):39-42.
    [103]李忠良.变质片麻岩云母纸及芳纶纤维云母纸研究[D].武汉:武汉理工大学,2011年.
    [104]来国桥,邢松明.有机硅产品合成工艺及应用[M].北京:化学工业出版社,2007年.
    [105]刘朝阳.改性F-51水性环氧体系制备、固化及性能研究[D].西安:西北工业大学,2005年.
    [106]李桂林.环氧树脂与环氧涂料[M].北京:化学工业出版社,2003年.
    [107]胡兆斌等.绝缘材料工艺学[M].北京:化学工业出版社,2005年.
    [108]王启明.桐油改性醇酸氨基水性绝缘漆研究[D].河北:合肥工业大学,2010年.
    [109]张洪涛,黄锦霞.水性树脂制备与应用[M].北京:机械工业出版社,2011年.
    [110]闫福安.水性树脂与水性涂料[M].北京:化学工业出版社,2010年.
    [111]王浩林.磷酸酯/硅氧烷/丙烯酸接枝改性水性环氧树脂的制备与性能研究[D].北京:北京化工大学,2010年.
    [112]张凯.硅氧烷改性接枝型水性环氧树脂的合成与研究[D].广州:华南师范大学,2005年.
    [113]贾丽亚.聚二甲基硅氧烷/二氧化硅复合网络及环氧树脂/聚二甲基硅氧烷互穿网络的研究[D].北京:北京化工大学,2007年.
    [114]张一烽.有机硅改性环氧导热绝缘胶的研究[D].浙江:浙江大学,2004年.
    [115]孙曼灵主编.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002年.
    [116]周立新.环氧树脂的相反转乳化与水性环氧树脂防腐涂料的研究[D].广东:华南理工大学,2004年.
    [117]何青峰.水性环氧乳液及其固化剂的制备与应用[D].南京:东南大学,2004年.
    [119]Waker Frederick H. Amide-containing Self-emulsifying Epoxy Curing Agent[P].Untied States Patent.5,596,030,2007.
    [118]Alex Wegmann. Novel waterborne epoxy resin emulsion[J].Coating Technol,1993, 65(827):27-34.
    [119]周梅等.对树脂混凝土集料级配的研究[J].辽宁工程技术大学学报(自然科学版),2001,12(06):770-772.
    [120]王振.高等级公路二灰碎石集料级配和综合性能研究[D].陕西:长安大学,2004年.
    [121]Guo Q, Wub W, Massar D L, et, al. Feature Selection in Principal Component Analysis of Analytical Data. Chemom. Intel Lab Syst,2002,61:123-132.
    [122]滕旭秋等.二灰碎石基层粗集料级配试验研究及理论验证[J].兰州铁道学院学报(自然科学版,2003,22(03):59-61.
    [123]袁万杰.多级嵌挤密实级配设计方法与路用性能研究[D].陕西:长安大学,2004年.
    [124]李恒德.材料的表面与界面[M].北京:清华大学出版社,1990年.
    [125]D. T. Clark.. Polymer Surfaces[M]. New York:1978年.
    [126]A. Tatting. Effect of Coagent in Reactive Surface Treatment for Calcium Carbonate Filler in Polypropylene Plastic. Rubber and Composites,1999,28(01):11-19.
    [127]Vanoss C J. Determination of Contact Angles and Pore Sizes of Porous Media by Column and Thin Layer Wicking. Adhesion Science Technology,1992,6(04):413-428.
    [128]赵振国.接触角及其在表面化学研究中的应用[J].化学研究与应用,2000,12(04):36-40.
    [129]周文静,马亚南,王克勇等.NTO与黏结剂的界面作用[J].火炸药学报:2010,8(33):40-43.
    [130]王晖,顾帼华,邱冠周.接触角法测量高分子材料的表面能[J].中南大学学报(自然科学版):2006,37(05):942-947.
    [131]C Arvind Patel. An Innovative Stuocy to Evaluate Fillers, PartⅠ:Carbon Black and Silica[J]. Elastomers and Plastics,1999,31:213-231.
    [132]Liang Jizhao. Brittle-ductile Transition in Polypropylene Filled with Glass Beads[J]. Polymer,1999,40;3191-3195.
    [133]Wemer Radoslaw. Effect of Surface Modification on Physicochemical Properties of Precipitated Sodium-aluminium Silicate, used as a pigment in acrylie dispersion paints[J]. Dyes and Pigment,2001,50:41-54
    [134]牛艳萍.硅酸盐矿物/聚合物复合材料的制备及其界面机理研究[D].武汉:武汉理工大学,2005.
    [135]张云怀.粉煤灰微珠/有机高分子复合材料及其偶联剂界面作用的研究[D].重庆:重庆大学,2004年.
    [136]洪啸呤,冯汉保.涂料化学[M].北京:科学出版社,2000,178-183.
    [137]A. Mathes. Theoretische Grundlagen wassriger Epoxidhazremulsionen fur den Praktiker, Lehrgang Techn. Akademic, Esslingen. Germany:Emulgiebare Epoxidharze im Bauwesen, Sarnen. Swizterland,1991.
    [138]马承银,郑文姬,胡慧萍等.水性环氧树脂的制备和固化机理的探讨[J].高分子通报,2006,(01):28-33.
    [139]Misra S C, Manson J A, Vanderhoff J W. Modern Paint Coat,1978, (12):27-31.
    [140]Wegmann A. Polymer Paint Color Journal,1996, (06):30-38
    [141]Wegmann A. Prog Org Coat,1997,32(01):231-239.
    [142]Croll SG. J. Coat. Technol.1986,(58):41-9.
    [143]M.L. Jaekson. Dicyandiamide Precipitation in epoxy solutions and latex dispersions: threshold concentration analysis using a two-stage drying model[J]. Polymer,2004,(45):7229-7238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700