原发性癌和食管癌中SEMA3B、SEMA3F基因表达及其临床意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑癌基因(常是隐性基因)的异常表达或突变是致瘤作用机制之一。人类基因的很多区域,发生改变时可致细胞的无控性生长。癌中最引人注目的是位于3号染色体短臂区域的抑癌基因。杂合缺失研究显示3P缺失与多种肿瘤有关,尤其是3p21.3,在癌和卵巢癌中有高度杂合缺失,表明在该区域可能存在潜在的抑癌基因。小细胞癌中该位点杂合缺失高达90%,在其它肿瘤,如乳腺癌、胃、卵巢、睾丸及肾肿瘤中也发现较高的杂合缺失。已在该区域发现19个候选抑癌基因。Semaphorin家族的SEMA3B(Semaphorin 3B)及SEMA3F(Semaphorin 3F)是其中之一。零星关于SEMA3B及SEMA3F mRNA表达方面及其抑癌作用机制的研究集中于癌细胞系中。但该基因在原发性癌组织中的转录表达与临床病理关系的研究尚无报道。已有研究报道食管癌频繁的3p区域杂合缺失,但尚未见SEMA3B及SEMA3F mRNA表达与食管癌的临床病理关系研究报道。
     本研究首先从SEMA3B及SEMA3F基因的转录表达水平,采用RT-PCR方法检测52例中国人群癌患者远癌正常组织和癌组织中SEMA3B及SEMA3F mRNA的表达情况。结果显示癌组织中SEMA3B基因产物的表达水平为51.9%(27/52),明显低于远癌正常组织100%(52/52)(p<0.001)。癌组织中SEMA3B基因产物的表达水平与癌TNM分期及淋巴结转移有密切关系(p<0.05),与癌类型,原发肿瘤大小、部位,患者的年龄、性别及吸烟与否均无明显关系(p>0.05)。研究又发现SEMA3B表达异常与病理类型、分化程度、病理分期无显著关系。SEMA3F表达异常与病理类型、分化程度、病理分期、淋巴结转移无显著关系。SEMA3F基因在癌和远癌正常组织表达率分别为47.8%(22/46)、100%(46/46),有非常显著性统计和差异(p<0.001)。在癌中SEMA3F的表达缺失与病理形态、分化程度、病理分期、淋巴结转移无显著关系(p>0.05)。SEMA3B和SEMA3F基因表达缺失率分别为48.1%(25/52)和44.2%(23/52)两种基因的表达水平差异无显著性,但表达性质不全相同。二者累计表达缺失率为69.231%(36/52),其中13例两个基因都表达缺失,前者和后者的单独缺失分别为12例和10例,差异无统计学意义(p>0.05)。
     然后,本研究采用逆转录聚合酶链反应(RT-PCR)方法检测46例食管癌组织及远癌正常食管组织SEMA3B和SEMA3F基因的表达水平。结果显示:SEMA3B
    
    在食管癌组织中表达率为50%(23/46),明显低于相应远癌正常食管组织100%
    (46/46)(P<0.ool)。sEMA3B在食管腺癌、小细胞癌、鳞状上皮细胞癌中的表达
    率分别为80%(4/5)、0%(o/3)、50%(19/38),三组表达差异有显著性切<0.05);
    SEMA3B在表达异常与病理形态、分化程度、病理分期、淋巴结转移无显著相关。
    SEMA3F基因在食管癌和远癌正常食管组织表达率分别为47.8%(22/46)、100%
    (46/46)、(p<0刀01)。在食管癌中SEMA3F的表达缺失与病理形态、分化程度、
    病理分期、淋巴结转移无显著关系(P>0.05)。SEMA3B和SEMA3F基因表达缺失
    率分别为50%(23/46)和47.8%(22/46),两种基因的表达水平上无显著差异,
    但表达性质不全相同。二者累计表达缺失率为73.91%(34/46),其中13例两个基
    因都表达缺失,前者和后者的单独缺失分别为10例和11例,差异无统计学意义
     (P>0.OS)。
     本实验首次检验了中国人群癌患者远癌组织和肿瘤组织中SEMA3B、
    SEMA3F基因的表达情况。发现癌存在SEMA3B、SEMA3F基因的表达缺失,与
    正常组织相比有显著差异,提示SEMA3B和SEMA3F基因的表达缺失与原发性
    癌的发生发展密切相关;首次发现SEMA3B基因的表达缺失与癌淋巴结转移密
    切相关,提示SEMA3B基因的表达缺失与原发性癌的预后相关。本研究首次在
    人体食管癌标本中检测SEMA3B和SEMA3F基因转录本的表达情况,发现二者转录
    本在中国食管癌患者癌组织中的高度表达缺失,充分表明该基因在中国食管癌的
    发生、发展中起了极为重要的作用,发挥了抑癌基因的功能。联合检测两种基因
    可提高诊断水平。SEMA3B和SEMA3F的表达异常是癌、食管癌发生、发展的
    的早期事件,为癌、食管癌的早期诊断和基因治疗提供了理论依据。
Tumorigenesis results from the abnormal regulation of genes involved in cellular homeostasis. One mechanism involve the alteration in gene expression or mutation of tumor suppressor genes, which are recessive genes where mutation results of loss of function. There are several regions within the human genome that when altered, lead to uncontrolled cell proliferation. The short arm of chromosome 3 has been shown to exhibit high loss of heterozygosity (LOH) in several types of cancer including ovarian, kidney, lung, and testicular cancers. In particular, overlapping homozygous deletions in lung cancers have been identified in region 3p21.3 where already 19genes were found. In particular the 3p21.3 region exhibits a high LOH in lung, breast, stomach and ovarian carcinomas suggesting the existence of a putative tumor suppressor gene within this region. In small cell lung cancer, >90% of the tumors exhibits LOH at this site. Two Class III Semaphorin genes SEMA3B and SEMA3F are ones of them. A few articles converge
     about mRNA expression and suppressor mechanism on tumor cell line, but up to now, there is no publication about SEMA3B and SEMA3F mRNA expression and their tumor suppressor function mechanism in lung and esophageal carcinoma tissue. But the association between the expression of this two SEMA and their clinicopathologic characters was still unexplored in primary lung cancer. The 3p LOH in esophageal carcinoma has been established but there is no publication yet about SEMA3B and SEMA3F in esophageal carcinoma.
    In this study, we firstly used the RT-PCR method to evaluate the transcription expression of SEMA3B and SEMA3F in 52 cases of Chinese lung cancer tissues and adjacent normal tissues. The result showed that, the SEMA3B and SEMA3F transcription were identified in all non-cancer tissues but was not found in 53.2%(27/52) and 55.2(29/52) carcinoma tissues (p<0.001). Loss of SEMA3B expression was significantly high in patients with positive lymph node metastasis 64.3% (18/28) compared with those without lymph node metastasis 29.2 %( 7/24) (p<0.05). The rate of loss of SEMA3B mRNA expression was correlated with TNM stage (p<0.05), which was more frequently observed in those with advanced tumor stage. There is no significant association of abnormal expression with histological type, differentiation grade stage of tumors or age, sex, and smoking index. SEMA3B and SEMA3F expression loss respectively were 48.1% (25/52) and 44.2%(23/52) with no significant difference in rate but with different pattern: the cumulative in
    cidence of expression loss
    
    
    
    was69.231% (36/46) . SEMA3B and SEMA3F were differently lost in 10 and 11 cases respectively, both the two genes expression were lost in 13 cases.
    We secondly used the RT-PCR method to evaluate the expression level of SEMA3B and SEMA3F genes in 46 cases of esophageal cancer tissues and adjacent normal tissues. The result showed that, the SEMA3B and SEMA3F transcripts were identified in all non-cancer tissues but was not found respectively in 50%(23/46) and 47.8%(22/46) carcinoma tissues respectively (pO.OOl) with distinct expression patterns. No significant association of abnormal SEMA3B and SEMA3F mRNA expression with histological type, differentiation grade of tumors or patients age and sex was observed (pX).05).
    Our trial was the first one which studies the relationship between SEMA3B, SEMA3F and clinicopathological characters of lung and esophageal cancer in Chinese population and the first one establishing correlation between lymph node metastasis and lung cancer and their correlation with esophageal carcinoma. We respectively discovered SEMA3B and SEMA3F transcription significantly inactivating in lung and esophageal cancer, suggesting that SEMA3B and SEMA3F genes could play a role of TSG in both lung and esophageal carcinoma. SEMA3B mRNA inactivation has been found associated with lung cancer lymph node metastasis suggest that SEMA3B gene transcription inactivation correlate with lung cancer prognosis. Simultaneous check up of the two genes can improve the diagno
引文
1. Macklem, P. T. Con: Greater Funding of Cell and Molecular Biology Has Not Delivered What Was Promised to Respiratory Medicine. Am J Respir Crit Care Med, 2004,169:438-439.
    2. Nici, Linda. Lung cancer screening: Update on a controversial topic. Will routine chest films lead to reduce mortality? J Respir Dis, 2000,21 (2): 117-125.
    3. Jemal, A., Tiwari, R. C., Murray, T., Ghafoor, A., Samuels, A., Ward, E., Feuer, E. J., Thun, M. J. Cancer Statistics, 2004. CA Cancer J Clin, 2004,54:8-29.
    4. Hannah K. Weir, Michael J. Thun, Benjamin F. Hankey, Lynn A. G. Ries, Holly L. Howe, Phyllis A. Wingo, Ahmedin Jemal, Elizabeth Ward, Robert N. Anderson, Brenda K. Edwards. Annual Report to the Nation on the Status of Cancer, 1975-2000, Featuring the Uses of Surveillance Data for Cancer Prevention and Control; Journal of the National Cancer Institute, 2003,95(17): 1276-1299.
    5. Gazaille V., Bernaudin J F.Où enest 1'apport des puces à ADN en cancerologie pulmonaire? Rev Pulml. Clin, 2002,58(5):268-276.
    6. Mulshine, James L. Scott, Frank.Molecular markers in early cancer detection: new screening tools. (Multimodality Therapy of Chest Malignancies-Update '94). Chest, 1995,1234-45.
    7. Zalkman G. Biologie du cancer bronchique: de la paillasse aux therapeutiques innovants. Med Therapeutique, 2001,7(7):528-544.
    8. Vineis P, Caporaso N. Tobacco and cancer: epidemiology and the laboratory. Environ Health Perspect, 1995,103:156-160.
    9. Economou P, Lechner JF, Samet JM. Familial and genetic factors in the pathogenesis of lung cancer. In: Samet JM, ed. Epidemiology of lung cancer. New York, NY: Marcel Dekker, 1994,353-396.
    10. Hussain SP, Harris CC. Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res, 1998,58: 4023-4037.
    11. Bergen AW, Caporaso N. Cigarette smoking. J Natl Cancer Inst, 1999,91: 1365-1375.
    12. Wistuba Ⅱ, Gazdar AF, Mirma JD. Molecular genetics of small cell lung carcinoma. Semin Oncol, 2001 Apr,28(2 Suppl 4):3-13.
    13. Raja S, Godfrey TE, Luketich JD. The role of tumor suppressor genes in
    
    esophageal cancer. Minerva Chir, 2002,57(6):767-80.
    14. Yen CC, Chen YJ, Lu KH, Hsia JY, Chen JT, Hu CP, Chen PM, Liu JH, Chiou TJ, Wang WS, Yang MH, Chao TC, Lin CH..Genotypic analysis of esophageal squamous cell carcinoma by molecular cytogenetics and real-time quantitative polymerase chain reaction. Int J Oncol, 2003,23(4):871-81.
    15. Sekido Y, S Bader, F Latif, J Chen, F Duh, M Wei, JP Albanesi, C Lee, MI Lerman, and JD Minna.Human Semaphorins A (Ⅴ) and Ⅳ Reside in the 3p21.3 Small Cell Lung Cancer Deletion Region and Demonstrate Distinct Expression Patterns.Proc. Natl. Acad. Sci, 1996,93(9):4120-4125.
    16. Lerman MI, Minna JD. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3:identification and evaluation of the resident candidate tumor suppressor genes. Cancer Res, 2000,60:6116-6133.
    17. Yoshio Goshima, Takaaki Ito, Yukio Sasaki and Fumio Nakamura. Semaphorins as signals for cell repulsion and invasion. J Clin Invest, April 2002, Volume 109, Number 8,993-998.
    18. Tse C, Xiang RH, Bracht T, Naylor SL.Human Semaphorin 3B (SEMA3B) located at chromosome 3p21.3 suppresses tumor formation in an adenocarcinoma cell line. Cancer Res, 2002,62(2): 542-6.
    19. Ochi K, Mori T, Toyama Y, Nakamura Y, Arakawa H. Identification of semaphorin3B as a direct target of p53. Neoplasia, 2002,4(1):82-7.
    20. Tomizawa Y, Sekido Y, Kondo M, Gao B, Yokota J, Roche J, Drabkin H, Lerman MI, Gazdar AF, Minna JD.Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B.Proc Natl Acad Sci U S A 2001,20;98(24): 13954-9.
    21. Raja S, Godfrey TE, Luketich JD.The role of tumor suppressor genes in esophageal cancer. Minerva Chir, 2002 Dec,57(6):767-80. Review.
    22. Dunn J, Garde J, Dolan K, Gosney JR, Sutton R, Meltzer SJ, Field JK; Multiple target sites of allelic imbalance on chromosome 17 in Barrett's oesophageal cancer. Oncogene, 1999,18(4):987-93.
    23. Gimenez AM, Copelli SB, Speroni AH, Meiss RP. Molecular pathogenesis of carcinoma of the esophagus. Medicina (B Aires), 2003,63(3):237-48.
    24. Dahlberg PS, Ferrin LF, Grindle SM, Nelson CM, Hoang CD, Jacobson B.Gene expression profiles in esophageal adenocarcinoma. Ann Thorac Surg, 2004,77(3): 1008-15.
    25. Yen CC, Chen YJ, Lu KH, Hsia JY, Chen JT, Hu CP, Chen PM, Liu JH, Chiou TJ, Wang WS, Yang MH, Chao TC, Lin CH.Genotypic analysis of esophageal
    
    squamous cell carcinoma by molecular cytogenetics and real-time quantitative polymerase chain reaction. Int J Oncol, 2003 Oct,23(4):871-81.
    26. Baylin SB, Herman JG, Graft JR, et al. Alterations in DNA methylation:a fondamental aspect of neoplasia.Adv. Cancer Res, 1998,72:141 - 196.
    27. Jones PA, Lair DPW. Cancer epigenetics comes of age. Nature Genet, 1999,21: 163-167.
    28. R. Giegerich, F. Meyer, C. Schleiermacher.GeneFisher-Software Support for the Detection of Postulated Genes", Proceedings of the Fourth International Conference on Intelligent Systems for Molecular Biology, AAAI Press (ISSN 57735-002-2).
    29. Mountain C. Revisions in the International System for Staging lung cancer. Chest, 1997,111(6):1710-1717.
    30.陈竺,李伟,俞曼等.人类基因组计划的机遇与挑战:Ⅰ从结构基因组学到功能基因组学[J].生命的化学,1998,18:5-13.
    31. Wei MH, Latif F, Bader S, Kashuba V, Chen JY, Duh FM, Sekido Y, Lee CC, Geil L, Kuzmin I, Zabarovsky E, Klein G, Zbar B, Minna JD, Lerman MI. Construction of a 600-kilobase cosmid clone contig and generation of a transcriptional map surrounding the lung cancer tumor suppressor gene (TSG) locus on human chromosome 3p21.3: progress toward the isolation of a lung cancer TSG. Cancer Res, 1996,56(7): 1487-92.
    32. Kumanogoh A, Kikutani H. Roles of the semaphorin family in immune regulation. Adv Immunol. 2003,81:173-98.
    33. Catalano A, Caprari P, Rodilossi S, Betta P, Castellucci M, Casazza A, Tamagnone L, Procopio A. Cross-talk between vascular endothelial growth factor and semaphorin-3A pathway in the regulation of normal and malignant mesothelial cell proliferation. FASEB J, 2004,18(2):358-60.
    34. de Wit J, Verhaagen J. Role of semaphorins in the adult nervous system.Prog Neurobiol, 2003,71 (2-3):249-67.
    35. Kessler O, Shraga-Heled N, Lange T, Gutmann-Raviv N, Sabo E, Baruch L, Machluf M, Neufeld G.Semaphorin-3F is an inhibitor of tumor angiogenesis. Cancer Res, 2004 Feb 1,64(3): 1008-15.
    36. R. Xiang, A. R. Davalos, C. H. Hensel, Zhou X.J., Tse C., and Naylor S. L. Semaphorin 3F Gene from Human 3p21.3 Suppresses Tumor Formation in Nude MiceCancer Res., May 1, 2002,62(9):2637-2643.
    37. Roche J, Drabkin HA. The role of semaphorins in lung cancer. Clin Lung Cancer. 2001,3(2):145-50.
    38. Roche J, Drakin H, Banbrilla E.Neuropilins and its ligands in normal lung and
    
    cancer. Adv Exp Med Biol, 2002,215:103-14.
    39. Elisabeth Brambilla*, Bruno Constantin, Harry Drabkin and Jolle Roche. Semaphorin SEMA3F Localization in Malignant Human Lung and Cell Lines.A Suggested Role in Cell Adhesion and Cell Migration. American Journal of Pathology, 2000,156:939-950.
    40. Nasarre P, Constantin B, Rouhaud L et al. Semaphorin SEMA3F and VEGF have opposing effects on cell attachment and spreading. Neoplasia, 2003,5(1):83-92
    41. Kuroki T, Trapasso F, Yendamuri S, Matsuyama A, Alder H, Williams NN, Kaiser LR, Croce CM.Allelic loss on chromosome 3p21.3 and promoter hypermethylation of semaphorin 3B in non-small cell lung cancer. Cancer Res, 2003 Jun 15,63(12): 3352-5.
    42. Islam MQ, Islam K, A new functional classification of tumor-suppressor genes and its therapeutic implication. Bio essays, 2000,22(3):274-85.
    43. Wingo PA, Ries LA, Giovino GA, et al. Annual report to the nation on the status of cancer, 1973-1996, with a special section on lung cancer and tobacco smoking. J Natl Cancer Inst, 1999,91:675-690.
    44. Samet, Jonathan M.Epidemiology of lung cancer. Chest, 1/1/2003.
    45. Olivier M, Hussain SP, Caron de Fromentel C, Hainaut P, Harris CC.TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ, 2004,(157):247-70.
    46. Habdous M, Siest G, Herbeth B, Vincent-Viry M, Visvikis S. Glutathione S-transferases genetic polymorphisms and human diseases: overview of epidemiological studies. Ann Biol Clin (Paris), 2004 Jan-Feb,62(1): 15-24.
    47. Neuberger JS, Field RW.Occupation and lung cancer in nonsmokers. Rev Environ Health, 2003 Oct-Dec, 18(4):251-67.
    48. Minna JD, Fong K, Zochbauer-Muller S, Gazdar AF.Molecular pathogenesis of lung cancer and potential translational applications. Cancer J, 2002 May-Jun,8 Suppl 1:S41-6.
    49. Parkin DM, Pisani P, Lopez AD, et al. At least smoking causes one in seven cases of cancer: global estimates for 1995. Int J Cancer, 1994,59:494-504.
    50. Zhang H, Cai B. The impact of tobacco on lung health in China. Respirology, 2003 Mar,8(1):17-21.
    51. Wistuba Ⅱ, Behrens C, Virmani AK, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res, 2000,60:1949-1960.
    
    
    52. Parkin DM, Muir CS, Whelan SL, et al. Cancer incidence in five continents. Lyon, France: International Agency for Research on Cancer, 1992.
    53. Boffetta P, Parkin DM. Cancer in developing countries. CA Cancer J Clin, 1994, 44:81-91.
    54.贺天宝.女性癌发生率骤增 调查显示高温油烟是祸首.新闻晚报,2004,1882.
    55. Huang J, Emmert-Buck MR.Frequent inactivation of the TP53 gene in esophageal squamous cell carcinoma from a high- risk population in China.Clin cancer Res, 2001,7:883-891.
    56. G. Casson, S. C. Evans, A. Gillis, G. A. Porter, P. Veugelers, S. J. Damton, D. L. Guernsey, and P. Hainaut.Clinical implications of p53 tumor suppressor gene mutation and protein expression in esophageal adenocarcinomas: Results of a ten-year prospective study. J Thorac Cardiovasc Surg, 2003,125(5): 1121-1131.
    57. Masuda N, Kato H, Nakajima T, Sano T, Kashiwabara K, Oyama T, Kuwano H.Synergistic decline in expressions of p73 and p21 with invasion in esophageal cancers. Cancer Sci, 2003,94(7):612-7.
    58. Wang ZW, Peng ZH, Tang HM, Qiu GQ, Xing TH, Yang MZ.The effects of p16 and Rb protein expression and NF-kappaB activity on hepatocarcinogenesis. Zhonghua Yi Xue Za Zhi, 2004,84(3):225-8.
    59. Lagergren J, Nyren O.Do sex hormones play a role in the etiology of esophageal adenocarcinoma? A new hypothesis tested in a population-based cohort of prostate cancer patients. 2003,7(10):913-5.
    60. Mimori K, Inoue H, Shiraishi T, Matsuyama A, Mafune K, Tanaka Y, Mori M.Microsatellite instability is often observed in esophageal carcinoma patients with allelic loss in the FHIT/FRA3B locus. Oncology, 2003,64(3):275-9.
    61. Gifford G, Brown R.Microsatellite instability: theory and methods. Methods Mol Med. 2004,97:237-50.
    62. Takeuchi H, Ozawa S, Shih CH, Ando N, Kitagawa Y, Ueda M, Kitajima M. Loss of p16INK4a expression is associated with vascular endothelial growth factor expression in squamous cell carcinoma of the esophagus. Int J Cancer, 2004,109(4): 483 -90.
    63. Mukherjee T, Kumar A, Mathur M, Chattopadhyay TK, Ralhan R..Ets-1 and VEGF expression correlates with tumor angiogenesis, lymph node metastasis, and patient survival in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol, 2003, 129(7): 430-6.
    64. Yen CC, Chen YJ, Lu KH, Hsia JY, Chen JT, Hu CP, Chen PM, Liu JH, Chiou TJ,
    
    Wang WS, Yang MH, Chao TC, Lin CH.Genotypic analysis of esophageal squamous cell carcinoma by molecular cytogenetics and real-time quantitative polymerase chain reaction. Int J Oncol, 2003,23(4):871-81.
    65. Beutler, Ernest Gene therapy of human disease. (Reviews in Molecular Medicine). Medicine, 2002,145-156.
    66. Matsubara H, Ochiai T, The protocol of clinical trial and basic experiments for esophageal cancer using gene transduction. Nippon Rinsho, 2000,58:1935-1943.
    67. Matsubara H, Maeda T, Cunji Y, Combinatory anti-tumor effects of electroporation-medicated chimiotherapy and wild type p53 gene transfer to human esophageal cancer cells .Int J Onco, 2001,31:597-829.
    68. Shimada H, Shimidz T, Ochiai T.Preclinical study of adenoviral p53 gene therapy for esophageal cancer. Surg Today, 2001,31:597-604.
    69. Fujii T, Tanaka Y, Tanaka T.Experimental gene therapy using p21/WAF1 gene in esophageal squamous cell carcinoma adenovirus infection and gene gun technologyGan To Kagaku Ryoyo, 2001,28:1651-1654.
    70. Bani-Hani, K., Martin, I.G., Hardie,L.J., Mapstone,N., Briggs,J.A., Forman,D. and Wild,C.P. Prospective study of cyclin D1 overexpression in Barrett's esophagus: association with increased risk of adenocarcinoma. J Natl Cancer Inst., 2000, 92:1316-1321.
    71. Iravani S, Zhang HQ, Yuan ZQ, Cheng JQ, Karl RC, Jove R, Coppola D.Modification of insulin-like growth factor 1 receptor, c-Src, and Bcl-XL protein expression during the progression of Barrett's neoplasia. Hum Pathol, 2003,34(10): 975-82.
    72. Krasna MJ, Saum k. New strategyies for staging esophageal cancer. Advanced Therapy in thoracic Surgery USA, 2002,231-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700