利用半随机抽样模型进行蛋白质概率计算方法的评估等质谱信息学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Shotgun技术是大规模蛋白质鉴定的重要方法,能在一次实验中获得大量的数据,而这些数据的可靠性是蛋白鉴定的一个重要问题。当前关于鉴定结果质量控制的研究主要集中在肽段水平上,而对于蛋白质水平上的鉴定结果可靠性研究比较少,且这些研究中的评估方法所用的数据量都比较小,不足以说明方法的有效性。
     我们在对现有shotgun蛋白质鉴定过程充分理解的基础上,建立了一个半随机抽样模型模拟大量数据搜索后鉴定结果,以期用该模型评估蛋白质概率计算过程中可能涉及到的影响因素,同时评估现有的蛋白质概率计算方法。
     为了验证所建立的半随机抽样模型的可靠性,我们对一批标准蛋白质数据进行模拟,比较不同肽段数上的模拟的和真实的蛋白质或肽段数,发现两种结果基本相似,证明了该模型能基本代表真实的蛋白质鉴定过程。
     基于一批人肝脏的数据,我们利用半随机抽样模型模拟的34批数据,对鉴定结果的数据量大小、搜索数据库大小和去高丰度蛋白质等影响蛋白质概率计算的因素进行了评估,发现随着数据库和数据量的增大蛋白质的总体阳性率都会下降,而去除高丰度的蛋白质在一定程度上能够提高蛋白质的真阳性率。同时,利用这些模拟数据,我们对目前常用的4种蛋白质概率计算方法进行了评估,发现PROT_PROBE能较好地区分鉴定结果中假阳性和真阳性蛋白质;ProteinProphet计算的蛋白质概率高于真实结果且区分度不佳;取双肽段以上(≥2个非冗余肽段)蛋白质的方法效果较好,但会受到数据库和数据量大小的影响:HPPP所采用的泊松模型在一定程度上能较准确地计算假阳性蛋白质鉴定数,但这种方法强烈依赖于单肽段的假阳性率。因此,总体而言,现有的各种方法在部分解决蛋白质水平质量控制的同时,都存在着各自的缺陷,至今尚无较成熟可靠的方法。
     另外,随着蛋白质组学的发展,以及系统生物学研究的逐渐开展,需要高通量地进行蛋白质的相对定量。我们在目前所用的无标记定量方法的基础上,用EM算法进行了方法的改进,并利用已有研究发表的数据进行验证。结果表明,改进
Shotgun technology is a widely used approach in proteomics, which can produce large number of mass spectrum data for only one experimental process. The reliability of large-scale data sets in shotgun proteomics is an important problem, and until now most studies on the reliability of protein identification concentrate at the peptide level,. The quality control at protein level is still an intractable problem, current calculation methods of protein probabilities are evaluated basing on only small data sets of control protein samples or manual validation data, which cannot deduce the credible conclusions. So, large and reliable data sets are necessary to evaluate the reliability of calculated protein probabilities.
    The major object of this study is to establish an efficient evaluation system for different calculation methods of protein probabilities and examine the inpact factors of protein probabilities. A semi-random sampling model was developed according to the careful analyses of the protein identification process to simulate large-scale identified peptides, which were used to evaluate calculation methods for protein probabilities and inpact factors on protein probability.
    Simulation process was performed according to one data set of a control sample (18 proteins), and peptide or protein number of simulated result were compared with the real result at different peptide hits, demonstrating the efficiency of our model.
    Based on a experimental data set from human liver sample, 34 data sets were simulated. The three major influence factors, Data set sizes, database sizes and abundance distributions, are examined in our studies. According to these results, we found that the true positive rate decreased with the enhancing of the simulated data set or searched database size, and the depletion of high abundant proteins could increase the true positive rate of identified proteins. Finally, different methods for protein
引文
1.钱小红,贺福初,蛋白质组学:理论与方法.2003,科学出版社.p1-23.
    2. Hanash, S., Disease proteomics. Nature 2003, 422(6928), 226-232.
    3. Service, R. F., Proteomics. Public projects gear up to chart the protein landscape. Science 2003, 302(5649), 1316-8.
    4. Omenn, G. S., International collaboration in clinical chemistry and laboratory medicine: the Human Proteome Organization (HUPO) Plasma Proteome Project. Clin.Chem Lab Med. 2004, 42(1), 1-2.
    5. Omenn, G. S., The Human Proteome Organization Plasma Proteome Project pilot phase: reference specimens, technology platform comparisons, and standardized data submissions and analyses. Proteomics 2004, 4(5), 1235-1240.
    6. Cyranoski, D., China takes centre stage for liver proteome. Nature 2003, 425(6957), 441.
    7. Jia, H., Louet, S., China pushes liver proteomics. Nat.Biotechnol. 2004, 22(2), 136.
    8. Bluggel, M., Bailey, S., Korting, G., Stephan, C. et al., Towards data management of the HUPO Human Brain Proteome Project pilot phase. Proteomics 2004, 4(8), 2361-2.
    9. Hamacher, M., Stephan, C., Bluggel, M., Chamrad, D. et al., The HUPO Brain Proteome Project Jamboree: Centralised summary of the pilot studies. Proteomics 2006, 6(6), 1719-1721.
    10. He, F., Human Liver Proteome Project Plan, Progress, and Perspectives. Molecular & Cellular Proteomics 2005, 4, 1841-1848.
    11. Krah, A., Schmidt, F., Becher, D., Schmid, M. et al., Analysis of Automatically Generated Peptide Mass Fingerprints of Cellular Proteins and Antigens from Helicobacter pylori 26695 Separated by Two-dimensional Electrophoresis. Mol.Cell Proteomics 2003, 2(12), 1271-1283.
    12. Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P. et al., Proteomic characterization of the human centrosome by protein correlation profiling. Nature 2003, 426(6966), 570-574.
    13. Kristiansen, T. Z., Bunkenborg, J., Gronborg, M., Molina, H., et al. A proteomic analysis of human bile. Mol.Cell Proteomics 2004, 3(7),715-728.
    14. McDonald, W. H., Yates, J. R., Shotgun proteomics: integrating technologies to answer biological questions. Curr Opin Mol Ther. 2003, 5(3), 302-9.
    15. Hunt, D. F., Yates, J. R., Shabanowitz, J., Winston, S. et al., Protein sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 6233-6237.
    16. Eng, J. K., McCormack, A. L., Yates, J. R., Intensity-based statistical scorer for tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 1994, 5, 976-989.
    17. Eng, J. K., McCormack, A. L., Yates, J. R., Intensity-based statistical scorer for tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 1994, 5, 976-989.
    18. Tabb, D. L., Eng, J., Yates, J. R., In Proteome Research: Mass Spectrometry; James, P., Ed.,Springer: New York, 2001, pp 125-142.
    19. Tabb, D. L., McDonakd, W. H., Yates, J. R., DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 2002, 1, 21-26.
    20. Hart, D. K., Eng, J., Zhou, H., Aebersold, R., Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 2001, 19 (10), 946-951.
    21. Eddes, J. S., Kapp, E. A., Frecklington, D. F., Connolly, L. M. et al., CHOMPER: a bioinformatic tool for rapid validation of tandem mass spectrometry search results associated with high-throughput proteomic strategies. Proteomics 2002, 2, 1097-1103.
    22. Perkins, D. N., Pappin, D. J., Creasy, D. M., Cottrell, J. S., Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20(18): 3551-67.
    23. Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002, 74, 5383-5392.
    24. Qian, W. J., Liu, T., Monroe, M. E., Strittmatter, E. F. et al,. Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome. J. Proteome Res. 2005, 4, 53-62.
    25. Moore, R. E., Young, M. K., Lee, T. D., Qscore: an algorithm for evaluating SEQUEST database search results. J. Am. Soc. Mass Spectrom. 2002, 13,378-386.
    26. Yu, L. R., Conrads, T. P., Uo, T., Kinoshita, Y. et al., Global analysis of the cortical neuron proteome. Mol. Cell. Proteomics. 2004, 3,896-907.
    27. Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J. et al., Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. 2003, 2, 43-50.
    28. Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646-4658.
    29. Sadygov, R. G., Liu, H., Yates, J. R., Statistical models for protein validation using tandem mass spectral data and protein amino acid sequence databases. Anal. Chem. 2004, 76, 1664-1671.
    30. Adamski, M., Blackwell, T., Menon, R., Martens, L. et al., Data management and preliminary data analysis in the pilot phase of the HUPO Plasma Proteome Project. Proteomics 2005, 5, 3246-3261.
    31. Li, X., Gong, Y., Wang, Y., Wu, S. et al., Comparison of alternative analytical techniques for the characterisation of the human serum proteome in HUPO Plasma Proteome Project. Proteomics 2005, 13, 3423-3441.
    32. Echan, L. A., Tang, H., Ali-Khan, N., Lee, K. et al., Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics 2005, 13, 3292-3303.
    33. Huang, L., Harvie, G., Feitelson, J. S., Herold, D. A. et al., Immunoaffinity separation of plasma proteins by IgY microbeads: meeting the needs of proteomic sample preparation and analysis. Proteomics 2005, 13, 3314-3328.
    34. Misek, D. E., Kuick, R., Wang, H., Galchev, V. et al., A wide range of protein isoforms in serum and plasma uncovered by a quantitative intact protein analysis system. Proteomics 2005, 13, 3343-3352.
    35. Zolotarjova, N., Martosella, J., Nicol, G., Bailey, J. et al., Differences among techniques for high-abundant protein depletion. Proteomics 2005, 13, 3304-3313.
    36. Keller, A., Purvine, S., Nesvizhskii, A. I., Stolyar, S. et al., Experimental protein mixture for validating tandem mass spectral analysis. Omics 2002, 6, 207-212.
    37. Florens, L., Washburn, M. P., Raine, J. D., Anthony, R. M., Grainger, M. et al., A proteomic view of the plasmodium falciparum life cyclenature. Nature 2002, 419, 520-526.
    38. Pang. J. X., Ginanni, N., Dongre, A. R., Hefta, S. A., Opitek, G. J., Biomarker discovery in urine by proteomics. J. Proteome Res. 2002, 1,161-169.
    39. Gao. J., Opiteck, G. J., Friedrichs, M. S., Dongre, A. R., Hefta, S. A., Changes in the protein expression of yeast as a function of carbon source. J. Proteome Res. 2003, 2, 643-649.
    40. Liu, H., Sadygov, R. G., Yates, J. R., A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 2004, 76, 4193-4201.
    41. Allet, N., Barrillat, N., Baussant, T., Boiteau, C., Botti, P. et. al., In vitro and in silico processes to identify differentially expressed proteins. Proteomics 2004, 4, 2333-2351.
    42. Colinge, J., Chiappe, D., Lagache, S., Moniatte, M., Bougueleret, L., Differential proteomics via probabilistic peptide identification scores. Anal.Chem.2005, 77, 596-606.
    43. Rappsilber, J., Ryder, U., Lamond, A. I, Mann, M., Large-scale proteomic analysis of the human spliceosome. Genome Research, 8, 1231-1245.
    44. Ishihama, Y., Oda, Y., Tabata, T., Sato, T., et al., Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell Proteomics 2005 4, 1265-72.
    1. Hunt, D. F., Yates, J. R., Shabanowitz, J., Winston, S. et al., Protein sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 6233-6237.
    2. Eng, J. K., McCormack, A. L., Yates, J. R., Intensity-based statistical scorer for tandem mass spectrometry. J. Am. Sac. Mass Spectrom. 1994, 5, 976-989.
    3. Wolters, D. A., Washburn M. P., Yates, J. R., An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 2001, 73, 5683-5690.
    4. Link, A. J., Hays, L. G., Carmack, E. B., Yates, J. R., Identifying the major proteome components of Haemophilus influenzae type-strain NCTC 8143. Electrophoresis 1997, 18, 1314-1334.
    5. Wu, C. C., MacCoss, M. J., Howell, K. E., Yates, J. R., A method for the comprehensive proteomic analysis of membrane proteins. Nat. Biotechnol. 2003, 21,532-538.
    6. Perkins, D. N., Pappin, D. J., Creasy, D. M., Cottrell, J. S., Probability-based protein identification by searching database using mass spectrometry data. Electrophoresis 1999, 20, 3551-3567.
    7. Sadygov, R. G., Yates, J. R., A hypergeometric probability model for protein identification and validation using tandem mass spectral data and protein sequence databases. Anal. Chem. 2003, 75, 3792-3798.
    8. Bafna, V., Edwards, N., SCOPE: a probabilistic model for scoring tandem mass spectra against a peptide database. Bioinformatics 2001, 17, S13-S21.
    9. Zhang, W., Chait, B. T., ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal. Chem. 2000, 72, 2482-2489.
    10. Zhang, N., Aebersold, R., Schwikowski, B., ProbID: a probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data. Proteomics 2002, 2, 1406-1412.
    11. Hansen, B. T., Jones, J. A., Mason, D. E., Liebler, D. C., SALSA: a pattern recognition algorithm to detect electrophile-adducted peptides by automated evaluation of CID spectra in LC-MS-MS analyses. Anal. Chem. 2001, 73, 1676-1683.
    12. Link, A. J., Eng, J., Schieltz, D. M., Carmack, E. et al., Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 1999, 17, 676-682.
    13. Tabb, D. L., Eng, J., Yates, J. R., In Proteome Research: Mass Spectrometry; James, P., Ed., Springer: New York, 2001, pp 125-142.
    14. Tabb, D. L., McDonakd, W. H., Yates, J. R., DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 2002, 1, 21-26.
    15. Han, D. K., Eng, J., Zhou, H., Aebersold, R., Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat.Biotechnol. 2001, 19 (10), 946-951.
    16. Eddes, J. S., Kapp, E. A., Frecklington, D. F., Connolly, L. M. et al., CHOMPER: a bioinformatic tool for rapid validation of tandem mass spectrometry search results associated with high-throughput proteomic strategies. Proteomics 2002, 2, 1097-1103.
    17. Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002, 74, 5383-5392.
    18. Qian, W. J., Liu, T., Monroe, M. E., Strittmatter, E. F. et al,. Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome. J. Proteome Res. 2005, 4, 53-62.
    19. Moore, R. E., Young, M. K., Lee, T. D., Qscore: an algorithm for evaluating SEQUEST database search results. J. Am. Soc. Mass Spectrom. 2002, 13, 378-386.
    20. Yu, L. R., Conrads, T. P., Uo, T., Kinoshita, Y. et al., Global analysis of the cortical neuron proteome. Mol. Cell. Proteomics. 2004, 3, 896-907.
    21. Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J. et al., Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. 2003, 2, 43-50.
    22. Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646-4658.
    23. Sadygov, R. G., Liu, H., Yates, J. R., Statistical models for protein validation using tandem mass spectral data and protein amino acid sequence databases. Anal. Chem. 2004, 76, 1664-1671.
    24. Adamski, M., Blackwell, T., Menon, R., Martens, L. et al., Data management and preliminary data analysis in the pilot phase of the HUPO Plasma Proteome Project. Proleomics 2005, 5, 3246-3261.
    25. Li, X., Gong, Y., Wang, Y., Wu, S. et al., Comparison of alternative analytical techniques for the characterisation of the human serum proteome in HUPO Plasma Proteome Project. Proteomics 2005, 13, 3423-3441.
    26. Ethan, L. A., Tang, H., Ali-Khan, N., Lee, K. et al., Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics 2005, 13, 3292-3303.
    27. Huang, L., Harvie, G., Feitelson, J. S., Herold, D. A. et al., Immunoaffinity separation of plasma proteins by lgY microbeads: meeting the needs of proteomic sample preparation and analysis. Proteomics 2005, 13, 3314-3328.
    28. Misek, D. E., Kuick, R., Wang, H., Galchev, V. et al., A wide range of protein isoforms in serum and plasma uncovered by a quantitative intact protein analysis system. Proteomics 2005, 13, 3343-3352.
    29. Zolotarjova, N., Martosella, J., Nicol, G., Bailey, J. et al., Differences among techniques for high-abundant protein depletion. Proteomics 2005, 13, 3304-3313.
    30. Keller, A., Purvine, S., Nesvizhskii, A. I., Stolyar, S. et al., Experimental protein mixture for validating tandem mass spectral analysis. Omics 2002, 6, 207-212.
    31. Kersey, P. J., Duarte, J., Williams, A., Karavidopoulou, Y. et al., The International Protein Index: an integrated database for proteomies experiments. Proteomics 2004, 4(7), 1985-1988.
    32. Su, A. I., Wiltshire, T., Batalov, S., Lapp, H. et al., A gene atlas of the mouse and human protein-encoding transeriptomes. Proc. Natl. Acad. Sci. U.S.A. 2004, 101(16), 6062-6067.
    33.吴松锋,朱云平,贺福初.转录组与基因组比较研究进展.生物化学与生物物理求发展,2005,32(2),99-105.
    34. Washburn, M. P., Wolters, D., Yates, J. R., Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 2001, 19, 242-247.
    35. Liu, H., Sadygov, R. G., Yates, J. R., A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 2004, 76, 4193-4201.
    36. Kjeldsen, F., Haselmann, K. F., Budnik, B. A., Sorensen, E. S. et al., Complete characterization of posttranslationai modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage. Anal. Chem. 2003, 75, 2355-2361.
    37. Gatlin, C. L., Eng, J. K., Cross, S. T., Detter, J. C. et aL, Automated identification of amino acid sequence variations in proteins by HPLC/microspray tandem mass spectrometry. Anal. Chem. 2000, 72, 757-763.
    38. Nielsen, M. L., Savitski, M. M., Kjeldsen, F., Zubarev, R.A., Physicochemical properties determining the detection probability of tryptic peptides in fourier transform mass spectrometry. A correlation study. Anal.Chem. 2004, 76, 5872-5877.
    39. Bihan, T. L., Robinson, M. D., Stewart, I. I., Figeys, D., Definition and characterization of a "trypsinosome" from specific peptide characteristics by nano-HPLC-MS/MS and in silico analysis of complex protein mixtures. J. Proteome Res. 2004, 3, 1138-1148.
    40. Breci, L. A., Tabb, D. L., Yates, J. R., Wysocki, V. H., Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal. Chem. 2003, 75, 1963-1971.
    41. O, Jarvis, J., Parker R., Bramley, P. M. et al., C-terminal sequencing by mass spectrometry: Application to gelatine-derived proline-rich peptides. Proteomics 2005, 5, 1209-1216.
    42. Pan, P., McLuckey, S. A., Electrospray ionization of protein mixtures at low pH. Anal. Chem. 2003, 75, 1491-1499.
    43. Peschke, M., Blades, A., Kebarle, P., Charged states of proteins. Reactions of doubly protonated alkyldiamines with NH(3): solvation or deprotonation. Extension of two proton cases to multiply protonated globular proteins observed in the gas phase. J. Am. Chem. Soc. 2002, 124, 11519-30.
    44. Grandori, R. J., Origin of the conformation dependence of protein charge-state distributions in electrospray ionization mass spectrometry. J Mass Spectrom. 2003, 38(1), 11-15.
    45. De la Mora, J. F., Electrospray ionization of large multiply charged species proceeds via Dole's charge residue mechanism. Anal. Chim. Acta 2000, 406, 93-104.
    46. Dobo, A., Kaltashov. 1. A., Detection of multiple protein conformational ensembles in solution via deconvolution of charge-state distributions in ESI MS. Anal. Chem. 2001, 73, 4763-4773.
    47. Pan, P., Gunawardena, H. P., Xia, Y., McLuckey, S. A., Nanoelectrospray ionization of protein mixtures: solution pH and protein pI. Anal. Chem. 2004, 76, 1165-1174.
    48. Andreev, V. P., Rejtar, T., Chen, H. S., Moskovets, E. V. et al., A universal denoising and peak picking algorithm for LC-MS based on matched filtration in the chromatographic time domain. Anal. Chem. 2003, 75(22), 6314-6326.
    1. Moritz, B., Meyer, H. E., Approaches for the quantification of protein concentration ratios. Proteomics 2003, 3(11), 2208-2220.
    2. Hamdan, M., Righetti, P. G., Modern strategies for protein quantification in proteome analysis: advantages and limitations. Mass Spectrometry Reviews 2002, 21(4), 287-302.
    3. Ghaemmagharni, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A. et al. Global analysis of protein expression in yeast. Nature 2003, 425, 737-741.
    4. MacBeath, G., Protein microarrays and proteomics. Nature Genetics 2002, 32, 526-532.
    5. Fiorens, L., Washburn, M. P., Raine, J. D., Anthony, R. M., et al., A proteomic view of the plasmodium falciparum life cyclenature. Nature 2002, 419, 520-526.
    6. Pang, J. X., Ginanni, N., Dongre, A. R., Hefta, S. A. et al., Biomarker discovery in urine by proteomics. J. Proteome Res. 2002, 1,161-169.
    7. Gao. J., Opiteck, O. J., Friedrichs, M. S., Dongre, A. R., Hefta, S. A., Changes in the protein expression of yeast as a function of carbon source. J. Proteome Res. 2003, 2, 643-649.
    8. Liu, H., Sadygov, R. G., Yates, J. R., A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 2004, 76, 4193-4201.
    9. Allet, N., Barrillat, N., Baussant, T., Boiteau, C., Botti, P. et. al., In vitro and in silico processes to identify differentially expressed proteins. Proteomics 2004, 4, 2333-2351.
    10. Colinge, J., Chiappe, D., Lagache, S., Moniatte, M., Bougueleret, L., Differential proteomics via probabilistic peptide identification scores. Anal.Chem.2005, 77, 596-606.
    11. Rappsilber, J., Ryder, U., Lamond, A. I, Mann, M., Large-scale proteomic analysis of the human spliceosome. Genome Research, 8, 1231-1245.
    12. Ishihama, Y., Oda, Y., Tabata, T., Sato, T., et al., Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell Proteomics 2005 4, 1265-72.
    13. Chelius, D., Bondarenko, P. V., Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J. Proteome Res. 2002, 1 (4), 317-323.
    14. Bondarenko, P. V., Chelius, D., Shaler, T. A., Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal.Chem.2002, 74, 4741-4749.
    15. Wang, W., Zhou, H., Lin, H., Roy, S., Shaler, T. A. et.al., Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem.2003, 75, 4818-4826.
    16. Chelius, D., Zhang, T., Wang, G., Shen, R. F., Global protein identification and quantification technology using two-dimensionai liquid chromatography nanospray mass spectrometry. Anal.Chem.2003, 75, 6658-6665.
    17. Neuhoff, N., Kaiser, T., Wittke, S., Krebs, R., Pitt, A. et al., Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun.Mass Spectrom.2004, 18, 149-156.
    18. Wiener, M. C., Sachs, J. R., Deyanova, E. G., Yates, N. A. Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal Chem. 2004, 76, 6085-6096.
    19. Silva, J. C., Denny, R., Dorschel, C. A., Gorenstein, M., Kass, I. J. et al., Quantitative proteomic analysis by accurate mass retention time pairs. Anal.Chem. 2005, 77, 2187-2200.
    20. Old, W. M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K. G., Mendoza, A. et al., Comparison of label free methods for quantifying human proteins by shotgun proteomics. Mol. Cell Proteomics 2005, 4, 1487-1502.
    21. Leptos, K. C., Sarracino, D. A.., Jaffe, J. D., Krastins, B., Church, G.M. MapQuant: Open-source software for large-scale protein quantification. Proteomics, 2006, 6, 1770-1782.
    22. Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry, Anal. Chem. 2003, 75, 4646-4658.
    23. McDonald, W. H., Tabb. D. L., Sadygov, R. G., MacCoss. M. J. et al., MS1, MS2, and SQT-three unified, compact, and easily parsed file formats for the storage of shotgun proteomic spectra and identifications. Rapid Commun. Mass Spectrom. 2004, 18, 2162-2168.
    24. Tabb, D. L., McDonakd, W. H., Yates, J. R., DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 2002, 1, 21-26.
    25. Kjeldsen, F., Haselmann, K. F., Budnik, B. A., Sorensen, E. S. et al., Completecharacterization of posttranslational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage. Anal. Chem. 2003, 75, 2355-2361.
    26. Gatlin, C. L., Eng, J. K., Cross, S. T., Detter, J. C. et al., Automated identification of amino acid sequence variations in proteins by HPLC/microspray tandem mass spectrometry. Anal. Chem. 2000, 72, 757-763.
    27. Pan, P., McLuckey, S. A., Electrospray ionization of protein mixtures at low pH. Anal. Chem. 2003, 75, 1491-1499.
    28. Peschke, M., Blades, A., Kebarle, P., Charged states of proteins. Reactions of doubly protonated alkyldiamines with NH(3): solvation or deprotonation. Extension of two proton cases to multiply protonated globular proteins observed in the gas phase. J. Am. Chem. Soc. 2002, 124, 11519-30.
    29. Grandori, R. J., Origin of the conformation dependence of protein charge-state distributions in electrospray ionization mass spectrometry. J Mass Spectrom. 2003, 38(1), 11-15.
    30. De la Mora, J. F., Electrospray ionization of large multiply charged species proceeds via Dole's charge residue mechanism. Anal. Chim. Acta 2000, 406, 93-104.
    31. Dobo, A., Kaltasbov. I. A., Detection of multiple protein conformational ensembles in solution via deconvolution of charge-state distributions in ESI MS. Anal. Chem. 2001,73, 4763-4773.
    32. Pan, P., Gunawardena, H. P., Xia, Y., McLuckey, S. A., Nanoelectrospray ionization of protein mixtures: solution pH and protein pI. Anal. Chem. 2004, 76, 1165-1174.
    33. Nielsen, M. L., Savitski, M. M., Kjeldsen, F., Zubarev, R.A., Physicochemical properties determining the detection probability of tryptic peptides in fourier transform mass spectrometry. A correlation study. Anal. Chem. 2004, 76, 5872-5877.
    34. Bihan, T. L., Robinson, M. D., Stewart, I. I., Figeys, D., Definition and characterization of a "trypsinosome" from specific peptide characteristics by nano-HPLC-MS/MS and in silico analysis of complex protein mixtures. J. Proteome Res. 2004, 3, 1138-1148.
    35. Breci, L. A., Tabb, D. L., Yates, J. R., Wysocki, V. H., Cleavage N-terminal to proline: analysis of a database ofpeptide tandem mass spectra. Anal. Chem. 2003, 75, 1963-1971.
    36. O, Jarvis, J., Parker R., Bramley, P. M. et al., C-terminal sequencing by mass spectrometry: Application to gelatine-derived proline-rich peptides. Proteomics 2005, 5, 1209-1216.
    1. Nesvizhskii, A. I., Aebersold, R., Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 2005, 4(10), 1419-40.
    2. Eng, J. K., McCormack, A. L., Yates, J. R., Intensity-based statistical scorer for tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 1994, 5, 976-989.
    3. Perkins, D. N., Pappin, D. J., Creasy, D. M., Cottrell, J. S., Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20(18): 3551-67.
    4. http://www.matrixscience.com/daemon.html
    1. Moritz B, Meyer HE. Approaches for the quantification of protein concentration ratios. Proteomics 2003, 3:2208-2220
    2. Hamdan M, Righetti PG. Modern strategies for protein quantification in proteome analysis: advantages and limitations. Mass Spectrometry Reviews 2002, 21:287-302
    3. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M et al. A proteomic view of the plasmodium falciparum life cyclenature. Nature 2002, 419:520-526
    4. Pang JX, Ginanni N, Dongre AR, Hefta SA, Opitek GJ. Biomarker discovery in urine by proteomics. J. Proteome Res. 2002, 1:161-169
    5. Gao J, Opiteck GJ, Friedrichs MS, Dongre AR, Hefta SA. Changes in the protein expression of yeast as a function of carbon source. J. Proteome Res.2003, 2:643-649
    6. Liu H, Sadygov RG, Yates JR 3rd. A model for random samplingand estimation of relative protein abundance in shotgun proteomics, Anal. Chem. 2004, 76:4193-4201
    7. Allet N, Barrillat N, Baussant T, Boiteau C, Botti Pet al. In vitro and in silico processes to identify differentially expressed proteins. Proteomics 2004, 4:2333-2351
    8. Colinge J, Chiappe D, Lagache S, Moniatte M,Bougueleret L. Differential proteomics via probabilistic peptide identification scores. Anal. Chem. 2005, 77:596-606
    9. Rappsilber J, Ryder U, Lamond AI, Mann M. Large-scale proteomic analysis of the human spliceosome. Genome Research, 8:1231-1245
    10. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell Proteomics 2005 4:1265-72
    11. Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat.Biotechnol. 2001, 19:242-247
    12. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A et al. Global analysis of protein expression in yeast. Nature 2002, 425:737-741
    13. Meek JL, Prediction of peptide retention times in high-pressure liquid chromatography on the basis of amino acid composition. Proc Natl Acad Sci. 1980, 77:1632-6
    14. Sakamoto Y, Kawakami N, Sasagawa T. Prediction of peptide retention times. J. Chromatogr 1988, 442:69-79
    15. Chelius D, Bondarenko PV. Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry, J.Proteome Res. 2002, 317-323
    16. Bondarenko PV, Chelius D, Shaler TA. Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem. 2002, 74:4741-4749
    17. Wang W, Zhou H, Lin H, Roy S, Shaler TA et. al. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem. 2003, 75:4818-4826
    18. Chelius D, Zhang T, Wang G, Shen RF. Global protein identification and quantification technology using two-dimensional liquid chromatography nanospray mass spectrometry. Anal.Chem. 2003, 75:6658-6665
    19. Neuhoff N, Kaiser T, Wittke S, Krebs R, Pitt A et. al. Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18: 149-156
    20. Wiener MC, Sachs JR, Deyanova EG, Yates NA. Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal Chem. 2004, 76:6085-6096
    21. Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ et. al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal.Chem. 2005, 77:2187-2200
    22. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A et. al. Comparison of label free methods for quantifying human proteins by shotgun proteomics. Mol. Cell Proteomics 2005, 4:1487-1502
    [1] Hunt, D. F., Yates, J. R., Shabanowitz, J., Winston, S. et al., Proc. Natl. Acad. Sci.U.S.A. 1986, 83, 6233-6237.
    [2] Eng, J. K., McCormack, A. L., Yates, J. R., d. Am. Soc. Mass Spectrom. 1994, 5, 976-989.
    [3] Wolters, D. A., Washburn M. P., Yates, J. R., Anal. Chem. 2001, 73, 5683-5690.
    [4] Link, A. J., Hays, L. G., Carmack, E. B., Yates, J. R., Electrophoresis 1997, 18, 1314-1334.
    [5] Wu, C. C., MacCoss, M. J., Howell, K. E., Yates, J. R., Nat. Biotechnol.2003, 21,532-538.
    [6] Perkins, D. N., Pappin, D. J., Creasy, D. M., Cottrell, J. S., Electrophoresis 1999, 20, 3551-3567.
    [7] Sadygov, R. G., Yates, J. R., Anal.Chem. 2003, 75, 3792-3798.
    [8] Bafna, V., Edwards, N., Bioinformatics 2001, 17, S13-S21.
    [9] Zhang, W., Chait, B. T., Anal.Chem. 2000, 72, 2482-2489.
    [10] Zhang, N., Aebersold, R., Schwikowski, B., Proteomics 2002, 2, 1406-1412.
    [11] Hansen, B. T., Jones, J. A., Mason, D. E., Liebler, D. C., Anal. Chem. 2001,73, 1676-1683.
    [12] Link, A. J., Eng, J., Schieltz, D. M., Carmack, E. et al., Nat. Biotechnol.1999, 17, 676-682.
    [13] Tabb, D. L., Eng, J., Yates, J. R., In Proteome Research: Mass Spectrometry; James, P., Ed., Springer: New York, 2001; pp 125-142.
    [14] Tabb, D. L., McDonakd, W. H., Yates, J. R., J. Proteome Res. 2002, 1, 21-26.
    [15] Han, D. K., Eng, J., Zhou, H., Aebersold, R., Nat. Biotechnol.2001, 19 (10), 946-951.
    [16] Eddes, J. S., Kapp, E. A., Frecklington, D. F., Connoily, L. M. et al., Proteomics 2002, 2, 1097-1103.
    [17] Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R.,Anal. Chem.2002, 74, 5383-5392.
    [18] Qian, W. J., Liu, T., Monroe, M. E., Strittmatter, E. F. et al.,J. Proteome Res. 2005, 4, 53-62.
    [19] Moore, R. E., Young, M. K., Lee, T. D., J. Am. Soc. Mass Spectrom. 2002, 13,378-386.
    [20] Yu, L. R., Conrads, T. P., Uo, T., Kinoshita, Y. et al., Mol. Cell. Proteomics. 2004, 3, 896-907.
    [21] Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J. et al., J. Proteome Res. 2003, 2, 43-50.
    [22] Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R., Anal.Chem. 2003, 75, 4646-4658.
    [23] Sadygov, R. G., Liu, H., Yates, J. R., Anal. Chem. 2004, 76, 1664-1671.
    [24] Adamski, M., Blackwell, T., Menon, R., Martens, L. et al., Proteomics 2005, 5, 3246-3261.
    [25] Li, X., Gong, Y., Wang, Y., Wu, S. et al., Proteomics 2005, 13, 3423-3441.
    [26] Echan, L. A., Tang, H., Ali-Khan, N., Lee, K. et al., Proteomics 2005, 13, 3292-3303.
    [27] Huang, L., Harvie, G., Feitelson, J. S., Herold, D. A. et al., Proteomics 2005, 13, 3314-3328.
    [28] Misek, D. E., Kuick, R., Wang, H., Galchev, V. et al., Proteomics 2005, 13, 3343-3352.
    [29] Zolotarjova, N., Martosella, J., Nicol, G., Bailey, J. et al., Proteomics 2005, 13, 3304-3313.
    [30] Keller, A., Purvine, S., Nesvizhskii, A. I., Stolyar, S. et al., Omics 2002, 6, 207-212.
    [31] Kersey P. J., Duarte J., Williams A., Karavidopoulou Y. et al., Proteomics 2004, 4(7), 1985-1988.
    [32] Su, A. I., Wiltshire, T., Batalov, S., Lapp, H. et al., Proc. Natl. Acad. Sci.U.S.A. 2004, 101 (16), 6062--6067.
    [33]
    [34] Kjeldsen, F., Haselmann, K. F., Budnik, B. A., Sorensen, E. S. et al., Anal. Chem. 2003, 75, 2355-2361.
    [35] Gatlin, C. L., Eng, J. K., Cross, S. T., Detter, J. C. et al., Anal. Chem. 2000, 72, 757-763.
    [36] Nielsen, M. L., Savitski, M. M., Kjeldsen, F., Zubarev, R.A., Anal Chem. 2004, 76, 5872-5877.
    [37] Bihan, T. L., Robinson, M. D., Stewart, I. I., Figeys, D., J. Proteome Res. 2004, 3, 1138-1148.
    [38] Breci, L. A., Tabb, D. L., Yates, J. R., Wysocki, V. H., Anal.Chem. 2003, 75, 1963-1971.
    [39] O, Jarvis, J., Parker R., Bramley, P. M. et al., Proteomics 2005, 5, 1209-1216.
    [40] Pan, P., McLuckey, S. A.,Anal. Chem. 2003, 75, 1491-1499.
    [41] Peschke, M., Blades, A., Kebarle, P., J. Am. Chem. Soc. 2002, 124, 11519-11530.
    [42] Grandori, R. J., Mass Spectrom. 2003, 38, 11-15.
    [43] de la Mora, J. F., Anal Chim. Acta 2000, 406, 93-104.
    [44] Dobo, A., Kaltashov. I. A., Anal Chem. 2001, 73, 4763-4773.
    [45] Pan, P., Gunawardena, H. P., Xia, Y., McLuckey, S. A.,Anal. Chem.2004, 76, 1165-1174.
    [46] Liu, H., Sadygov, R. G., Yates, J. R.,Anal. Chem. 2004, 76, 4193-4201.
    [47] Andreev, V. P., Rejtar, T., Chen, H. S., Moskovets, E. V. et al., Anal Chem. 2003, 15,75, 6314-6326.
    
    [48] Washburn, M. P., Wolters, D., Yates, J. R., Nat. Biotechnol. 2001, 19, 242-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700