肝癌细胞系HepG2特异性结合短肽的筛选及其特异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌的发生、发展过程非常复杂,涉及到肝癌细胞多分子的调变,利用不同的新技术和新方法或者将其排列组合,对肝癌细胞或肝癌组织进行鉴定筛选,在肝癌诊疗研究中具有重要的意义。表面展示技术(surface display)在筛选新配体方面显示了潜在的应用价值。本课题应用FliTrxTM细菌表面展示的随机十二肽库(FliTrxTM random peptide library),通过活细胞筛选获得能与人肝细胞肝癌细胞系HepG2特异性结合的多肽,为肝癌的靶向诊断和靶向治疗研究奠定实验基础。
     【目的】
     从FliTrxTM细菌表面展示的随机十二肽库中筛选与人肝癌细胞系HepG2特异性结合的十二肽,鉴定其结合特性,利用生物信息学工具分析其结构,为寻找肝癌细胞表面特异性标志以及肝癌的靶向诊断与靶向治疗研究奠定基础。
     【方法】
     1.肽库的筛选
     以正常肝细胞系L02为减差筛选的对照细胞,肝癌细胞系HepG2为筛选的靶细胞,从FliTrxTM细菌表面展示的随机十二肽库中筛选与HepG2特异性结合的短肽。经过五轮减差筛选,从最后一轮洗脱重收获的细菌中随机挑选700个单克隆细菌,通过菌落PCR筛选其中含有完整融合基因的克隆。
     2.短肽的特异性鉴定与序列分析
     以L02细胞为对照,通过流式细胞术(FCM)检测单克隆和HepG2的结合特异性;阳性克隆的测序结果与蛋白数据库进行比对和同源性分析。进一步采用FCM鉴定单克隆十二肽与不同恶性肿瘤细胞系的结合特性,包括胃癌细胞系MKN28、乳腺癌细胞系MCF7、宫颈鳞状细胞癌细胞系Hela、早幼粒急性白血病细胞系HL60、慢性骨髓性白血病细胞系K562、肺鳞状上皮细胞癌SLC等。
     3.结构预测利用Swissprot蛋白数据库的ProtParam工具,初步分析特异性多肽的氨基酸序列及稳定性;利用EMBL蛋白数据库的AGADIR工具,预测其可能的二级结构;利用Swissprot蛋白数据库的3Djigsaw蛋白质三级结构预测服务器模建短肽-TrxA融合蛋白的空间构象。
     4.结合的靶分子分析
     利用SDS-PAGE优化诱导细菌表达多肽的条件,进一步在Western-Blot中用可溶性短肽-TrxA融合蛋白检测多肽与肝癌细胞膜蛋白的结合,以L02和SLC细胞为对照,分析多肽特异性识别的肝癌细胞表面分子。
     【结果】
     1.肽库的筛选
     以正常肝细胞系L02和肝癌细胞系HepG2为筛选靶细胞,对FliTrxTM细菌肽库进行五轮差异筛选,从最后一轮筛选得到的多克隆中随机挑选700个阳性单克隆,菌落PCR结果表明,其中200个克隆含有完整的融合蛋白基因。
     2.短肽与肝癌细胞系结合的特异性
     FCM证实200个克隆中10个克隆表达的短肽可与肝癌细胞系HepG2相对特异性结合;经DNA测序,基因序列分析,确定7个阳性克隆,分别插入不同序列的随机肽片段。7个短肽的基因序列中存在出现频率较高的位点,但与Pubmed,Swissprot和EMBL的蛋白数据库进行比对和同源性分析,并未发现具有高度同源性的序列。FCM检测7个短肽与不同恶性肿瘤细胞系(包括胃癌、乳腺癌、宫颈鳞状细胞癌、早幼粒急性白血病细胞系、慢性骨髓性白血病细胞系、肺鳞状上皮细胞癌)结合的特性,发现其中三个短肽只显示出与肝癌细胞系相对较高的结合能力,命名为Hep1,Hep2和Hep3。
     3.结构分析预测结果
     利用ProtParam工具分析发现,Hep1和Hep2的结构相对不稳定,而Hep3具有相对稳定的线性结构。AGADIR工具对二级结构的预测提示,Hep1和Hep2可能形成α螺旋,而Hep3不会形成α螺旋。3Djigsaw同源模建得到的三级结构提示短肽-TrxA融合蛋白中的短肽均形成突出于融合蛋白之外的空间构象,提示由TrxA形成的随机肽的环状结构在与靶分子的识别中起到了重要的作用。
     4.十二肽结合的靶分子
     利用可溶性Hep1,Hep2和Hep3与TrxA的融合蛋白检测肝癌细胞,以SLC和L02细胞作为对照细胞,随机挑取的无关单克隆短肽-TrxA融合蛋白作为对照检测分子,Western-Blot结果显示Hep1,Hep2和Hep3三种不同的短肽-TrxA融合蛋白均可以识别HepG2细胞膜蛋白中大小约为140kDa的分子片段,而与SLC和L02反应未见特异性条带。随机可溶性短肽-TrxA融合蛋白与肝癌细胞、SLC和L02细胞反应均为阴性。
     【结论】以人肝细胞系L02为对照,人肝癌细胞系HepG2为靶细胞,通过五轮减差筛选,从细菌鞭毛展示的随机肽库中获得与HepG2特异性结合的十二肽,检测短肽-TrxA融合蛋白与肝癌细胞结合的特性。结果表明,获得3个FliTrxTM细菌表面展示的随机十二肽具有与HepG2细胞特异性结合的能力,而与其他肿瘤细胞和正常肝细胞呈阴性反应。Western-Blot检测结果表明,Hep1,Hep2和Hep3三种不同的可溶性短肽-TrxA融合蛋白均可与肝癌细胞表面靶分子结合,其分子量约为140kDa,可能为肝癌细胞特异性表达分子。
Hepatocarcinogenesis is a slow multistep and multifactorial process, usually a consequence of long-term inflammation and fibrosis, which involves the progressive accumulation of changes at the level of gene and protein expression. The identification of novel tumor biomarker is pivotal for progression in the fields of HCC immunotherapy and diagnosis. Surface display techniques have successfully been applied to identify target-specific molecules such as antibodies or peptides. The principle advantage of display library methodologies is that selection can be performed in native-like, membrane-bound environment without a priori knowledge of the target cell receptors. Antibody and peptide ligands generated in this manner have been proven useful for in vivo imaging studies, therapeutic targeting and for identification of cell specific surface markers.
     As target molecules, peptides show advantages due to their smaller size than the other molecules, such as antibodies. Localization of peptides is not limited by diffusion, and clearance from the circulation is rapid, resulting in low background activity. Furthermore, the binding affinities of peptides are similar to those observed with antibodies. High affine receptors for peptides have been reported in a variety of tumors and can be used as molecule targets for image diagnosis and treatment of tumors.
     The bacterial FliTrx system (Invitrogen) was used in the present study to identify peptides specific to human hepatocellular carcinoma cell HepG2. In this flagella display library, peptides are directly displayed on the surface of E. coli fused with 2 proteins: the major bacterial flagellar protein (FliC) and thioredoxin (TrxA). Random dodecapeptides are cloned into the frame within the active loop of TrxA, which forms a stable protruding from the bacterial cell surface with the help of bacteria flagella.
     Objective: To identify peptides specific for hepatoma cell line HepG2 by biopanning from the bacterial FliTrx system, to find the potential HCC associated target molecules for HCC diagnosis and therapy.
     Methods: FliTrx bacterial display library was used to search for HCC specific peptides by biopanning with the hepatocellular carcinoma cell line HepG2 using the healthy liver cell line L02 as the counter-selecting control. After five rounds of biopanning,700 individual clones were picked up. Bacterial polymerase chain reaction (PCR) was carried out to identify the clones containing dodecamer fusion sequence. The peptides specific for HepG2 were selected by flow cytometry (FCM). Positive clones were sequenced using Applied Biosystem Automated DNA sequencers 3730. Sequences of dodecapeptides were blast in database of Pubmed, Swissprot and European Molecular Biology Laboratory. Primary structure of the peptides was analized with ProtParam tool and the secondary structure prediction was performed with AGISR tool on the internet. The whole three-dimensional structure of peptide-TrxA fusion proteins was modeled with tertiary analysis tool 3Djigwaw tool. Furthermore we used the soluble peptide-TrxA fusion protein to identify the potential target molecules on hepatocellular carcinoma in Western-Blot.
     Results: Three different positive clones were obtained, named Hep1, Hep2 and Hep3. These sequences are not similar to hepatocellular specific antigen or any other peptide or protein sequences available, as confirmed by blast in various protein databases.Computer graphic modeling pointed out that the structure of peptide-TrxA fusion proteins was important for the function of peptides. Results of western-Blot indicated the protein, which soluble peptide-TrxA fusion proteins recognized, was about 140kDa.
     Conclusions: Bacterial peptide library is a novel approach to isolate specific peptides binding direct to tumor cells, even to identify the target molecule on tumor cells. The bacterial display random peptide library biopanning on living cells permits identification of specific peptides for HepG2 cells.
引文
1. Wang Qian,Zhu Huifen, Cao Limin,Yu Bing, Zhou Huarong, Shen Guanxin. The Construction and Biological Effect in vitro of Double-Directed Tissue-Specific HSV-tk/GCV Anti-Tumor System Chinese-German J Clinical Oncology. 2003,2(3):184-187
    2. Yang Daofeng, Zhu Huifen, Shen Guanxin, Tian Deying. Construction of single chain fv antibody against transferring receptor and its protein fusion with alkaline phosphatase. World Journal of Gastroenterology. 2005,11(21):3300-3304
    3. Yu B, Ni M, Li WH, Lei P, Xing W, Xiao DW, Huang Y, Tang ZJ, Zhu HF, Shen GX.Human scFv antibody fragments specific for hepatocellular carcinoma selected from a phage display library. World J Gastroenterol 2005 July;11(26):3985-3989
    4. Qing Y, Shuo W, Zhihua W, Huifen Z, Ping L, Lijiang L, Xiaorong Z, Liming C, Daiwen X, Yu H, Wei X, Min F, Zuohua F, Guanxin S. The in vitro antitumor effect and in vivo tumor-specificity distribution of human-mouse chimeric antibody against transferrin receptor.Cancer Immunol Immunother. 2006,55(9):1111-1121. Epub 2005 Dec 8.
    5. Cao L, Shen G, Zhu Y, Wang W, Zhao X, Ye Q, Zhu H, Lu Z, Si J. Characterization of a single-chain variable fragment (scFv) antibody directed against the human asialoglycoprotein receptor.Biotechnol Appl Biochem. 2006 May;44(Pt 2):65-72.
    6. Zhao X, Dai W, Cao L, Zhu H, Yu Y, Ye Q, Wang M, Dai W, Lei P, Shen G. Selection and characterization of an internalizing epidermal growth factor receptor antibody.Biotechnol Appl Biochem. 2007 Jan;46(Pt 1):27-33
    7. Lu Z, Murray KS, Van Cleave V, LaVallie ER, Stahl ML, McCoy JM. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein-protein interactions. Biotechnology (N Y). 1995 Apr;13(4):366-72.
    8. Katti SK, LeMaster DM, Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167-84.
    9. Hoogenboom HR, Bruine AP, Hufton SE et al. Antibody phage display technology and its applications. Immunotechnology, 1998;4;1-20
    10. Knowles BB, Howe CC, Aden DP. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497-9.
    11. Kristensen, P., Ravn, P., Jensen, K.B. & Jensen, K. Applying phage display technology in aging research. Biogerontology. 2000, 1, 67–78.
    12. Portolano, S., McLachlan, S.M. & Rapoport, B. High affinity, thyroid-specific human autoantibodies displayed on the surface of filamentous phage use V genes similar to other autoantibodies. J. Immunol. 1993, 151, 2839–2851.
    13. Kruif, J., Terstappen, L., Boel, E. & Logtenberg, T. Rapid selection of cell subpopulation-specific human monoclonal antibodies from a synthetic phage antibody library. Proc. Natl Acad. Sci. USA 1995, 92, 3938–3942.
    14. Van Ewijk, W., de Kruif, J., Germeraad, W.T., Berendes, P., Ropke, C., Platenburg, P.P. & Logtenberg, T. Subtractive isolation of phage-displayed single-chain antibodies to thymic stromal cells by using intact thymic fragments. Proc. Natl Acad. Sci. USA 1997, 94, 3903–3908.
    15. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol. 1999;112:531-52.
    16. Lacroix, E., Viguera AR & Serrano, L. Elucidating the folding problem of a-helices: Local motifs, long-range electrostatics, ionic strength dependence and prediction of NMR parameters. J. Mol. Biol. 284, 173-191
    17. Barry MA, Dower WJ, Johnston SA. Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat Med. 1996 Mar;2(3):299-305.
    18. Nicklin SA, White SJ, Watkins SJ, Hawkins RE, Baker AH Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation. 2000 Jul 11;102(2):231-7.
    19. Eidne KA, Henery CC, Aitken RJ. Selection of peptides targeting the human sperm surface using random peptide phage display identify ligands homologous to ZP3. Biol Reprod. 2000 Nov;63(5):1396-402.
    20. Samoylova TI, Smith BF. Elucidation of muscle-binding peptides by phage display screening. Muscle Nerve. 1999 Apr;22(4):460-6.
    21. Mazzucchelli L, Burritt JB, Jesaitis AJ, Nusrat A, Liang TW, Gewirtz AT, Schnell FJ, Parkos CA. Cell-specific peptide binding by human neutrophils. Blood. 1999 Mar 1;93(5):1738-48.
    22. Szardenings M, Tornroth S, Mutulis F, Muceniece R, Keinanen K, Kuusinen A, Wikberg JE. Phage display selection on whole cells yields a peptide specific for melanocortin receptor 1. J Biol Chem. 1997 Oct 31;272(44):27943-8.
    23. Romanov, Victor I. Identification of Tumor Targeting Agents by Phage Display Source: Medicinal Chemistry Reviews Volume 2, Number 3, June 2005, pp. 219-229(11)
    1. Milenic DE. Monoclonal antibody-based therapy strategies: providing options for the cancer patient. Curr Pharm Des 2002; 8: 1749-64.
    2. Hudson PJ, Souriau C. Recombinant antibodies for cancer diagnosis and therapy. Expert Opin Biol Ther 2001; 1: 845-55.
    3. Goldenberg DM. Advancing role of radiolabeled antibodies in the therapy of cancer. Cancer Immunol Immunother 2003; 52: 281-96.
    4. Trail PA, King HD, Dubowchik GM. Monoclonal antibody drug immunoconjugates for targeted treatment of cancer. Cancer Immunol Immunother 2003; 52: 328-37.
    5. Reilly RM, Sandhu J, Alvarez-Diez TM, Gallinger S, Kirsh J, Stern H. Problems of delivery of monoclonal antibodies. Pharmaceutical and pharmacokinetic solutions. Clin Pharmacokinet 1995; 28: 126-42.
    6. Aina OH, Sroka TC, Chen ML, Lam KS. Therapeutic cancer targeting peptides. Biopolymers 2002; 66: 184-99.
    7. Nilsson F, Tarli L, Viti F, Neri D. The use of phage display for the development of tumour targeting agents. Adv Drug Deliv Rev 2000; 43: 165-96.
    8. Langer M, Beck-Sickinger AG. Peptides as carrier for tumor diagnosis and treatment. Curr Med Chem Anti-Canc Agents 2001; 1: 71-93.
    9. Froidevaux S, Eberle AN. Somatostatin analogs and radiopeptides in cancer therapy. Biopolymers 2002; 66: 161-83.
    10. Schally AV, Nagy A. Cancer chemotherapy based on targeting of cytotoxic peptide conjugates to their receptors on tumors. Eur J Endocrinol 1999; 141: 1-14.
    11. Lam KS. Treatment of B-cell lymphoma using peptides. A novel concept. West J Med1993; 158: 475-9.
    12. Lam KS. Application of combinatorial library methods in cancer research and drug discovery. Anticancer Drug Des 1997; 12: 145-67.
    13. Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature 1996; 380: 364-6.
    14. Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R,Ruoslahti E. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 1998; 102: 430-7.
    15. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 279: 377-80.
    16. Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 1997; 15: 542-6.
    17. Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP,Heikkila P, et al. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 1999; 17: 768-74.
    18. Burg MA, Pasqualini R, Arap W, Ruoslahti E, Stallcup WB. NG2 roteoglycan- binding peptides target tumor neovasculature. Cancer Res 1999; 59: 2869-74.
    19. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD,et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 1999; 5: 1032-8.
    20. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228:1315-7.
    21. Castagnoli L, Zucconi A, Quondam M, Rossi M, Vaccaro P, Panni S, et al. Alternative bacteriophage display systems. Comb Chem High Throughput Screen 2001; 4: 121-33.
    22. Smith GP, Petrenko VA. Phage Display. Chem Rev 1997; 97: 391-410.
    23. Smothers JF, Henikoff S, Carter P. Tech.Sight. Phage display.Affinity selection from biological libraries. Science 2002; 298:621-2.
    24. Willats WG. Phage display: practicalities and prospects. Plant Mol Biol 2002; 50: 837-54.
    25. Adda CG, Anders RF, Tilley L. Foley M. Random sequence libraries displayed on phage: identification of biologically important molecules. Comb Chem High Throughput Screen 2002;5: 1-14.
    26. Johnsson K, Ge L. Phage display of combinatorial peptide and protein libraries and their applications in biology and chemistry.Curr Top Microbiol Immunol 1999; 243: 87-105.
    27. Brown KC. New approaches for cell-specific targeting:identification of cell-selective peptides from combinatorial libraries. Curr Opin Chem Biol 2000; 4: 16-21.
    28. Hartley O. The use of phage display in the study of receptors and their ligands. J Recept Signal Transduct Res 2002; 22: 373-92.
    29. Wrighton NC, Farrell FX, Chang R, Kashyap AK, Barbone FP,Mulcahy LS, et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 1996; 273: 458-64.
    30. Cwirla SE, Balasubramanian P, Duffin DJ, Wagstrom CR, Gates CM, Singer SC, et al. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 1997; 276: 1696-9.
    31. Ballinger MD, Shyamala V, Forrest LD, Deuter-Reinhard M,Doyle LV, Wang JX, et al. Semirational design of a potent,artificial agonist of fibroblast growth factor receptors. Nat Biotechnol 1999; 17: 1199-204.
    32. Renschler MF, Bhatt RR, Dower WJ, Levy R. Synthetic peptide ligands of the antigen binding receptor induce programmed cell death in a human B-cell lymphoma. Proc Natl Acad Sci USA 1994;91: 3623-7.
    33. Koivunen E, Wang B, Ruoslahti E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (N Y) 1995; 13: 265-70.
    34. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor- independent cell entrymechanism. J Virol 1998; 72: 9706-13.
    35. Wickham TJ, Tzeng E, Shears LL, 2nd, Roelvink PW, Li Y, Lee GM, et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 1997;71: 8221-9.
    36. Koivunen E, Wang B, Ruoslahti E. Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol 1994; 124: 373-80.
    37. Murayama O, Nishida H, Sekiguchi K. Novel peptide ligands for integrin alpha 6 beta 1 selected from a phage display library. J Biochem (Tokyo) 1996; 120: 445-51.
    38. Koivunen E, Ranta TM, Annila A, Taube S, Uppala A, Jokinen M,et al. Inhibition of beta(2) integrin-mediated leukocyte cell adhesion by leucine-leucine- glycine motif-containing peptides. J Cell Biol 2001; 153: 905-16.
    39. Szecsi PB, Riise E, Roslund LB, Engberg J, Turesson I, Buhl L, et al. Identification of patient-specific peptides for detection of Mproteins and myeloma cells. Br J Haematol 1999; 107: 357-64.
    40. Wu P, Leinonen J, Koivunen E, Lankinen H, Stenman UH. Identification of novel prostate-specific antigen-binding peptides modulating its enzyme activity. Eur J Biochem 2000; 267: 6212-20.
    41. Fukuda MN, Ohyama C, Lowitz K, Matsuo O, Pasqualini R,Ruoslahti E, et al. A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res 2000; 60: 450-6.
    42. Venkatesh N, Zaltsman Y, Somjen D, Gayer B, Boopathi E, Kasher R, et al. A synthetic peptide with estrogen-like activity derived from a phage-display peptide library. Peptides 2002; 23: 573-80.
    43. Buhl L, Szecsi PB, Gisselo GG, Schafer-Nielsen C. Surface immunoglobulin on B lymphocytes as a potential target for specific peptide ligands in chronic lymphocytic leukaemia. Br J Haematol 2002; 116: 549-54.
    44. Hetian L, Ping A, Shumei S, Xiaoying L, Luowen H, Jian W, et al. A novel peptideisolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor. J Biol Chem 2002; 277: 43137-42.
    45. Deshayes K, Schaffer ML, Skelton NJ, Nakamura GR, Kadkhodayan S, Sidhu SS. Rapid identification of small binding motifs with high-throughput phage display: discovery of peptidic antagonists of IGF-1 function. Chem Biol 2002; 9: 495-505.
    46. Basmaciogullari S, Babcock GJ, Van Ryk D, Wojtowicz W,Sodroski .Identification of conserved and variable structures in the human immunodeficiency virus gp120 glycoprotein of importance for CXCR4 binding. J Virol 2002; 76: 10791-800.
    47. Babcock GJ, Mirzabekov T, Wojtowicz W, Sodroski J. Ligand binding characteris-ics of CXCR4 incorporated into paramagnetic proteoliposomes. J Biol Chem 2001; 276: 38433-40.
    48. Mirzabekov T, Kontos H, Farzan M, Marasco W, Sodroski J. Paramagnetic proteoliposomes containing a pure, native, and oriented seven-transmembrane segment protein, CCR5. Nat Biotechnol 2000; 18: 649-54.
    49. Grundner C, Mirzabekov T, Sodroski J, Wyatt R. Solid-phase proteoliposomes containing human immunodeficiency virus envelope glycoproteins. J Virol 2002; 76: 3511-21.
    50. Barry MA, Dower WJ, Johnston SA. Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat Med 1996; 2: 299-305.
    51. Zhang J, Spring H, Schwab M. Neuroblastoma tumor cell-binding peptides identified through random peptide phage display. Cancer Lett 2001; 171: 153-64.
    52. Ivanenkov VV, Felici F, Menon AG. Targeted delivery of multivalent phage display vectors into mammalian cells. Biochim Biophys Acta 1999; 1448: 463-72.
    53. Maruta F, Parker AL, Fisher KD, Hallissey MT, Ismail T,Rowlands DC, et al. Identification of FGF receptor-binding peptides for cancer gene therapy. Cancer GeneTher 2002; 9: 543-52
    54. Giordano RJ, Cardo-Vila M, Lahdenranta J, Pasqualini R, Arap W.Biopanning and rapid analysis of selective interactive ligands. Nat Med 2001; 7: 1249-53.
    55. Romanov VI, Durand DB, Petrenko VA. Phage display selection of peptides that affect prostate carcinoma cells attachment and invasion. Prostate 2001; 47: 239-51.
    56. Binetruy-Tournaire R, Demangel C, Malavaud B, Vassy R, Rouyre S, Kraemer M, et al. Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. Embo J 2000; 19: 1525-33.
    57. Rasmussen UB, Schreiber V, Schultz H, Mischler F, Schughart K. Tumor cell-targeting by phage-displayed peptides. Cancer Gene Ther 2002; 9: 606-12.
    58. Goodson RJ, Doyle MV, Kaufman SE, Rosenberg S. High-affinity urokinase receptor antagonists identified with bacteriophage peptide display. Proc Natl Acad Sci USA 1994; 91: 7129-33.
    59. Arap W, Haedicke W, Bernasconi M, Kain R, Rajotte D, Krajewski S, et al. Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci USA 2002; 99: 1527-31.
    60. Essler M Ruoslahti E. Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc Natl Acad Sci USA 2002; 99: 2252-7.
    61. Samoylova TI, Smith BF. Elucidation of muscle-binding peptides by phage display screening. Muscle Nerve 1999; 22: 460-6.
    62. Kennel SJ, Mirzadeh S, Hurst GB, Foote LJ, Lankford TK, Glowienka KA, et al. Labeling and distribution of linear peptides identified using in vivo phage display selection for tumors. Nucl Med Biol 2000; 27: 815-25.
    63. Kolonin M, Pasqualini R, Arap W. Molecular addresses in blood vessels as targets for therapy. Curr Opin Chem Biol 2001; 5: 308-13.
    64. Ruoslahti E, Rajotte D. An address system in the vasculature of normal tissues andtumors. Annu Rev Immunol 2000; 18: 813-27.
    65. Ruoslahti E. Targeting tumor vasculature with homing peptides from phage display. Semin Cancer Biol 2000; 10: 435-42.
    66. Trepel M, Arap W, Pasqualini R. In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol 2002; 6: 399-404.
    67. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M,Stryhn A, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 2000;60: 722-7.
    68. Rajotte D, Ruoslahti E. Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J Biol Chem 1999; 274: 11593-8.
    69. Arap W, Kolonin MG, Trepel M, Lahdenranta J, Cardo-Vila M,Giordano RJ, et al. Steps toward mapping the human vasculature by phage display. Nat Med 2002; 8: 121-7.
    70. Krag DN, Fuller SP, Oligino L, Pero SC, Weaver DL, Soden AL, et al. Phage-displayed random peptide libraries in mice: toxicity after serial panning. Cancer Chemother Pharmacol 2002; 50: 325-32.
    71. Maruta F, Parker AL, Fisher KD, Murray PG, Kerr DJ, Seymour LW. Use of a phage display library to identify oligopeptides binding to the lumenal surface of polarized endothelium by ex vivo perfusion of human umbilical veins. J Drug Target 2003; 11: 53-9.
    72. Ardelt PU, Wood CG, Chen L, Mintz PJ, Moya C, Arap MA, et al.Targeting urothelium: ex vivo assay standardization and selection of internalizing ligands. J Urol 2003; 169: 1535-40.
    73. Audige A, Frick C, Frey FJ, Mazzucchelli L, Odermatt A.Selection of peptide ligands binding to the basolateral cell surface of proximal convoluted tubules. Kidney Int 2002; 61: 342-8.
    74. Odermatt A, Audige A, Frick C, Vogt B, Frey BM, Frey FJ, et al.Identification of receptor ligands by screening phage-display peptide libraries ex vivo on microdissectedkidney tubules. J Am Soc Nephrol 2001; 12: 308-16.
    75. Chen Y, Xu X, Hong S, Chen J, Liu N, Underhill CB, et al. RGDTachyplesin inhibits tumor growth. Cancer Res 2001; 61: 2434-8.
    76. Curnis F, Sacchi A, Borgna L, Magni F, Gasparri A, Corti A.Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat Biotechnol 2000; 18: 1185-90.
    77. Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R,Weber W, Goodman SL, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 2001; 42: 326-36.
    78. Niemeyer CM. Nanoparticles, Proteins, and Nucleic Acids:Biotechnology Meets Materials Science. Angewandte Chemie International Edition 2001; 40: 4128-58.
    79. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E.Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002; 99:12617-21.
    80. Grifman M, Trepel M, Speece P, Gilbert LB, Arap W, Pasqualini R, et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol Ther 2001; 3: 964-75.
    81. Hart SL, Knight AM, Harbottle RP, Mistry A, Hunger HD, Cutler DF, et al. Cell binding and internalization by filamentous phage displaying a cyclic Arg-Gly-Asp-containing peptide. J Biol Chem 1994; 269: 12468-74.
    82. Molenaar TJ, Michon I, de Haas SA, van Berkel TJ, Kuiper J,Biessen EA. Uptake and processing of modified bacteriophage M13 in mice: implications for phage display. Virology 2002; 293:182-91.
    83. Cunningham BC. Wells JA. Minimized proteins. Curr Opin Struct Biol 1997; 7: 457-62.
    84. Kay BK, Kurakin AV, Hyde-DeRuyscher R. From peptides to drugs via phage display. Drug Discovery Today 1998; 3: 370-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700