PTEN缺失对抗氧化防御蛋白的影响效应及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本文旨在研究抑癌基因PTEN缺失的小鼠胚胎成纤维细胞(MEFs)中抗氧化防御蛋白——过氧化物还原酶(Prx1,2,5,6)及铜锌-超氧化物歧化酶(Cu/Zn-SOD)表达下调对细胞抗氧化防御能力、细胞内活性氧(ROS)、脂质过氧化和DNA氧化损伤水平的影响,并探讨PTEN调控Prx1,2,5,6及Cu/Zn-SOD mRNA和蛋白表达的机制,以进一步完善PTEN的抑癌作用机理,对肿瘤的预防和治疗有一定的指导意义。
     方法:
     (1)用超氧化物歧化酶(SOD)检测试剂盒比较对照(PTEN~(+╱+) MEFs)及PTEN缺失MEFs细胞(PTEN~(-/-) MEFs)内SOD活力水平;不同浓度过氧化氢(H_2O_2)作用后,中性彗星电泳检测PTEN~(+╱+) MEFs及PTEN~(-/-) MEFs细胞中DNA双链断裂(DSBs)水平;Western blot检测不同浓度H_2O_2预处理后PTEN~(+/+) MEFs及PTEN~(-/-) MEFs细胞内DNADSBs产物磷酸化组蛋白H2AX(γH2AX)表达水平。
     (2) 2'7'-二氯荧光素双乙酸盐(DCFH-DA)和二氢乙啶(DHE)荧光探针分别标记细胞内H_2O_2和超氧阴离子(O_2~(·-))结合荧光显微镜及流式细胞学检测PTEN~(+╱+) MEFs及PTEN~(-/-) MEFs细胞中基础ROS(H_2O_2和O_2~(·-))水平。
     (3)用丙二醛(MDA)检测试剂盒比较PTEN~(+/+)MEFs及PTEN~(-/-)MEFs细胞中脂质过氧化产物MDA水平;免疫细胞化学检测PTEN~(+/+)MEFs及PTEN~(-/-)MEFs细胞内DNA氧化损伤产物8-羟基脱氧鸟苷(8-OH-dG)水平;Western blot及免疫荧光染色检测PTEN~(+/+)MEFs及PTEN~(-/-)MEFs细胞中DNA DSBs产物γH2AX蛋白表达水平;中性彗星电泳进一步检测PTEN~(+/+)MEFs及PTEN~(-/-)MEFs细胞内DNADSBs水平。
     (4)磷脂酰肌醇激酶(PI3K)抑制剂LY294002作用PTEN~(-/-)MEFs细胞后,Western blot检测丝氨酸/苏氨酸蛋白激酶AKT(或称PKB)磷酸化水平;Western blot和Northern blot分别检测LY294002作用后PTEN~(-/-)MEFs细胞中Prx1,2,5,6及Cu/Zn-SOD蛋白和mRNA表达水平;Western blot进一步检测PTEN~(+/+)MEFs及PTEN~(-/-)MEFs细胞中转录因子FOXO3a磷酸化水平及LY294002作用PTEN~(-/-)MEFs细胞后FOXO3a磷酸化水平。
     结果:
     (1)PTEN缺失MEFs细胞抗氧化防御能力降低:
     PTEN~(+/+)MEFs细胞的SOD活力是PTEN~(-/-)MEFs细胞的2.09倍(p<0.01),说明PTEN~(-/-)MEFs细胞中SOD清除O_2~(·-)能力降低。中性彗星电泳结合Western blot检测显示PTEN~(-/-)MEFs细胞在0.01mmol/LH_2O_2作用后就出现具有统计学意义的DNA DSBs水平升高(p<0.01),而PTEN~(+/+)MEFs细胞则要在H_2O_2作用浓度达到0.1mmol/L时,才出现具统计学意义的DNA DSBs损伤增强(p<0.01),说明PTEN~(-/-)MEFs细胞清除H_2O_2、防御其诱发的DNA氧化损伤的能力降低。
     (2)PTEN~(-/-)MEFs细胞内基础ROS水平升高:
     流式细胞学显示荧光探针孵育的不同时间点,PTEN~(-/-)MEFs细胞内2'7'-二氯荧光素(DCF)和氧化乙啶(Eth)荧光水平均明显高于PTEN~(+/+)MEFs细胞(p<0.05和p<0.01),荧光显微图像显示PTEN~(-/-)MEFs细胞内DCF和Eth荧光强度均明显高于PTEN~(+/+)MEFs,均表明PTEN~(-/-)MEFs细胞内H_2O_2和O_2~-水平升高。
     (3)PTEN缺失MEFs细胞脂质过氧化和DNA氧化损伤增强:
     PTEN~(+/+)MEFs细胞内MDA水平明显低于PTEN~(-/-)MEFs细胞(p<0.01),分别为1.3±0.1 nmol/mgprot和1.75±0.05 nmol/mgprot,说明PTEN~(-/-)MEFs细胞脂质过氧化水平升高,氧化损伤增强。免疫细胞化学显示PTEN~(-/-)MEFs细胞内8-OH-dG水平是PTEN~(+/+)MEFs细胞的3.1倍(p<0.01),说明PTEN~(-/-)MEFs细胞DNA氧化损伤水平升高。Western blot和免疫荧光染色显示PTEN~(-/-)MEFs细胞中DNA DSBs产物γH2AX蛋白表达水平明显高于PTEN~(+/+)MEFs(p<0.01),中性彗星电泳显示PTEN~(+/+)MEFs细胞平均尾力矩(15.48)明显低于PTEN~(-/-)MEFs细胞(22.03)(p<0.01),均表明PTEN~(-/-)MEFs细胞DNA DSBs损伤增强。
     (4)PTEN可通过拮抗PI3K/AKT通路促进Prx1,2,5,6及Cu/Zn-SODmRNA和蛋白表达并抑制FOXO3a磷酸化:
     Western blot和Northern blot显示PI3K抑制剂LY294002作用后,PTEN~(-/-)MEFs细胞中AKT激酶活化明显抑制,而Prx1,2,5,6及Cu/Zn-SOD蛋白和mRNA均表达增强,说明PTEN可通过拮抗PI3K/AKT通路促进Prx1,2,5,6及Cu/Zn-SOD基因转录和蛋白表达。此外,Western blot显示PTEN~(-/-) MEFs细胞中转录因子FOXO3a磷酸化水平升高,LY294002作用PTEN~(-/-)MEFs细胞后FOXO3a磷酸化水平降低,说明PTEN可通过拮抗PI3K/AKT通路抑制下游转录因子FOXO3a磷酸化。
     结论:
     (1)PTEN作为一个重要的抑癌基因,其缺失可引起抗氧化防御蛋白Prx1,2,5,6及Cu/Zn-SOD表达下调,由此导致细胞抗氧化防御能力降低,细胞内基础ROS水平升高,氧化压力诱发的脂质过氧化和DNA氧化损伤增强。表明PTEN在维持细胞内氧化还原环境、保护细胞免于氧化损伤和维持基因组稳定性方面起着重要作用。
     (2)PTEN可通过拮抗PI3K/AKT通路促进抗氧化防御蛋白Prx1,2,5,6及Cu/Zn-SOD基因转录和蛋白表达,并且可能通过该通路下游的FOXO3a等FOXO家族(FOXOs)转录因子对其转录进行调控。
Objective:
     This study aims to investigate the effect of the deregulated expression of several antioxidant defense enzymes,including peroxiredoxin(Prx) 1,2, 5,6 and copper/zinc superoxide dismutase(Cu/Zn-SOD),on the antioxidant defense ability and basal levels of reactive oxygen species (ROS),lipid peroxidation and oxidative DNA damage in PTEN-deleted mouse embryonic fibroblasts(PTEN~(-/-) MEFs).The regulation mechanism of PTEN on the protein and mRNA expression of Prx1,2,5,6 and Cu/Zn-SOD was also explored to supplement and perfect the anti-tumor action principles of PTEN which may have potential in prevention and therapy of cancer.
     Methods:
     (1) SOD Assay Kit-WST was used to test the superoxide dismutase (SOD) enzyme activities in control group(PTEN~(+/+) MEFs) and PTEN~(-/-) MEFs.The comet assay was applied for the detection of various concentrations of H_2O_2-induced DNA double-strand breaks(DSBs).The expression of phosphorylation of histone H2AX(γH2AX),a widely used marker for DNA DSBs,was detected by western blot treated by H_2O_2 with different dose.
     (2) Using 2',7'-dichlorofluorescein diacetate(DCHF-DA) and dihydroethidium(DHE),the intracellular generation of H_2O_2 and superoxide anion(O_2~(·-)) was monitored by flow cytometry and fluorescence microscope in PTEN~(+/+) MEFs and PTEN~(-/-) MEFs.
     (3) To detect the effect of PTEN on lipid peroxide,the levels of malonaldehyde(MDA) in PTEN~(+/+) MEFs and PTEN~(-/-) MEFs was tested by MDA Assay Kit.To analyze the influence of PTEN deletion on oxidative DNA damage,immunostaining assay was used to detect the expression of 8-OH-dG.The expression ofγH2AX in PTEN~(+/+) MEFs and PTEN~(-/-) MEFs was monitored by western blot and immunofluorescence.The comet assay was also applied to further detect the levels of DNA DSBs.
     (4) To explore whether PTEN regulate the expression of antioxidant enzymes through inhibiting PI3K/AKT signal pathway,western blot and northern blot were used to test the protein and mRNA expression of P-AKT,Prx1,2,5,6 and Cu/Zn-SOD in PTEN~(-/-) MEFs treated by LY294002,a inhibitor of phosphatidylinositol-3-kinase(PI3K).Western blot was further applied to analyze the basal expression of FOXO3a in PTEN~(+/+) MEFs and PTEN~(-/-) MEFs and the expression levels of FOXO3a treated by LY294002 with various time in PTEN~(-/-) MEFs to identify if PTEN regulate the phosphorylation of the transcription factor FOXO3a through inhibiting PI3K/AKT signaling pathway.
     Results:
     (1) Decreased antioxidant defense ability in PTEN-deleted MEFs:
     SOD enzyme activity data revealed a 2.09-fold decrease in PTEN~(-/-) MEFs(p<0.01).The comet assay and western blot showed that exposure to each concentration of H_2O_2 resulted in a highly statistically significant increase in the frequency of DNA DSBs in PTEN~(-/-) MEFs(p<0.01) compared to H_2O_2-untreated control at each concentration,whereas this increase was seen only in the 0.1 mmol/L H_2O_2-treated PTEN~(+/+) MEFs (p<0.01 compared to H_2O_2-untreated control),indicating the decreased antioxidant defense ability in PTEN~(-/-) MEFs.
     (2) Increased ROS in PTEN-deleted MEFs:
     A flow-cytometry-based DCHF-DA and DHE analysis revealed that the levels of both DCF and Eth fluorescence in PTEN~(-/-) MEFs were higher than in control wild-type cells during 15-to 60-min incubation.(p<0.05 and p<0.01).Fluorescence photomicrographs also suggested an increased H_2O_2 and O_2~(·-) in PTEN~(-/-) MEFs.
     (3) Increased lipid peroxide and oxidative DNA damage in PTEN-deleted MEFs:
     The level of MDA in PTEN~(-/-) MEFs was higher than in PTEN~(+/+) MEFs(1.75±0.05 nmol/mgprot vs 1.3±0.1 nmol/mgprot,p<0.01). Immunostaining assay data revealed that PTEN-deleted MEFs displayed a significant increase in the levels of 8-OH-dG(p<0.01).The frequency of DNA DSBs was estimated by immunofluorescence assay or western blotting forγH2AX.Compared to PTEN~(+/+) MEFs,intenseγH2AX staining or increasedγH2AX level was observed in PTEN~(-/-) MEFs(p<0.01).The comet assay showed that mean tail moment in PTEN~(-/-) MEFs was significantly higher than in control(22.03 vs 15.48,p<0.01),indicating that there is extensive spontaneous DNA DSBs in PTEN~(-/-) MEFs.
     (4) PTEN may increase the expression of Prx1,2,5,6 and Cu/Zn-SOD and decrease the phosphorylation of FOXO3a through inhibiting PI3K/AKT signaling pathway:
     Western blot and northern blot displayed that LY294002 successfully inhibited the activation of PI3K/AKT signaling pathway and the protein and mRNA expression of Prx1,2,5,6 and Cu/Zn-SOD up-regulated in PTEN~(-/-) MEFs treated by LY294002,indicating that PTEN may increase the expression of Prx1,2,5,6 and Cu/Zn-SOD through inhibiting PI3K/AKT signal pathway.Meanwhile,western blot also showed that the protein expression of P-FOXO3a in PTEN~(-/-) MEFs was higher than in PTEN~(+/+) MEFs and deregulated in PTEN~(-/-) MEFs treated by LY294002, indicating that PTEN may decrease the phosphorylation of FOXO3a through inhibiting PI3K/AKT signaling pathway.
     Conclusion:
     (1) PTEN,as an important tumor suppressor gene,may up-regulate the expression of several antioxidant enzymes,including Prx1,2,5,6 and Cu/Zn-SOD,which results in increased antioxidant defense ability and decreased ROS levels,lipid peroxide and oxidative DNA damage.These findings suggest an essential role for PTEN in maintaining normal redox state and genomic stability against oxidative damage.
     (2) PTEN may up-regulate the expression of Prx1,2,5,6 and Cu/Zn-SOD through inhibiting the PI3K/AKT signaling pathway.Its mechanism may be to deregulate the phosphorylation of the PI3K/AKT downstream Forkhead transcription factors(FOXOs).
引文
[1]李玉林主编.病理学[M].第六版.北京:人民卫生出版社.2003年.92-127.
    [2]Jing Li,Clifford Yen,Danny Liaw,et al.PTEN,a Putative Protein Tyrosine Phosphatase Gene Mutated in Human Brain,Breast,and Prostate Cancer[J].Science.1997,275(5308):1943-1947
    [3]Steck PA,Pershouse MA,Jasser SA,et al.Identification of a candidate tumour suppressor gene,MMAC1,at chromosome 10q23.3 that is mutated in multiple advanced cancers[J].Nat Genet.1997,15(4):356-362.
    [4]Li DM,Sun H.TEP 1,encoded by a candidate tumor suppressor locus,is a novel protein tyrosine phosphatase regulated by transforming growth factor beta[J].Cancer Res.1997,57(11):2124-2129.
    [5]Baker SJ.PTEN enters the nuclear age[J].Cell.2007,128(1):25-28.
    [6]Liaw D,Marsh DJ,Li J,Dahia PL,et al.Germline mutations of the PTEN gene in Cowden disease,an inherited breast and thyroid cancer syndrome[J].Nat Genet.1997,16(1):64-67.
    [7]Li G,Robinson GW,Lesche R,et al.Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland[J].Development.2002,129(17):4159-4170.
    [8][8]Huo YY,Li G,Duan RF,et al.PTEN deletion leads to deregulation of antioxidants and increased oxidative damage in mouse embryonic fibroblasts[J].Free Radical Biology & Medicine.2008,44(8):1578-1591.
    [9]Pietarinen-Runtti P,Raivio KO,Saksela M,et al.Antioxidant enzyme regulation and resistance to oxidants of human bronchial epithelial cells cultured under hyperoxic conditions[J].Am J Respir Cell Mol Biol.1998,19(2):286-292.
    [10]Kinnula VL,P(a|¨)(a|¨)ikk(o|¨) P,Soini Y.Antioxidant enzymes and redox regulating thiol proteins in malignancies of human lung[J].FEBS Lett.2004,569(1-3):1-6.
    [1]Dr(o|¨)ge W.Free Radicals in the Physiological Control of Cell Function[J].Physiol Rev.2002,82(1):47-95.
    [2]Hensley K,Robinson KA,Gabbita SP,et al.Reactive oxygen species,cell signaling,and cell injury[J].Free Radic Biol Med.2000,28(10):1456-1462.
    [3]Burdon,R.H.Superoxide and hydrogen peroxide in relation to mammalian cell proliferation[J].Free Radic Biol Med.1995,18(4):775-794.
    [4]Conde de la Rosa L,Schoemaker MH,Vrenken TE,et al.Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms:involvement of JNK and ERK MAP kinases[J].J Hepatol.2006,44(5):918-929.
    [5]Simon AR,Rai U,Fanburg BL,et al.Activation of the JAK-STAT pathway by reactive oxygen species[J].Am J Physiol.1998,275(6 Pt 1):C1640-1652.
    [6]蔡露.低剂量辐射诱导适应性反应规律及其机理研究的进展[J].中华放射医学与防护杂志.1997,17(5):291-300.
    [7][7]Yu HS,Song AQ,Lu YD,et al.Effects of low-dose radiation on tumor growth,erythrocyte immune function and SOD activity in tumor-bearing mice[J].Chin Med J(Engl).2004,117(7):1036-1039.
    [8]Ahsan H,Ali A,Ali R.Oxygen free radicals and systemic autoimmunity.Clin Exp Immunol[J].2003,131(3):398-404.
    [9]Murakami A,Ohigashi H.Targeting NOX,INOS and COX-2 in inflammatory cells:chemoprevention using food phytochemicals[J].Int J Cancer.2007,121(11):2357-2363.
    [10]Lijnen P,Petrov V,van Pelt J,et al.Inhibition of superoxide dismutase induces collagen production in cardiac fibroblasts[J].Am J Hypertens.2008,21(10):1129-1136.
    [11]Valavanidis A,Vlahogianni T,Dassenakis M,et al.Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants [J].Ecotoxicol Environ Saf.2006,64(2):178-189.
    [12] Valdez LB, Arniaiz SL, Bustamante J, et al. Free radical chemistry in biological systems [J]. Bio Res. 2000, 33(2): 65-70.
    [13] El Kebir D, Jozsef L, Pan W, et al. Myeloperoxidase delays neutrophil apoptosis through CD11b/CD18 integrins and prolongs inflammation [J]. Circ Res. 2008, 103(4): 352-359.
    [14] Choi DW, Semrau JD, Antholine WE, et al. Oxidase, superoxide dismutase, and hydrogen peroxide reductase activities of methanobactin from types I and II methanotrophs [J]. J Inorg Biochem. 2008, 102(8): 1571-1580.
    [15] Moore DJ, West AB, Dawson VL, et al. Molecular pathophysiology of Parkinson's disease [J]. Annu Rev Neurosci. 2005, 28: 57-87;.
    [16] Karihtala P, Soini Y. Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies [J]. APMIS. 2007, 115(2): 81-103.
    [17] Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damage and cancer incidence [J]. Mol Cell Biochem. 2004, 266(1-2): 37-56.
    [18]Benhar M, Engelberg D, Levitzki A. ROS, stress-activated kinases and stress signaling in cancer [J]. EMBO Rep. 2002, 3(5):420-425.
    [19] Jackson AL, Loeb LA. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer [J]. Mutat Res. 2001, 477(1-2):7-21.
    [20] Pietarinen-Runtti P, Raivio KO, Saksela M, et al. Antioxidant enzyme regulation and resistance to oxidants of human bronchial epithelial cells cultured under hyperoxic conditions [J]. Am J Respir Cell Mol Biol. 1998, 19(2): 286-292.
    [21] Kinnula VL, Paakko P, Soini Y. Antioxidant enzymes and redox regulating thiol proteins in malignancies of human lung [J]. FEBS Lett. 2004, 569(1-3): 1-6.
    [22] Tien Nguyen-nhu N, Knoops B. Mitochondrial and cytosolic expression of human peroxiredoxins 5 in Saccharomyces cerevisiae protect yeast cells from oxidative stress induced by paraquat [J]. FEBS Lett. 2003, 544: 148-152.
    [23] Fujii J, Ikeda Y. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein [J]. Redox Rep. 2002, 7(3): 123-130.
    [24]Rhee SG,Kang SW,Jeong W,et al.Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins[J].Curr Opin Cell Biol.2005,17(2):183-189;.
    [25]Chae HZ,Kim HJ,Kang SW,et al.Characterization of three isoforms of mammalianperoxiredoxin that reduce peroxides in the presence of thioredoxin [J].Diabetes Re Clin Pract.1999,45(2-3):101-112.
    [26]章波,向渝梅,白云.抗氧化蛋白Peroxiredoxin家族研究进展[J].生理科学进展.200,35(4):352-355.
    [27]Kim H,Lee TH,Park ES,et al.Role of Peroxiredoxins in Regulating Intracellular Hydrogen Peroxide and Hydrogen Peroxide-induced Apoptosis in Thyroid Cells [J].J Biol Chem.2000,275(24):18266-18270.
    [28]Yuan J,Murrell GA,Trickett A,et al.Overexpression of antioxidant enzyme peroxiredoxin 5 protects human tendon ceils against apoptosis and loss of cellular function during oxidative stress[J].Biochim Biophys Acta.2004,1693(1):37-45.
    [29]Phelan SA,Wang X,Wallbrandt P,et al.Overwxpression of Prdx6 protects H202but dose not prevent diet-induced atherosclession in the aorrtic root[J].Free Radical Biology & Medicine.2003,35(9):1110-1120.
    [30]Neumann C A,Krause D S,Carman C V,et al.Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression[J].Nature.2003,424(6948):561-565.
    [31][31]Wang X,Phelan S A,Forsman-Semb K,etal.Mice with targeted mutaton of peroxiredoxin 6 develop normally but are susceptible to oxidative stress[J].J Biol Chem.2003,278(27):25179-25190.
    [32]Valko M,Rhodes C J,Moncol J,et al.Free radicals,metals and antioxidants in oxidative stress-induced cancer[J].Chem Biol Interact.2006,160(1):1-40.
    [33]Landis GN,Tower J.Superoxide dismutase evolution and life span regulation[J].Mech Ageing Dev.2005,126(3):365-379.
    [34]傅春玲,霍艳英,胡迎春,等.Pten基因敲除对过氧化物酶家族表达和活性氧水平的影响[J].军事医学科学院院刊.2007,31(3):201-203.
    [35]杨柳,苟巧,米粲.PTEN缺失对小鼠成纤维细胞Cu/Zn超氧化物歧化酶表达的 影响及其意义[J].中华病理学杂志.2008,37(7):477-480.
    [36]Huo YY,Li G,Duan RF,et al.PTEN deletion leads to deregulation of antioxidants and increased oxidative damage in mouse embryonic fibroblasts[J].Free Radical Biology & Medicine.2008,44(8):1578-1591.
    [37]Lee SR,Yang KS,Kwon J,et al.Reversible inactivation of the tumor suppressor PTEN by H_2O_2[J].J Biol Chem.2002,277(23):20336-20342.
    [38]Bokoch GM,Diebold BA.Current molecular models for NADPH oxidase regulation by Rac GTPase[J].Blood.2002,100(8):2692-2696.
    [39]Seo JH,Ahn Y,Lee SR,et al.The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase(PI-3 kinase) in the PI-3kinase/Akt pathway[J].Mol Biol Cell.2005,16(1):348-357.
    [40]Griendling KK,Sorescu D,Lassegue B,et al.Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology[J].Arterioscler Thromb Vasc Biol.2000,20:2175-2183
    [41]Radcliff K,Tang TB,Lim J,et al.Insulin-like growth factor-Ⅰ regulates proliferation and osteoblastic differentiation of calcifying vascular cells via extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase pathways[J].Circ Res.2005,96:398-400.
    [42]霍艳英,付春玲,苟巧等.过氧化氢以PTEN依赖方式介导细胞凋亡[J].中国生物化学与分子生物学报.2007,23(4):304-308.
    [43]Kwon J,Lee SR,Yang KS,et al.Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors[J].Proc Natl Acad Sci.2004,101(47):16419-16424.
    [44]Leslie NR,Bennett D,Lindsay YE,et al.Redox regulation of PI 3-kinase signalling via inactivation ofPTEN[J].EMBO J.2003,22(20):5501-5510.
    [1] Sener DE, Gonenc A, Akinci M, et al. Lipid peroxidation and total antioxidant status in patients with breast cancer [J]. Cell Biochem Funct. 2007, 25(4):377-382.
    [2] Wu LL, Chiou CC, Chang PY, et al. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics [J]. Clin Chim Acta. 2004, 339(1-2): 1-9.
    [3] Takahashi A, Ohnishi T. Does γH2AX foci formation depend on the presence of DNA double strand breaks? [J]. Cancer Letters. 2005, 229(2): 171-179.
    [4] Shimizu T, Igarashi J, Ohtuka Y, et al. Effects of n-3 polyunsaturated fatty acids and vitamin E on colonic mucosal leukotriene generation, lipid peroxidation, and microcirculation in rats with experimental colitis [J]. Digestion. 2001, 63(1): 49-54.
    [5] Dhandapani N., Ganesan B., Anandan R., et al. Synergistic effects of squalene and polyunsaturated fatty acid concentrate on lipid peroxidation and antioxidant status in isoprenaline-induced myocardial infarction in rats [J]. African Journal of Biotechnology. 2007, 6(8): 1021-1027.
    [6] Hashimoto K, Takasaki W, Sato I, et al. DNA damage measured by comet assay and 8-OH-dG formation related to blood chemical analyses in aged rats [J]. J Toxicol Sci. 2007, 32(3): 249-259.
    [7] McKinnon PJ, Caldecott KW. DNA strand break repair and human genetic disease [J]. Annu Rev Genomics Hum Genet. 2007, 8: 37-55.
    [8] Jeggo P, Lobrich M. Radiation-induced DNA damage responses [J]. Radiat Prot Dosimetry. 2006, 122(1-4): 124-127.
    [9] Panayiotidis M, Tsolas O, Galaris D. Glucose oxidase-produced H_2O_2 induces Ca~(2+)-dependent DNA damage in human peripheral blood lymphocytes [J]. Free Radic Biol Med. 1999, 26(5-6): 548-556.
    [10]Shen WH, Balajee AS, Wang J, et al. Essential role for nuclear PTEN in maintaining chromosomal integrity [J]. Cell. 2007, 128(1): 157-170.
    [11] Kim JS, Lee C, Bonifant CL, et al. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA [J]. Mol Cell Biol. 2007, 27(2): 662-677.
    [12] Puc J, Parsons R. PTEN loss inhibits CHK1 to cause double stranded-DNA breaks in cells [J]. Cell Cycle. 2005, 4(7): 927-929.
    [13] Ouyang X, DeWeese TL, Nelson WG, et al. Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis [J]. Cancer Res. 2005, 65(15): 6773-6779.
    [14] Chu FF, Esworthy RS, Chu PG, et al. Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes [J]. Cancer Res. 2004, 64(3): 962-968.
    [15] Neumann CA, Krause DS, Carman CV, et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression [J]. Nature. 2003,424(6948): 561-565.
    [16] Wang X, Phelan SA, Forsman-Semb K, et al. Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress [J]. J Biol Chem. 2003, 278 (27): 25179-25190.
    [17] Janisch KM, Milde J, Schempp H, et al. Vitamin C, vitamin E and flavonoids [J]. Dev Ophthalmol. 2005, 38: 59-69.
    [18]Riccioni G, D'orazio N. The role of selenium, zinc and antioxidant vitamin supplementation in the treatment of bronchial asthma: adjuvant therapy or not? [J]. Expert Opin Investing Drugs. 2005,14(9): 1145-1155.
    [19] Karageuzyan KG Oxidative stress in the molecular mechanism of pathogenesis at different diseased states of organism in clinics and experiment [J]. Curr Drug Targets Inflamm Allergy. 2005, 4(1): 85-98.
    [20] Ayaz M, Celik HA, Aydin HH, et al. Sodium selenite protects against diabetes-induced alterations in the antioxidant defense system of the liver [J]. Diabetes Metab Res Rev. 2006, 22(4): 295-299.
    [21]Sachidanandam K,Fagan SC,Ergul A.Oxidative stress and cardiovascular disease:antioxidants and unresolved issues[J].Cardiovasc Drug Rev.2005,23(2):115-132.
    [22]Hankey G J,Bennett MH,Wasiak J,et al.Hyperbaric oxygen therapy for acute ischemic stroke[J].Stroke.2006,37:1953-1954.
    [23]Cai HX,Luo JM,Long X,et al.Free-radical oxidation and superoxide dismutase activity in synovial fluid of patients with temporomandibular disorders[J].J Orofac Pain.2006,20(1):53-58.
    [24]赵克然,杨毅军,曹道俊.氧自由基与临床[M].北京:中国医药科技大学出版社,2000.1-56.
    [25]Djordjevic VB.Free radicals in cell biology[J].Int Rev Cytol.2004,237:57-89.
    [26]Penserga ET,Skorski T.Fusion tyrosine kinases:a result and cause of genomic instability[J].Oncogene.2007,26(1):11-20.
    [27]Li R,Sonik A,Stindl R,et al.Aneuploidy vs.Gene mutation hypothesis of cancer:recent study claims mutation but is found to support aneuploidy[J].Proc Natl Acad Sci USA.2000,97(7):3236-3241.
    [28]Kohn KW,Bohr VA.Genomic instability and DNA repair[A].In:Alison M,eds.The Cancer Handbook[M].London:Nature Publishing Group,2002.87-106.
    [29]Lengauer C,Kinzler KW,Vogolstein B.Genitic instabilities in human cancers[J].Nature.1998,396:643-648.
    [30]Castillo A,Morse HC,Godfrey VL,et al.Overexpression of Eg5 causes genomic instability and tumor formation in mice[J].Cancer Res.2007,67(21):10138-10147.
    [31]Oztürk B,Graven M,Arpaci F,et al.Plasma and erythrocyte lipid peroxidation levels in patients with testis tumor after orchiectomy[J].Biol Trace Elem Res.2000,73(2):181-187.
    [32]Bartsch H,Nair J.Potential role of lipid peroxidation derived DNA damage in human colon carcinogenesis:studies on exocyclic base adducts as stable oxidative stress markers[J].Cancer Detect Prev.2002,26(4):308-312.
    [33] Li G, Robinson GW, Lesche R, et al. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland [J]. Development. 2002, 129(17): 4159-4170.
    [34] Bank YY, Cho IH, Kim TS. A cross-talk between oncogenic Ras and tumor suppressor PTEN through FAK Tyr861 phosphorylation in NIH/3T3 mouse embryonic fibroblasts [J]. Biochem Biophys Res Commun. 2008, 377(4): 1199 -1204.
    [35] Wang L, Wang W, Zhang Y, et al. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma [J]. Hepatol Res. 2007, 37(5): 389-396.
    [36] Gantley LC, Neel BG New insight into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway [J]. Proc Natl Acad Sci USA. 1999, 96: 240-245.
    [37] Cheong JW, Eom JI, Maeng HY, et al. Phoaphatase and tensin homologue phosphorylation in the C-terminal regulatory domain is frequently observed in acute myeloid leukaemia and associated with poor clinical outcome [J]. British Journal of Haematology. 2003, 122: 454-456.
    [38] Blanco-Aparicio C, Renner O, Leal JF, et al. PTEN, more than the AKT pathway [J]. Carcinogenesis. 2007, 28(7): 1379-1386.
    [39] Planchon SM, Waite KA, Eng C. The nuclear affairs of PTEN [J]. J Cell Sci. 2008, 121(Pt 3): 249-253.
    [40] Tamguney T, Stokoe D. New insights into PTEN [J]. J Cell Sci. 2007, 120(Pt 23): 4071-4079.
    [1]霍艳英,付春玲,苟巧,等.过氧化氢以PTEN依赖方式介导细胞凋亡[J].中国生物化学与分子生物学报.23(4):304-308.
    [2]Cantley LC,Neel BG.New insights into tumor suppression:PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway[J].Proc Natl Acad Sci U S A.1999,96(8):4240-4245.
    [3]Planchon SM,Waite KA,Eng C.The nuclear affairs of PTEN[J].J Cell Sci.2008,121(Pt 3):249-253.
    [4]Stambolic V,Suzuki A,de la Pompa JL,et al.Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN[J].Ce11.1998;95:29-39.
    [5]Li L,Ross AH.Why is PTEN an important tumor suppressor?[J].J Cell Biochem.2007,102(6):1368-1374.
    [6]Yin Y,Shen WH.PTEN:a new guardian of the genome[J].Oncogene.2008,27(41):5443-5453.
    [7]Sun H,Lesche R,Li DM,et al.PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway[J].Proc Natl Acad Sci USA.1999,96:6199-6204.
    [8]Jiang BH,Liu LZ.PI3K/PTEN signaling in tumorigenesis and angiogenesis[J].Biochim Biophys Acta.2008,1784(1):150-158.
    [9]Hartmann W,Digon-S(o|¨)ntgerath B,Koch A,et al.Phosphatidylinositol 3'-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN[J].Clin Cancer Res.2006,12(10):3019-3027.
    [10]Rodriguez-Escudero I,Roelants FM,Thorner J,et al.Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast[J].Biochem J.2005,390(Pt 2):613-623.
    [11]Tamguney T,Stokoe D.New insights into PTEN[J].J Cell Sci.2007,120(Pt 23): 4071-4079.
    [12] Kops GJ, Dansen TB, Polderman PE, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress [J]. Nature. 2002, 419(6904): 316-321.
    [13] Li M, Chiu JF, Mossman BT, et al. Down-regulation of manganese-superoxide dismutase through phosphorylation of FOXO3a by Akt in explanted vascular smooth muscle cells from old rats [J]. J Biol Chem. 2006, 281(52): 40429-40439.
    [14] Burgering BM, Medema RH. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty [J]. J Leukoc Biol. 2003, 73(6): 689-701.
    [15] Huang H, Tindall DJ. Dynamic FoxO transcription factors [J]. J Cell Sci. 2007, 120(Pt 15): 2479-2487.
    [16] Daitoku H, Fukamizu A. FOXO transcription factors in the regulatory networks of longevity [J]. J Biochem. 2007, 141(6): 769-774.
    [17] Glauser DA, Schlegel W. The emerging role of FOXO transcription factors in pancreatic beta cells [J]. J Endocrinol. 2007, 193(2): 195-207.
    [18] Plas DR, Thompson CB. Akt-dependent transformation: there is more to growth than just surviving [J]. Oncogene. 2005, 24(50): 7435-7442.
    [19] Lam EW, Francis RE, Petkovic M. FOXO transcription factors: key regulators of cell fate [J]. Biochem Soc Trans. 2006, 34(Pt 5): 722-726.
    [20] Birkenkamp KU, Coffer PJ. Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors [J]. Biochem Soc Trans. 2003, 31 (Pt 1): 292-297.
    [21] Birkenkamp KU, Coffer PJ. FOXO transcription factors as regulators of immune homeostasis: molecules to die for? [J]. J Immunol. 2003, 171(4): 1623-1629.
    [22] Chow LM, Baker SJ. PTEN function in normal and neoplastic growth [J]. Cancer Lett. 2006, 241(2): 184-196.
    [23] Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism [J]. Nat Rev Genet. 2006, 7(8): 606-619.
    [24] Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress [J]. Cell. 2007; 128(2): 325-339.
    [25] Venkatesan B, Mahimainathan L, Das F, et al. Downregulation of catalase by reactive oxygen species via PI 3 kinase/Akt signaling in mesangial cells [J]. J Cell Physiol. 2007,211(2): 457-467.
    [26] Wang L, Wang W, Zhang Y, et al. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol Res. 2007, 37(5): 389-396.
    [27] Blanco-Aparicio C, Renner O, Leal JF, et al. PTEN, more than the AKT pathway [J]. Carcinogenesis. 2007,28(7): 1379-1386.
    
    [28] Eng C. PTEN: one gene, many syndromes [J]. Hum Mutat. 2003, 22:183-198.
    [29] Waite KA, Eng C. Protean PTEN: form and function [J]. Am J Hum Genet. 2002, 70: 829-844.
    [30] Erkanli S, Kayaselcuk F, Kuscu E, et al. Expression of survivin, PTEN and p27 in normal, hyperplastic, and carcinomatous endometrium [J]. Int J Gynecol Cancer. 2006, 16(3): 1412-1418.
    [31]Shen WH, Balajee AS, Wang J, et al. Essential role for nuclear PTEN in maintaining chromosomal integrity [J]. Cell. 2007, 128(1): 157-170.
    [32] Li AG, Piluso LG, Cai X, et al. Mechanistic insights into maintenance of high p53 acetylation by PTEN [J]. Mol Cell. 2006, 23(4): 575-587.
    [33] Okumura K, Mendoza M, Bachoo RM, et al. PCAF modulates PTEN activity [J]. J Biol Chem. 2006,281(36): 26562-26568.
    [1]Jing Li,Clifford Yen,Danny Liaw,et al.PTEN,a Putative Protein Tyrosine Phosphatase Gene Mutated in Human Brain,Breast,and Prostate Cancer[J].Science.1997,275(5308):1943-1947.
    [2]Steck PA,Pershouse MA,Jasser SA,et al.Identification of a candidate tumour suppressor gene,MMAC1,at chromosome 10q23.3 that is mutated in multiple advanced cancers[J].Nat Genet.1997,15(4):356-362.
    [3] Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta [J]. Cancer Res. 1997, 57(11): 2124-2129.
    [4] Cho SH, Lee CH, Ahn Y, et al. Redox regulation of PTEN and protein tyrosine phosphates in mediated cell signaling. FEBS Lett. 2004, 560(1/3): 7-13.
    [5] Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression [J]. Cell. 2000, 100(4): 387-390.
    [6] Lee JO, Yang H, Georgescu MM, et al. Crystal structure of the PTEN tumor supressor: implications for its phosphoinositide phosphatase activity and membrane association [J]. Cell. 1999, 99(3): 323-334.
    [7] Wu W, Wang X, Zhang W, et al. Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelia cells [J]. J Biol Chem. 2003, 278(30): 28258-28263.
    [8] Wu Y, Dowbenko D, Spencer S, et al. Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase [J]. J Biol Chem. 2000, 275(28): 21477-21485.
    [9] Cheong JW, Eom JI, Maeng HY, et al. Phosphatase and tensin homologue phosphorylation in the C-terminal regulatory domain is frequently observed in acute myeloid leukaemia and associated with poor clinical outcome [J]. Br J Haematol. 2003, 122: 454-456.
    [10] Sulis ML, Parsons R. PTEN: from pathology to biology [J]. Trends Cell Biol. 2003, 3(9): 478-483.
    [11] Wang L, Wang W, Zhang Y, et al. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol Res. 2007, 37(5): 389-396.
    [12] Lee KS, Kim SR, Park SJ, et al. Phosphates and tensin homolog deleted on chromosome (PTEN) reduces vascular endothelial growth factor expression in allergen-induced airway inflammation. Mol Pharmacol. 2006, 69(6): 1829-1839.
    [13] Stambolic V, Tsao MS, Macpherson D, et al. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/- mice [J]. Cancer Res.2000,60(13):3605-3611.
    [14]Suzuki A,Kaisho T,Ohishi M,et al.Critical roles of PTEN in B cell homeostasis and immunoglobulin class switch recombination[J].J Exp Med.2003,197(5):657-667.
    [15]Puc J;Parsons R.PTEN loss inhibits CHK1 to cause double stranded-DNA breaks in cells[J].Cell Cycle.2005,4(7):927-929.
    [16]Shen WH,Balajee AS,Wang J,et al.Essential role for nuclear PTEN in maintaining chromosomal integrity[J].Cell.2007,128(1):157-170.
    [17]赵克然,杨毅军,曹道俊.氧自由基与临床[M].北京:中国医药科技大学出版社,2000.1-56.
    [18]Djordjevic VB.Free radicals in cell biology[J].Int Rev Cytol.2004,237:57-89.
    [19]Penserga ET,Skorski T.Fusion tyrosine kinases:a result and cause of genomic instability[J].Oncogene.2007,26(1):11-20.
    [20]Kops G J,Dansen TB,Polderman PE,et al.Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress[J].Nature.2002,419(6904):316-321.
    [21]Li M,Chiu JF,Mossman BT,et al.Down-regulation of manganese-superoxide dismutase through phosphorylation of FOXO3a by Akt in explanted vascular smooth muscle cells from old rats[J].J Biol Chem.2006,281(52):40429-40439.
    [22]Tothova Z,Kollipara R,Huntly B J,et al.FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress[J].Cell.2007,128(2):325-339.
    [23]Engelman JA,Luo J,Cantley LC.The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism[J].Nat Rev Genet.2006,7(8):606-619.
    [24]Chow LM,Baker SJ.PTEN function in normal and neoplastic growth [J].Cancer Lett.2006,241(2):184-196.
    [25]Venkatesan B,Mahimainathan L,Das F,et al.Downregulation of catalase by reactive oxygen species via PI 3 kinase/Akt signaling in mesangial cells[J].J Cell Physiol.2007,211(2):457-467.
    [26] Chow LM, Baker SJ. PTEN function in nomal and neoplastic growth. Cancer Lett. 2006,241(2): 184-196.
    [27] Liaw D, Marsh DJ, Li J, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome [J]. Nat Genet. 1997, 16(1): 64-67.
    [28] Li G, Robinson GW, Lesche R, et al. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland [J]. Development. 2002, 129(17): 4159-4170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700